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Introduction 
The world is digital nowadays, and most information is 
represented in numbers. However, human nature is more 
"analog" and better represented the old-fashion way, using 
pointer gauges and bar graphs. 

Pointer gauges can be found in various industrial 
applications. Automobiles, trains, and even modern 
aircraft dashboards emulate analog gauge functionality on 
control flat panel plasma or TFT screens. It doesn’t look 
like good ol’ pointer gauges will disappear in the near 
future. 

Various techniques can be used to control a pointer 
gauge. The most popular technique is to use a mechanical 
system, which consists of a turning coil mounted outside a 
two-pole permanent magnet. The applied DC current 
causes a magnetic force that rotates the coil and 
associated gauge pointer. Springs limit the coil rotation 
angle and the stable pointer rotation angle is in direct 
proportion to the coil current. Such a gauge can be 
equipped with an oil damper to suppress oscillations 
during coil angle setup and improve the system’s 
mechanical stability with respect to vibration. This method 
has limitations in the operational temperature range 
because oil viscosity changes with temperature, causing 
the gauge to be unstable amid vibrations. 

Other gauges use a bimetallic plate with a heater. This 
type consumes much current during operation and 
readings are dependent on environmental temperature. 

An alternative approach uses two quadrature-located coils 
to set the pointer position. In this system, the pointer 
rotation angle is determined in relation to the coil. A 
mechanical damper is still required to prevent pointer 
flicker due to mechanical vibrations at setup time.  

A perfect way to control a pointer gauge is to use a 
stepper motor. Conventional stepper motors have large 
rotation steps and non-uniform torque distribution within 
steps that require using expensive gears and produce 
audible noise signals during operation. The stepper motor-
based gauge driver is equipped with a pointer position 
sensor to check initial pointer position, but additional 
sensors increase the driver costs.  

Motor Driving Principles 
Today, many companies provide stepper motors for 
gauges. These motors are characterized by small size and 
low power and can be driven directly by the 
microcontroller or by level translators. Most motors have 
built-in gearboxes, which increase motor torque. Such 
motors are SONCEBOZ MM39 (6405E-1550) and NMB 
part #PM20T. These motors are controlled by the 
quadrature sin/cos analog signals to provide smooth rotor 
rotation.  

When a two-pole permanent magnet is used in the motor 
rotor, the rotor mechanical step is 90° when single-phase 
electric pulses are applied to the motor windings. 
Therefore, the microstep technique is necessary to control 
this motor in gauge applications.  

This can be achieved by applying the cos/sin analog 
current signals to the coils. Because 

2 2, cos sin 1φ φ φ∀ + = , and motor rotor flux linkage is the 
same for any rotor angle by the mechanical construction of 
the motor, torque is constant. To use a gauge for analog 
values measured digitally, it is necessary to divide each 
motor mechanical 90° step by a predefined number of 
microsteps. In this design, each mechanical 90° step is 
divided by 32 microsteps. 
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When a motor is used in the gauge application, the 
principles of sensor or sensor-less synchronization can be 
used to detect pointer stops. Motor manufacturers 
recommend driving the motor in the synchronization phase 
with rectangle pulses (full-step mode) and reading the 
back-EMF from the windings. When the rotor turns, a 
back-EMF signal is produced, when a stop is reached, 
there is no inducted voltage. The design in this Application 
Note uses this principle to detect pointer stop. 

Driving motors is simple. In this Application Note, two 
analog quadrature sin/cos signals are generated using the 
double pulse-width modulator (PWM) or a digital-to-analog 
converter (DAC). The driving profiles should be 
determined as well. Motor speed can be a constant or 
variable with respect to acceleration and deceleration 
phases. 

For stepper motors, the startup frequency is much less 
than maximum operation frequency. Therefore, the 
constant speed profile does not provide the minimum 
pointer setup time. The variable speed driving profile does 
not have this limitation and allows full use of motor 
possibilities and use of the minimum pointer setup time. 

There is a limit to the maximum rotation acceleration as 
well.  This limit determines motor acceleration and 
deceleration times; the limit comes from the limit in the 
magnetic force value. Note, if stepper motor control 
frequency (both startup and operation) exceeds 
predefined limits, the motor can skip steps and pointer 
position may lose synchronization with the control 
sequence. Therefore, the maximum acceleration and 
startup times as well as operational rotational speeds must 
not be exceeded. 

Figure 1. Stepper Motor Torque vs. Motor Speed 
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In stepper motor gauge design, it is possible to select 
different motor acceleration and deceleration schemes. 
One possible solution uses a digital low-pass filter (LPF) to 
gradually increase the rotational speed during the motor 
acceleration phase and to apply the same filter during the 
deceleration phase. When this scheme is used, the 
absolute value of the acceleration must be within the 
allowed bounds of the motor. 

Another scheme can use a constant acceleration profile. 
This type of profile is useful when the rotation speed is 
increased at constant acceleration during the acceleration 
phase, with corresponding deceleration during the 
deceleration phase. Rotational speed is constant when the 
speed reaches a predefined threshold. The proposed 
motor driver uses a constant acceleration drive profile. 
This profile is sometimes called a trapezoidal profile, since 
it is in the shape of a trapezoid. 

This driver can be implemented with a microcontroller and 
some application requirements.  The following 
components are necessary: 

� A double-PWM or DAC to create the phase coils’ 
quadrature signals; 

� A variable frequency generator to generate the phase 
current values’ updating events to determine the 
rotational speed; 

� A speed control system to operate rotational 
acceleration and deceleration. 

Modern microcontrollers have PWMs. The programmable 
interval timer can be used as a variable frequency 
generator. However, change in linear motor rotation speed 
corresponds to a hyperbolic timer period curve, which 
requires a high-resolution timer.  

PSoC provides an excellent solution with its flexible 
internal analog user modules. The voltage-to-frequency 
converter (V/F), together with a DAC, creates a 
programmable, variable frequency signal generator with a 
constant frequency step. This method is used in this 
Application Note. 

Most modern applications require networked gauges, 
where all gauges are connected to a common bus with 
minimal wires (the modern vehicle contains many buses 
inside, such as CAN, LIN, J1587, and others). In such 
cases, the bus interface reads and interprets the bus data, 
and selects the commands to be processed by a particular 
gauge.  

A standard UART interface has been used to control the 
gauge driver in this example. The end user can use end 
application-specific protocol. 

Figure 2 shows one possible microcontroller-based driver 
implementation.  

Note The conventional Unified Modeling Language (UML) 
notation was used to mark the relations between blocks. 
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Figure 2. Driver Cooperation Diagram 
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The driver can be connected to a dedicated bus. The 
network interface receives the data from the bus, decodes 
it, checks the incoming packets’ integrity, and separates 
suitable data for a particular gauge in the network. The 
received data is parsed, validated, and scaled to the 
pointer microsteps or other suitable processing value used 
to control pointer movement. Note that in many vehicle 
applications, the gauge is equipped with the several 
illumination LEDs and one or more status LEDs (low fuel, 
overheating, alarm, etc.). These LEDs can be controlled 
via the bus as well. 

The speed calculation module analyzes the current and 
required pointer positions to generate the actual motor 
rotation speed; the speed adjustment is periodically 
initiated using a dedicated interval timer. The motor 
rotational speed value is calculated using Equation (1) for 
each timer update: 

{ }1 0, ,0,i i i iv v a a a a−= + = − 0  Equation 1 

vi and vi-1 are speed values for i and i-1 iterations, 
respectively, and  ai is the acceleration value, which can 
accept only three possible values: 

� Fixed positive during acceleration stage.  

� Zero during constant rotational speed stage. 

� Fixed negative during deceleration stage. 

Upon motor startup, positive acceleration is selected and 
half of pointer movement distance is used to mark the 
switching on of deceleration stage. When the pointer 
speed reaches the predefined threshold, acceleration 
drops to zero and the constant rotational speed stage 
starts. At this time, the current pointer displacement 
overrides the previously calculated value for determining 
the pointer deceleration start position. The deceleration 
stage begins when the distance-to-destination position is 
less than the previously calculated value; the acceleration 
is set negative for this stage. The proposed algorithm 
provides symmetric acceleration and deceleration profiles 
for both small and large pointer displacement, regardless 
of rotation speed and the maximum-allowed value. 

Figure 3 shows the speed control module diagram. Ready 
is the default stage. When a new position command is 
received, the driver enters the Initialization stage, where 
the internal control variables are initialized. Next, is the 
Acceleration stage, during which the motor rotation speed 
increases linearly. When rotation speed reaches the 
predefined maximum value, the driver enters the Constant 
Speed Mode stage. If the pointer is close to the set 
position, the driver enters the Deceleration stage, during 
which speed decreases linearly. Note that the driver 
enters Deceleration stage directly from Acceleration stage 
when the pointer completes half of the required rotation 
angle and the speed is less than the predefined maximum 
value. This occurs frequently at small pointer 
displacements. 
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Figure 3. Speed Control Module State  
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The V/F is used to generate variable frequency interrupts 
to call the microstep control routines. The input voltage is 
calculated to provide the interrupts’ frequency proportional 
to that from Equation (1). The speed value is calculated 
suing Equation (2). 

i
i

s

vU
K

=  Equation 2 

Ks is the scale coefficient. 

The microstep control routine does several things: it 
adjusts the motor PWM duty cycle values, it switches the 
direction of the motor windings when needed, and it 
compares the current pointer position in microstep units to 
that of the required position. When these values are equal, 
the V/F stops, PWM units are turned off (or PWM duty 
cycle values can be proportionally reduced to avoid false 

rotations in strong gauge vibrations), and pointer 
movement is considered complete. 

The synchronization control system performs initial pointer 
synchronization by analyzing the inducted voltage to 
detect the stop point. 

The motor control system was simulated in Simulink to 
study the quantization effects and optimize parameters in 
the control algorithms. Figure 4 illustrates a top-level 
model control system and simulation results for various 
pointer displacements. The simulation results show the 
accuracy of the control algorithms and match driver 
experiment test results. 
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Figure 4. Motor Driver Simulation  

(a) Driver Simulink Top-Level Model, (b)-(c) Simulation Results for Various Pointer Displacement 

(a)

(b) (c)  
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Driver Schematic
Figure 5. Driver Schematic  

D8
OPERATION

VCC

IL
1G1

1A12

1A24

1A36

1A48

2G19

2A111

2A2
13

2A3
15

2A4
17

1Y1 18

1Y2 16

1Y3 14

1Y4 12

2Y1 9

2Y2
7

2Y3
5

2Y4
3

U3

74AC244

X1
1

TP1
VF OUT

X2

C8
100p

D5
LED

EN

R2 1k

P0[7]
1

P0[5]2

P0[3]3

P0[1]4

P2[7]5
P2[5]6

P2[3]7

P2[1]8

SMP
9

P1[7]10

P1[5]11

P1[3]12

P1[1]13

Vss14
P1[0] 15P1[2] 16P1[4] 17P1[6] 18
XRES

19
P2[0] 20

P0[6]
27

P0[4] 26

P0[2] 25

P0[0] 24

P2[2] 21P2[4] 22P2[6] 23

VCC
28

U2

CY8C24243A

D4

Y1

BUS

R7
2,2k

Y2

C9
1n

1

3

2 4

MG1

1
2
3

J1

POWER

IND

TELL

STATE

IL
1

TP2
EXETIME

TELL

1
2J2

SELFTEST

EN

RX

RX

R8
270R

Y2

D6
ILLUM

X2

R1 20R

D1

1N4008

VIN
1

VOUT
3

G
N

D
4

U1 LP2950-5 (DPAK)

R3
100R

+C2
220u C3

0.1u
C4
0.1u

C5
0.1u C6

0.1u

D3

VCC

+C7
100*6,3V

R9
120R

Y1

D7
TELL

R4
100R

R10
120R

Q1

Q2N5772

Q2

Q2N5772

X1

Y phase

X phase

D2

1N4008

ILLUM

IND

C1
0.1u

ILLUM

 
 

Figure 5 shows the device schematic. R7 pulls down the line for correct Y-voltage reading when 
the Y-phase outputs are disabled. 

This driver was designed for vehicle applications with 
supply voltages between 8V and 18V and a single-wire 
control bus. The 28-pin PSoC CY8C24423A is used in the 
prototype. End applications can use a 20-pin 
CY8C24223A since the port 2 pins are not used.  

Two current sources are used to drive the illumination (D5 
and D6) and status (D7) LEDs. The illumination current is 
controlled by a PSoC internal DAC, which allows gradual 
tuning of LED brightness with respect to external 
commands.  The status LED is controlled by logic. The 
current sources provide constant brightness in case of 
power supply or temperature variations. These LEDs are 
directly connected to a battery line to reduce the linear 
regulator (U1) power dissipation. D8 is used internally; it 
starts blinking when the gauge is not addressed on the 
bus within 1 or 2 seconds. Constant LED lighting indicates 
the motor synchronization process. When the bus master 
selects the gauge, this LED is off. 

The driver consists of a power regulator (U1), a bus input 
protection circuit (R2-D4-C9), a PSoC (U2), a motor driver 
(U3), and two voltage-to-current converters (Q1 and Q2). 
The bus driver (U3) is used to drive the low-power stepper 
motor and increase the load capability of the two outputs 
connected in parallel for each motor phase. The U3 
internal diodes protect the driver from inductive spikes. 
Note that the PSoC device has an asymmetric load 
capability (12 mA for source current and 25 mA for sink), 
which requires using an additional driver. The low-cost bus 
translator (U3) does this perfectly. One half of the 
translator can be disabled by using an EN signal during 
the synchronization process when the inducted voltage is 
read from the Y phase.  

There are two test-points on the schematic, TP1 and TP2. 
TP1 is the rotation speed of the DAC output. TP2 
measures the execution time of code fragment using 
dedicated macros. 
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PSoC Internals 
Figure 6. PSoC User Module Placement 

 
The PSoC internal structure is shown in Figure 6. 

The X- and Y-phase PWMs are placed in blocks DBB00 
and DBB01, respectively, and their signals are connected 
to the phase outputs via LUTs. The LUT functions are 
charged at runtime to properly route the phase signal to 
the corresponding pins during motor operation. The PWM 
frequency is approximately 19 kHz, which assures 
acoustic noise-free operation. It is possible to adjust the 
required PWM frequency by changing the VC1 and VC2 
divider values with respect to the motor manufacturer’s 
recommendations.  

The V/F is placed in blocks ASB00-ASC10. The converter 
output generates periodic interrupts using the comparator 
bus interrupts. The converter operation is described in 
detail in Application Note AN2161 Voltage-to-Frequency 
Converter.  

The 9-bit DAC is used as the V/F signal source. Because 
the DAC internal output alternates between AGND and the 
set level, each column clock cycle and V/F sample the 
input signal during both switching capacitor phases. The 
DAC output is passed to the analog bus and then to the 
AMUX input of the V/F via the PGA. The PGA is a 
programmable threshold comparator, to which the PSoC 
changes using dynamic re-configuration. Writing directly to 
the control registers performs the re-configuration. 

The programmable threshold comparator is used to control 
motor induction voltage during the synchronization 
process. The comparator is queried in software during 
synchronization. It is placed in block ACB01. When 
unused, the comparator block is configured as the PGA. 
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This demonstration uses a UART-controlled exchange 
protocol, where all messages are encoded in text strings. 
HyperTerminal can be used to send commands to the 
driver. The user can use any other appropriate interface 
(SPI, I2C, etc.) to control the driver. For example, in 
vehicle dashboard applications, one master can control 
several slave gauges via an I2C bus, where the I2C 
master uses LIN bus slaves. 

The DAC that controls illumination brightness is placed in 
ADS11. The 6-bit DAC is used to set the LED brightness 
level. 

The VC3 interrupts generate the periodic speed-update 
intervals. In this design, the interrupt frequency is 4800 Hz. 
The speed update event is triggered every 16 interrupts, 
so the rotation speed value is recalculated once every 3.3 
ms. The VC3 interrupts are also used to form the phase 
excitation pulse duration during motor synchronization. 
VC3 uses a stable, divided high-speed generator signal 
(accuracy is ± 2.5%). This assures that the acceleration 
value is set accurately for proper motor operation. 

Sleep timer interrupts are used to form the blinking D8 
events and update the bus exchange timeout. The fact 
that the sleep timer is driven from the low-accuracy (± 
50%) internal low-speed oscillator is not important for 
these non-critical operations. 

Note that the CPU clock is 12 MHz, such that at a 24 MHz 
clock, the maximum junction temperature is 82°C, with an 
ambient temperature of only 70°C. PSoC allows a 
maximum ambient temperature of 85°C for a clock rate of 
12 MHz or less. 

The Software 
The driver firmware consists of several elements: 

� Bus Interface 

� Command Parser 

� Time Management 

� Pointer Positioning Control 

� Pointer Synchronization 

� Self-Test Function 

The bus interface decodes and interprets the messages 
from the bus. In this demonstration, each device is 
characterized by its own address and can parse the 
following commands: 

� Turn on/off the status LED. 

� Turn on/off illumination LEDs and gradually set 
brightness level (62 different levels and an off state 
are supported). 

� Stop pointer synchronization. 

� Set pointer position in microsteps. 

� Set gauge parameter value in chosen internal unit 
(km/hour, Celsius, etc.). 

The pointer is synchronized to the initial position (internal 
stop) at gauge power up. However, the synchronization 
process can also be initiated by sending the appropriate 
commands to the gauge. 

When a set parameter command is received, the 
parameter value is checked for upper and lower bounds 
and linearly scaled to be in the chosen microstep unit. In 
this demonstration, the allowed pointer displacement is 
limited to 4400 microsteps; this value is calculated from 
the motor’s mechanical construction, especially the 
gearbox reduction ratio. The calculated microstep value is 
checked again to eliminate any errors in the scale 
coefficient settings. Equation (3) shows the calculation. 

( )max min

max

min ,max , ;

2min , max , 0
p

v c

K

ms v off
s

M M M M

P P M M
K

= ⎡ ⎤⎣ ⎦
⎡ ⎤⎛

= +
⎞

⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

 Equation 3 

Mc, Mmin, and Mmax are the received, minimum, and 
maximum allowed parameter values, respectively. Pms and 
Pmax are the calculated and maximum permitted pointer 
positions in microsteps. Kp, Ks, and Koff are scale 
coefficients. The user can adjust the parameter conversion 
formulas or use other data types to serve special 
parameter representations. 
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In the current UART-based protocol, each message is a 
carriage return terminated string that consists of three 
parameters. All parameters are separated by spaces:  
"Node_Address Command Command_value.”  

All integers are in hexadecimal format. 

� Address field: number from 0..FFh. 

� Command field: one letter. All supported commands 
are given in Table 1. 

� Value: two-byte unsigned integer value. 

Table 1.  Command Descriptions 

Command 
Letter 

Command  
Description 

'P' Set parameter. Allowed values are 0-
350. 

'I' 
Initialize motor. Set pointer to stop 
using back-EMF synchronization. 
Value is not important. 

'M' Set pointer position in microsteps. 
Valid values are 0-4400. 

'A' Set acceleration ratio. Valid values 
are 0-150. 

'B' Set illumination LED brightness. 
Valid values are 0-62. 

'L' 
Turn on/off the status LED. Non-zero 
value turns on the LED. Zero turns it 
off. 

 

A command example is: "10 P 12C," meaning that the 
node address is set to 10h, the command is “set 
parameter,” and the parameter value is 12Ch. 

 

The motor positioning control firmware consists of two 
main routines: speed update and microstep control 
routines, which are shown in Figure 7. 
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Figure 7. (a) Speed Adjustment and (b) Microstep Control ISR  
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a0 – acceleration value;
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The Figure 7(a) shows the speed control algorithm, which 
is described in the Motor Driving Principles section on 
page 1. Figure 7(b) shows the flow of the microstep timer 
ISR. The minimum V/F output frequency is approximately 
128*1.5 Hz (limited by the offset voltage and DAC output 
voltage swing limits). This can be extended for very low 
frequencies using an additional software counter. This 
allows very low pointer positioning speeds, which can be 
useful for special applications. The current implementation 
allows a minimum pointer rotational speed of less the 1 
RPM. The number of interrupt events for skipping is 
calculated in the speed control routine.  

To calculate the sin/cos duty cycle values for the PWM 
sources, the 5 least significant bits are separated from the 
current pointer position variable and used as indices for 
the quarter period sin LUT. Thus, only 32+1 bytes are 
allocated for storage of this table in PSoC's Flash. 

The PSoC LUTs were used as the PWM signal 
multiplexers to allow bridge coil control and maximize the 
usage of the power supply voltage. Figure 8 illustrates this. 

Figure 8. Motor Phases Control 
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Figure 9 shows the synchronization algorithm, which 
provides sensor-less pointer rotation to the internal stop.  

Figure 9. Pointer Synchronization Mechanism 
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Stepper motors for gauges can have special mechanical 
construction to ensure that when pointers stop, the rotor 
magnet poles are located close to same phase coils for 
any motor in a series. This simplifies the synchronization 
logic by only reading the inducted voltage during one 
phase interval (rotor step). 

The motor in this design operates in full-step mode (wave 
drive mode) during the synchronization process and the 
inducted voltage is read only when phase x1 is driven (see 
Figure 5). A simple digital filter is used to suppress the 
noise caused by inter-coil capacitance. The motor rotor is 
considered rotating when the voltage on the sense coil is 
greater than the predefined threshold for more than Cth 
samples during the checkpoint phase excitation time. 

The self-test feature allows users to test the gauge without 
active bus commands. Jumper J2 should be shorted in this 
case. After self-synchronization stops, the pointer is 
commanded to reach various positions in microsteps, and 
various illumination LED levels are set in series. A range 
of acceleration values are set to simulate different 
damping ratios as well. The status LED flashes anytime 
the pointer reaches the demanded position. 

PC Test Software 
To simulate a bus interface, simple test software was 
written using Borland Delphi 7 and runs with Microsoft 
Windows. The software remembers the previously entered 
numerical values in the drop-list box, which allows for easy 
repetition of previously entered commands.  

Figure 10. Gauge Control Test Software  
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Possible Design Modifications Note The Variable field (next to the Send button) can be 
entered in decimal or hex format (using the x prefix). 

The proposed driver can be adapted for other demands 
such as servo control and various industrial applications. 
The synchronization technique in this Application Note can 
be adapted to conventional stepper motors with non-
athwart coil placement. The digital filter can remove the 
parasitic spikes when the drive phase is excited. 

The software interacts with the device using a PC serial 
port. Valid settings are shown in Figure 11. Note that the 
RS232-CMOS Level Translator is not required to test the 
gauge when using the PC. By connecting the TX line with 
the bus pin of Connector J1 (see Figure 5), the internal 
circuit provides all of the required protection. 

 
Figure 11. GUI COM Port Settings 
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Appendix A. Driver Prototype Photograph 
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Appendix B. Scope Images 

(a) (b)

(c) (d)

(f)(e)  
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Image Remarks: 
• Images (a) and (b) show the motor synchronization process for 

different pointer inertia moments. The stop moment is clearly 
displayed. 

• Images (c) and (d) show voltage on the motor pins for two different 
phases. The increasing lower bound and decreasing upper bound 
correspond to the voltage drop on the opened MOSFET due to coil 
current increase according to the sine law.  

• Image (d) shows the rotation speed acceleration/deceleration. 
• Image (e) shows the RS232 communication signal. 
• Image (f) shows speed control DAC output voltage.  
 
Note Rotation starts and finishes at some intermediate level when the DAC 
output voltage is set above some minimum voltage to get a very small 
internal control step frequency by value control using the software skip 
counter. 
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