

Motor Control - Stepper Motor Driver
for Smart Gauges

January 11, 2005 Document No. 001-33740 Rev. ** 1

AN2197
Author: Victor Kremin

Associated Project: Yes
Associated Part Family: CY8C24xxxA, CY8C27xxx

GET FREE SAMPLES HERE

Software Version: PSoC Designer™ 4.2
Associated Application Notes: AN2161

Application Note Abstract
This Application Note demonstrates using the PSoC® mixed-signal array to drive a low-power stepper motor for smart pointer
gauges.

Introduction
The world is digital nowadays, and most information is
represented in numbers. However, human nature is more
"analog" and better represented the old-fashion way, using
pointer gauges and bar graphs.

Pointer gauges can be found in various industrial
applications. Automobiles, trains, and even modern
aircraft dashboards emulate analog gauge functionality on
control flat panel plasma or TFT screens. It doesn’t look
like good ol’ pointer gauges will disappear in the near
future.

Various techniques can be used to control a pointer
gauge. The most popular technique is to use a mechanical
system, which consists of a turning coil mounted outside a
two-pole permanent magnet. The applied DC current
causes a magnetic force that rotates the coil and
associated gauge pointer. Springs limit the coil rotation
angle and the stable pointer rotation angle is in direct
proportion to the coil current. Such a gauge can be
equipped with an oil damper to suppress oscillations
during coil angle setup and improve the system’s
mechanical stability with respect to vibration. This method
has limitations in the operational temperature range
because oil viscosity changes with temperature, causing
the gauge to be unstable amid vibrations.

Other gauges use a bimetallic plate with a heater. This
type consumes much current during operation and
readings are dependent on environmental temperature.

An alternative approach uses two quadrature-located coils
to set the pointer position. In this system, the pointer
rotation angle is determined in relation to the coil. A
mechanical damper is still required to prevent pointer
flicker due to mechanical vibrations at setup time.

A perfect way to control a pointer gauge is to use a
stepper motor. Conventional stepper motors have large
rotation steps and non-uniform torque distribution within
steps that require using expensive gears and produce
audible noise signals during operation. The stepper motor-
based gauge driver is equipped with a pointer position
sensor to check initial pointer position, but additional
sensors increase the driver costs.

Motor Driving Principles
Today, many companies provide stepper motors for
gauges. These motors are characterized by small size and
low power and can be driven directly by the
microcontroller or by level translators. Most motors have
built-in gearboxes, which increase motor torque. Such
motors are SONCEBOZ MM39 (6405E-1550) and NMB
part #PM20T. These motors are controlled by the
quadrature sin/cos analog signals to provide smooth rotor
rotation.

When a two-pole permanent magnet is used in the motor
rotor, the rotor mechanical step is 90° when single-phase
electric pulses are applied to the motor windings.
Therefore, the microstep technique is necessary to control
this motor in gauge applications.

This can be achieved by applying the cos/sin analog
current signals to the coils. Because

2 2, cos sin 1φ φ φ∀ + = , and motor rotor flux linkage is the
same for any rotor angle by the mechanical construction of
the motor, torque is constant. To use a gauge for analog
values measured digitally, it is necessary to divide each
motor mechanical 90° step by a predefined number of
microsteps. In this design, each mechanical 90° step is
divided by 32 microsteps.

[+] Feedback [+] Feedback

http://www.cypress.com/samplerequest
http://ccc01.opinionlab.com/o.asp?id=Text1&prev=docurate_001-33740_pdf_p_1
http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_motor_control___stepper_motor_driver_for_smart_gauges___an2197_12_pdf_p_1

AN2197

When a motor is used in the gauge application, the
principles of sensor or sensor-less synchronization can be
used to detect pointer stops. Motor manufacturers
recommend driving the motor in the synchronization phase
with rectangle pulses (full-step mode) and reading the
back-EMF from the windings. When the rotor turns, a
back-EMF signal is produced, when a stop is reached,
there is no inducted voltage. The design in this Application
Note uses this principle to detect pointer stop.

Driving motors is simple. In this Application Note, two
analog quadrature sin/cos signals are generated using the
double pulse-width modulator (PWM) or a digital-to-analog
converter (DAC). The driving profiles should be
determined as well. Motor speed can be a constant or
variable with respect to acceleration and deceleration
phases.

For stepper motors, the startup frequency is much less
than maximum operation frequency. Therefore, the
constant speed profile does not provide the minimum
pointer setup time. The variable speed driving profile does
not have this limitation and allows full use of motor
possibilities and use of the minimum pointer setup time.

There is a limit to the maximum rotation acceleration as
well. This limit determines motor acceleration and
deceleration times; the limit comes from the limit in the
magnetic force value. Note, if stepper motor control
frequency (both startup and operation) exceeds
predefined limits, the motor can skip steps and pointer
position may lose synchronization with the control
sequence. Therefore, the maximum acceleration and
startup times as well as operational rotational speeds must
not be exceeded.

Figure 1. Stepper Motor Torque vs. Motor Speed

0 20 40 60 80 100 120
0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

To
rq

ue
, m

N
m

Motor speed , s-1

Start zone

Acceleration/
deceleration zone

Mstart Mop

In stepper motor gauge design, it is possible to select
different motor acceleration and deceleration schemes.
One possible solution uses a digital low-pass filter (LPF) to
gradually increase the rotational speed during the motor
acceleration phase and to apply the same filter during the
deceleration phase. When this scheme is used, the
absolute value of the acceleration must be within the
allowed bounds of the motor.

Another scheme can use a constant acceleration profile.
This type of profile is useful when the rotation speed is
increased at constant acceleration during the acceleration
phase, with corresponding deceleration during the
deceleration phase. Rotational speed is constant when the
speed reaches a predefined threshold. The proposed
motor driver uses a constant acceleration drive profile.
This profile is sometimes called a trapezoidal profile, since
it is in the shape of a trapezoid.

This driver can be implemented with a microcontroller and
some application requirements. The following
components are necessary:

� A double-PWM or DAC to create the phase coils’
quadrature signals;

� A variable frequency generator to generate the phase
current values’ updating events to determine the
rotational speed;

� A speed control system to operate rotational
acceleration and deceleration.

Modern microcontrollers have PWMs. The programmable
interval timer can be used as a variable frequency
generator. However, change in linear motor rotation speed
corresponds to a hyperbolic timer period curve, which
requires a high-resolution timer.

PSoC provides an excellent solution with its flexible
internal analog user modules. The voltage-to-frequency
converter (V/F), together with a DAC, creates a
programmable, variable frequency signal generator with a
constant frequency step. This method is used in this
Application Note.

Most modern applications require networked gauges,
where all gauges are connected to a common bus with
minimal wires (the modern vehicle contains many buses
inside, such as CAN, LIN, J1587, and others). In such
cases, the bus interface reads and interprets the bus data,
and selects the commands to be processed by a particular
gauge.

A standard UART interface has been used to control the
gauge driver in this example. The end user can use end
application-specific protocol.

Figure 2 shows one possible microcontroller-based driver
implementation.

Note The conventional Unified Modeling Language (UML)
notation was used to mark the relations between blocks.

January 11, 2005 Document No. 001-33740 Rev. ** 2

[+] Feedback [+] Feedback

http://ccc01.opinionlab.com/o.asp?id=Text1&prev=docurate_001-33740_pdf_p_2
http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_motor_control___stepper_motor_driver_for_smart_gauges___an2197_12_pdf_p_2

AN2197

Figure 2. Driver Cooperation Diagram

Bus interface

Data validity checking,
scaling, etc

Rotation speed
calculation module Speed update timer

Voltage-to-Frequency
converter

Fixed frequency
source

Microstep control routine

PWM X,
PWM Y

Output buffer

Pointer
motor

Synchronization
control system

Speed
update
events

Clock

Pointer
position

Voltage

Interrupt
events

PWM Duty
cycle

Induced voltage

Drive control

C
ur

re
nt

 p
oi

nt
er

 p
os

iti
on

D
em

an
de

d
po

in
te

r p
os

iti
on

Ph
as

es
 s

w
itc

hi
ng

Optional lighting
control

Network

Clock

Off Event

Digital-to-analog
converter

Speed code

C
on

ve
rte

r O
n-

ev
en

t

The driver can be connected to a dedicated bus. The
network interface receives the data from the bus, decodes
it, checks the incoming packets’ integrity, and separates
suitable data for a particular gauge in the network. The
received data is parsed, validated, and scaled to the
pointer microsteps or other suitable processing value used
to control pointer movement. Note that in many vehicle
applications, the gauge is equipped with the several
illumination LEDs and one or more status LEDs (low fuel,
overheating, alarm, etc.). These LEDs can be controlled
via the bus as well.

The speed calculation module analyzes the current and
required pointer positions to generate the actual motor
rotation speed; the speed adjustment is periodically
initiated using a dedicated interval timer. The motor
rotational speed value is calculated using Equation (1) for
each timer update:

{ }1 0, ,0,i i i iv v a a a a−= + = − 0 Equation 1

vi and vi-1 are speed values for i and i-1 iterations,
respectively, and ai is the acceleration value, which can
accept only three possible values:

� Fixed positive during acceleration stage.

� Zero during constant rotational speed stage.

� Fixed negative during deceleration stage.

Upon motor startup, positive acceleration is selected and
half of pointer movement distance is used to mark the
switching on of deceleration stage. When the pointer
speed reaches the predefined threshold, acceleration
drops to zero and the constant rotational speed stage
starts. At this time, the current pointer displacement
overrides the previously calculated value for determining
the pointer deceleration start position. The deceleration
stage begins when the distance-to-destination position is
less than the previously calculated value; the acceleration
is set negative for this stage. The proposed algorithm
provides symmetric acceleration and deceleration profiles
for both small and large pointer displacement, regardless
of rotation speed and the maximum-allowed value.

Figure 3 shows the speed control module diagram. Ready
is the default stage. When a new position command is
received, the driver enters the Initialization stage, where
the internal control variables are initialized. Next, is the
Acceleration stage, during which the motor rotation speed
increases linearly. When rotation speed reaches the
predefined maximum value, the driver enters the Constant
Speed Mode stage. If the pointer is close to the set
position, the driver enters the Deceleration stage, during
which speed decreases linearly. Note that the driver
enters Deceleration stage directly from Acceleration stage
when the pointer completes half of the required rotation
angle and the speed is less than the predefined maximum
value. This occurs frequently at small pointer
displacements.

January 11, 2005 Document No. 001-33740 Rev. ** 3

[+] Feedback [+] Feedback

http://ccc01.opinionlab.com/o.asp?id=Text1&prev=docurate_001-33740_pdf_p_3
http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_motor_control___stepper_motor_driver_for_smart_gauges___an2197_12_pdf_p_3

AN2197

January 11, 2005 Document No. 001-33740 Rev. ** 4

Figure 3. Speed Control Module State

Ready

Initialization Acceleration

Deceleration

Constant
speed mode

New position
 was set

Starting
rotation

Demanded position
is reached

Half of rotation is
complete

Maximum speed
is reached

Pointer is near
demanded position

The V/F is used to generate variable frequency interrupts
to call the microstep control routines. The input voltage is
calculated to provide the interrupts’ frequency proportional
to that from Equation (1). The speed value is calculated
suing Equation (2).

i
i

s

vU
K

= Equation 2

Ks is the scale coefficient.

The microstep control routine does several things: it
adjusts the motor PWM duty cycle values, it switches the
direction of the motor windings when needed, and it
compares the current pointer position in microstep units to
that of the required position. When these values are equal,
the V/F stops, PWM units are turned off (or PWM duty
cycle values can be proportionally reduced to avoid false

rotations in strong gauge vibrations), and pointer
movement is considered complete.

The synchronization control system performs initial pointer
synchronization by analyzing the inducted voltage to
detect the stop point.

The motor control system was simulated in Simulink to
study the quantization effects and optimize parameters in
the control algorithms. Figure 4 illustrates a top-level
model control system and simulation results for various
pointer displacements. The simulation results show the
accuracy of the control algorithms and match driver
experiment test results.

[+] Feedback [+] Feedback

http://ccc01.opinionlab.com/o.asp?id=Text1&prev=docurate_001-33740_pdf_p_4
http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_motor_control___stepper_motor_driver_for_smart_gauges___an2197_12_pdf_p_4

AN2197

Figure 4. Motor Driver Simulation

(a) Driver Simulink Top-Level Model, (b)-(c) Simulation Results for Various Pointer Displacement

(a)

(b) (c)

January 11, 2005 Document No. 001-33740 Rev. ** 5

[+] Feedback [+] Feedback

http://ccc01.opinionlab.com/o.asp?id=Text1&prev=docurate_001-33740_pdf_p_5
http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_motor_control___stepper_motor_driver_for_smart_gauges___an2197_12_pdf_p_5

AN2197

January 11, 2005 Document No. 001-33740 Rev. ** 6

Driver Schematic
Figure 5. Driver Schematic

D8
OPERATION

VCC

IL
1G1

1A12

1A24

1A36

1A48

2G19

2A111

2A2
13

2A3
15

2A4
17

1Y1 18

1Y2 16

1Y3 14

1Y4 12

2Y1 9

2Y2
7

2Y3
5

2Y4
3

U3

74AC244

X1
1

TP1
VF OUT

X2

C8
100p

D5
LED

EN

R2 1k

P0[7]
1

P0[5]2

P0[3]3

P0[1]4

P2[7]5
P2[5]6

P2[3]7

P2[1]8

SMP
9

P1[7]10

P1[5]11

P1[3]12

P1[1]13

Vss14
P1[0] 15P1[2] 16P1[4] 17P1[6] 18
XRES

19
P2[0] 20

P0[6]
27

P0[4] 26

P0[2] 25

P0[0] 24

P2[2] 21P2[4] 22P2[6] 23

VCC
28

U2

CY8C24243A

D4

Y1

BUS

R7
2,2k

Y2

C9
1n

1

3

2 4

MG1

1
2
3

J1

POWER

IND

TELL

STATE

IL
1

TP2
EXETIME

TELL

1
2J2

SELFTEST

EN

RX

RX

R8
270R

Y2

D6
ILLUM

X2

R1 20R

D1

1N4008

VIN
1

VOUT
3

G
N

D
4

U1 LP2950-5 (DPAK)

R3
100R

+C2
220u C3

0.1u
C4
0.1u

C5
0.1u C6

0.1u

D3

VCC

+C7
100*6,3V

R9
120R

Y1

D7
TELL

R4
100R

R10
120R

Q1

Q2N5772

Q2

Q2N5772

X1

Y phase

X phase

D2

1N4008

ILLUM

IND

C1
0.1u

ILLUM

Figure 5 shows the device schematic. R7 pulls down the line for correct Y-voltage reading when
the Y-phase outputs are disabled.

This driver was designed for vehicle applications with
supply voltages between 8V and 18V and a single-wire
control bus. The 28-pin PSoC CY8C24423A is used in the
prototype. End applications can use a 20-pin
CY8C24223A since the port 2 pins are not used.

Two current sources are used to drive the illumination (D5
and D6) and status (D7) LEDs. The illumination current is
controlled by a PSoC internal DAC, which allows gradual
tuning of LED brightness with respect to external
commands. The status LED is controlled by logic. The
current sources provide constant brightness in case of
power supply or temperature variations. These LEDs are
directly connected to a battery line to reduce the linear
regulator (U1) power dissipation. D8 is used internally; it
starts blinking when the gauge is not addressed on the
bus within 1 or 2 seconds. Constant LED lighting indicates
the motor synchronization process. When the bus master
selects the gauge, this LED is off.

The driver consists of a power regulator (U1), a bus input
protection circuit (R2-D4-C9), a PSoC (U2), a motor driver
(U3), and two voltage-to-current converters (Q1 and Q2).
The bus driver (U3) is used to drive the low-power stepper
motor and increase the load capability of the two outputs
connected in parallel for each motor phase. The U3
internal diodes protect the driver from inductive spikes.
Note that the PSoC device has an asymmetric load
capability (12 mA for source current and 25 mA for sink),
which requires using an additional driver. The low-cost bus
translator (U3) does this perfectly. One half of the
translator can be disabled by using an EN signal during
the synchronization process when the inducted voltage is
read from the Y phase.

There are two test-points on the schematic, TP1 and TP2.
TP1 is the rotation speed of the DAC output. TP2
measures the execution time of code fragment using
dedicated macros.

[+] Feedback [+] Feedback

http://ccc01.opinionlab.com/o.asp?id=Text1&prev=docurate_001-33740_pdf_p_6
http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_motor_control___stepper_motor_driver_for_smart_gauges___an2197_12_pdf_p_6

AN2197

PSoC Internals
Figure 6. PSoC User Module Placement

The PSoC internal structure is shown in Figure 6.

The X- and Y-phase PWMs are placed in blocks DBB00
and DBB01, respectively, and their signals are connected
to the phase outputs via LUTs. The LUT functions are
charged at runtime to properly route the phase signal to
the corresponding pins during motor operation. The PWM
frequency is approximately 19 kHz, which assures
acoustic noise-free operation. It is possible to adjust the
required PWM frequency by changing the VC1 and VC2
divider values with respect to the motor manufacturer’s
recommendations.

The V/F is placed in blocks ASB00-ASC10. The converter
output generates periodic interrupts using the comparator
bus interrupts. The converter operation is described in
detail in Application Note AN2161 Voltage-to-Frequency
Converter.

The 9-bit DAC is used as the V/F signal source. Because
the DAC internal output alternates between AGND and the
set level, each column clock cycle and V/F sample the
input signal during both switching capacitor phases. The
DAC output is passed to the analog bus and then to the
AMUX input of the V/F via the PGA. The PGA is a
programmable threshold comparator, to which the PSoC
changes using dynamic re-configuration. Writing directly to
the control registers performs the re-configuration.

The programmable threshold comparator is used to control
motor induction voltage during the synchronization
process. The comparator is queried in software during
synchronization. It is placed in block ACB01. When
unused, the comparator block is configured as the PGA.

January 11, 2005 Document No. 001-33740 Rev. ** 7

[+] Feedback [+] Feedback

http://ccc01.opinionlab.com/o.asp?id=Text1&prev=docurate_001-33740_pdf_p_7
http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_motor_control___stepper_motor_driver_for_smart_gauges___an2197_12_pdf_p_7

AN2197

This demonstration uses a UART-controlled exchange
protocol, where all messages are encoded in text strings.
HyperTerminal can be used to send commands to the
driver. The user can use any other appropriate interface
(SPI, I2C, etc.) to control the driver. For example, in
vehicle dashboard applications, one master can control
several slave gauges via an I2C bus, where the I2C
master uses LIN bus slaves.

The DAC that controls illumination brightness is placed in
ADS11. The 6-bit DAC is used to set the LED brightness
level.

The VC3 interrupts generate the periodic speed-update
intervals. In this design, the interrupt frequency is 4800 Hz.
The speed update event is triggered every 16 interrupts,
so the rotation speed value is recalculated once every 3.3
ms. The VC3 interrupts are also used to form the phase
excitation pulse duration during motor synchronization.
VC3 uses a stable, divided high-speed generator signal
(accuracy is ± 2.5%). This assures that the acceleration
value is set accurately for proper motor operation.

Sleep timer interrupts are used to form the blinking D8
events and update the bus exchange timeout. The fact
that the sleep timer is driven from the low-accuracy (±
50%) internal low-speed oscillator is not important for
these non-critical operations.

Note that the CPU clock is 12 MHz, such that at a 24 MHz
clock, the maximum junction temperature is 82°C, with an
ambient temperature of only 70°C. PSoC allows a
maximum ambient temperature of 85°C for a clock rate of
12 MHz or less.

The Software
The driver firmware consists of several elements:

� Bus Interface

� Command Parser

� Time Management

� Pointer Positioning Control

� Pointer Synchronization

� Self-Test Function

The bus interface decodes and interprets the messages
from the bus. In this demonstration, each device is
characterized by its own address and can parse the
following commands:

� Turn on/off the status LED.

� Turn on/off illumination LEDs and gradually set
brightness level (62 different levels and an off state
are supported).

� Stop pointer synchronization.

� Set pointer position in microsteps.

� Set gauge parameter value in chosen internal unit
(km/hour, Celsius, etc.).

The pointer is synchronized to the initial position (internal
stop) at gauge power up. However, the synchronization
process can also be initiated by sending the appropriate
commands to the gauge.

When a set parameter command is received, the
parameter value is checked for upper and lower bounds
and linearly scaled to be in the chosen microstep unit. In
this demonstration, the allowed pointer displacement is
limited to 4400 microsteps; this value is calculated from
the motor’s mechanical construction, especially the
gearbox reduction ratio. The calculated microstep value is
checked again to eliminate any errors in the scale
coefficient settings. Equation (3) shows the calculation.

()max min

max

min ,max , ;

2min , max , 0
p

v c

K

ms v off
s

M M M M

P P M M
K

= ⎡ ⎤⎣ ⎦
⎡ ⎤⎛

= +
⎞

⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

 Equation 3

Mc, Mmin, and Mmax are the received, minimum, and
maximum allowed parameter values, respectively. Pms and
Pmax are the calculated and maximum permitted pointer
positions in microsteps. Kp, Ks, and Koff are scale
coefficients. The user can adjust the parameter conversion
formulas or use other data types to serve special
parameter representations.

January 11, 2005 Document No. 001-33740 Rev. ** 8

[+] Feedback [+] Feedback

http://ccc01.opinionlab.com/o.asp?id=Text1&prev=docurate_001-33740_pdf_p_8
http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_motor_control___stepper_motor_driver_for_smart_gauges___an2197_12_pdf_p_8

AN2197

January 11, 2005 Document No. 001-33740 Rev. ** 9

In the current UART-based protocol, each message is a
carriage return terminated string that consists of three
parameters. All parameters are separated by spaces:
"Node_Address Command Command_value.”

All integers are in hexadecimal format.

� Address field: number from 0..FFh.

� Command field: one letter. All supported commands
are given in Table 1.

� Value: two-byte unsigned integer value.

Table 1. Command Descriptions

Command
Letter

Command
Description

'P' Set parameter. Allowed values are 0-
350.

'I'
Initialize motor. Set pointer to stop
using back-EMF synchronization.
Value is not important.

'M' Set pointer position in microsteps.
Valid values are 0-4400.

'A' Set acceleration ratio. Valid values
are 0-150.

'B' Set illumination LED brightness.
Valid values are 0-62.

'L'
Turn on/off the status LED. Non-zero
value turns on the LED. Zero turns it
off.

A command example is: "10 P 12C," meaning that the
node address is set to 10h, the command is “set
parameter,” and the parameter value is 12Ch.

The motor positioning control firmware consists of two
main routines: speed update and microstep control
routines, which are shown in Figure 7.

[+] Feedback [+] Feedback

http://ccc01.opinionlab.com/o.asp?id=Text1&prev=docurate_001-33740_pdf_p_9
http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_motor_control___stepper_motor_driver_for_smart_gauges___an2197_12_pdf_p_9

AN2197

Figure 7. (a) Speed Adjustment and (b) Microstep Control ISR

Exit, motion complete== cur newP P

cur new dP P P− <

 v v a= +

minv v<

0 -a a=

min v v=

max > v v
max , 0,

d cur start

v v a
P P P

= =

= −

Scale speed value

Update V/F frequency
and Td counter

Start

/ 2d start newP P P= −

0 0 , v , start cura a v P P= = =

Enable V/F operation

Y

N

Y

N

Y

N

N

Y

(a)

Start

Skip > 0 Skip--

ReturnSkip = Td

Disable V/F,
 off (reduce) PWM X,Y

Calculate from Pcur duty
cycle for PWM X,Y

Pcur++ Pcur--

YN

Y

N

Update phase switching
LUT

> cur newP P

== cur newP P

Return

(b)

Load duty cycle to PWM

Legend:

a0 – acceleration value;
v0 – initial speed value;
vmax, vmin – maximum/minimum rotation
speed;
Pcur – current pointer position;
Pstart – pointer position before rotation
starts;
Pnew – demanded pointer position;
Pd – calculated pointer displacement;
Td – Initial value of skip events counter

The Figure 7(a) shows the speed control algorithm, which
is described in the Motor Driving Principles section on
page 1. Figure 7(b) shows the flow of the microstep timer
ISR. The minimum V/F output frequency is approximately
128*1.5 Hz (limited by the offset voltage and DAC output
voltage swing limits). This can be extended for very low
frequencies using an additional software counter. This
allows very low pointer positioning speeds, which can be
useful for special applications. The current implementation
allows a minimum pointer rotational speed of less the 1
RPM. The number of interrupt events for skipping is
calculated in the speed control routine.

To calculate the sin/cos duty cycle values for the PWM
sources, the 5 least significant bits are separated from the
current pointer position variable and used as indices for
the quarter period sin LUT. Thus, only 32+1 bytes are
allocated for storage of this table in PSoC's Flash.

The PSoC LUTs were used as the PWM signal
multiplexers to allow bridge coil control and maximize the
usage of the power supply voltage. Figure 8 illustrates this.

Figure 8. Motor Phases Control

PWM
X,Y

D0
..

D4

D5

D6

D7
….

D15

LUT
X, Y

PWMx

VX1

VX2

Current pointer
position variable

VX

January 11, 2005 Document No. 001-33740 Rev. ** 10

[+] Feedback [+] Feedback

http://ccc01.opinionlab.com/o.asp?id=Text1&prev=docurate_001-33740_pdf_p_10
http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_motor_control___stepper_motor_driver_for_smart_gauges___an2197_12_pdf_p_10

AN2197

Figure 9 shows the synchronization algorithm, which
provides sensor-less pointer rotation to the internal stop.

Figure 9. Pointer Synchronization Mechanism

Initialize port,

Start

maxh hP P=

Ph--,
determine phase to drive

Drive motor phase

Phase == checkpoint
phase ?

Disable second phase
driver, Cind = 0

Set pulse duration
timeout

Vind > Vth

Cind++

Is timeout expired?

Сind < Cth

Phase == checkpoint
phase?

Enable second phase
driver

Ph > 0?

Return

N

Y

N

Y

N

Y

N

Y

Y

N

Y

N

Stepper motors for gauges can have special mechanical
construction to ensure that when pointers stop, the rotor
magnet poles are located close to same phase coils for
any motor in a series. This simplifies the synchronization
logic by only reading the inducted voltage during one
phase interval (rotor step).

The motor in this design operates in full-step mode (wave
drive mode) during the synchronization process and the
inducted voltage is read only when phase x1 is driven (see
Figure 5). A simple digital filter is used to suppress the
noise caused by inter-coil capacitance. The motor rotor is
considered rotating when the voltage on the sense coil is
greater than the predefined threshold for more than Cth
samples during the checkpoint phase excitation time.

The self-test feature allows users to test the gauge without
active bus commands. Jumper J2 should be shorted in this
case. After self-synchronization stops, the pointer is
commanded to reach various positions in microsteps, and
various illumination LED levels are set in series. A range
of acceleration values are set to simulate different
damping ratios as well. The status LED flashes anytime
the pointer reaches the demanded position.

PC Test Software
To simulate a bus interface, simple test software was
written using Borland Delphi 7 and runs with Microsoft
Windows. The software remembers the previously entered
numerical values in the drop-list box, which allows for easy
repetition of previously entered commands.

Figure 10. Gauge Control Test Software

January 11, 2005 Document No. 001-33740 Rev. ** 11

[+] Feedback [+] Feedback

http://ccc01.opinionlab.com/o.asp?id=Text1&prev=docurate_001-33740_pdf_p_11
http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_motor_control___stepper_motor_driver_for_smart_gauges___an2197_12_pdf_p_11

AN2197

January 11, 2005 Document No. 001-33740 Rev. ** 12

Possible Design Modifications Note The Variable field (next to the Send button) can be
entered in decimal or hex format (using the x prefix).

The proposed driver can be adapted for other demands
such as servo control and various industrial applications.
The synchronization technique in this Application Note can
be adapted to conventional stepper motors with non-
athwart coil placement. The digital filter can remove the
parasitic spikes when the drive phase is excited.

The software interacts with the device using a PC serial
port. Valid settings are shown in Figure 11. Note that the
RS232-CMOS Level Translator is not required to test the
gauge when using the PC. By connecting the TX line with
the bus pin of Connector J1 (see Figure 5), the internal
circuit provides all of the required protection.

Figure 11. GUI COM Port Settings

[+] Feedback [+] Feedback

http://ccc01.opinionlab.com/o.asp?id=Text1&prev=docurate_001-33740_pdf_p_12
http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_motor_control___stepper_motor_driver_for_smart_gauges___an2197_12_pdf_p_12

AN2197

Appendix A. Driver Prototype Photograph

January 11, 2005 Document No. 001-33740 Rev. ** 13

[+] Feedback [+] Feedback

http://ccc01.opinionlab.com/o.asp?id=Text1&prev=docurate_001-33740_pdf_p_13
http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_motor_control___stepper_motor_driver_for_smart_gauges___an2197_12_pdf_p_13

AN2197

January 11, 2005 Document No. 001-33740 Rev. ** 14

Appendix B. Scope Images

(a) (b)

(c) (d)

(f)(e)

[+] Feedback [+] Feedback

http://ccc01.opinionlab.com/o.asp?id=Text1&prev=docurate_001-33740_pdf_p_14
http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_motor_control___stepper_motor_driver_for_smart_gauges___an2197_12_pdf_p_14

AN2197

Image Remarks:
• Images (a) and (b) show the motor synchronization process for

different pointer inertia moments. The stop moment is clearly
displayed.

• Images (c) and (d) show voltage on the motor pins for two different
phases. The increasing lower bound and decreasing upper bound
correspond to the voltage drop on the opened MOSFET due to coil
current increase according to the sine law.

• Image (d) shows the rotation speed acceleration/deceleration.
• Image (e) shows the RS232 communication signal.
• Image (f) shows speed control DAC output voltage.

Note Rotation starts and finishes at some intermediate level when the DAC
output voltage is set above some minimum voltage to get a very small
internal control step frequency by value control using the software skip
counter.

References
1. “Handbook of Small Electric Motors,” William H.

Yeadon, Alan W. Yeadon, McGraw-Hill, 2001

January 11, 2005 Document No. 001-33740 Rev. ** 15

[+] Feedback [+] Feedback

http://ccc01.opinionlab.com/o.asp?id=Text1&prev=docurate_001-33740_pdf_p_15
http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_motor_control___stepper_motor_driver_for_smart_gauges___an2197_12_pdf_p_15

AN2197

January 11, 2005 Document No. 001-33740 Rev. ** 16

About the Author
Name: Victor Kremin

Title: Associate Professor
Background: Victor earned his Radio Physics

diploma in 1996 from Ivan Franko
National Lviv University, PhD degree
in Computer Aided Design systems
in 2000, and is presently working as
an Associate Professor at National
University "Lvivska Polytechnika"
(Lviv, Ukraine). His interests include
the full cycle of embedded systems
design together with various
processors, operating systems and
target applications.

Contact: vkremin@cypressmicro.com

In March of 2007, Cypress recataloged all of its Application Notes using a new documentation number and revision code. This new documentation
number and revision code (001-xxxxx, beginning with rev. **), located in the footer of the document, will be used in all subsequent revisions.

PSoC is a registered trademark of Cypress Semiconductor Corp. "Programmable System-on-Chip," PSoC Designer, and PSoC Express are trademarks
of Cypress Semiconductor Corp. All other trademarks or registered trademarks referenced herein are the property of their respective owners.

 Cypress Semiconductor
198 Champion Court

San Jose, CA 95134-1709
Phone: 408-943-2600

Fax: 408-943-4730
http://www.cypress.com/

© Cypress Semiconductor Corporation, 2005-2007. The information contained herein is subject to change without notice. Cypress Semiconductor
Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any
license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or
safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as
critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The
inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies
Cypress against all charges.

This Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide
patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a
personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative
works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source
Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the
right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or
use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a
malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems
application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

[+] Feedback [+] Feedback

mailto:vkremin@cypressmicro.com
http://www.cypress.com/
http://ccc01.opinionlab.com/o.asp?id=Text1&prev=docurate_001-33740_pdf_p_16
http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_motor_control___stepper_motor_driver_for_smart_gauges___an2197_12_pdf_p_16

	Application Note Abstract
	Introduction
	Motor Driving Principles
	Driver Schematic
	PSoC Internals
	The Software
	PC Test Software
	Possible Design Modifications
	Appendix A. Driver Prototype Photograph
	Appendix B. Scope Images
	References
	About the Author

