
101 Innovation Drive
San Jose, CA 95134
www.altera.com

DSP Builder
User Guide

Software Version: 8.1
Document Date: November 2008

http://www.altera.com

Copyright © 2008 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device designations, and all other
words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera Corporation in the U.S. and other
countries. All other product or service names are the property of their respective holders. Altera products are protected under numerous U.S. and foreign patents and pending ap-
plications, maskwork rights, and copyrights. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty,
but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of
any information, product, or service described herein except as expressly agreed to in writing by Altera Corporation. Altera customers are advised to obtain the latest version of
device specifications before relying on any published information and before placing orders for products or services.

UG-DSPBUILDER-8.1

© November 2008 Altera Corporation DSP Builder User Guide

Contents

Chapter 1. About DSP Builder
Release Information . 1–1
Device Family Support . 1–1

Memory Options . 1–1
Features . 1–2
Installing DSP Builder . 1–2
General Description . 1–3

High-Speed DSP with Programmable Logic . 1–3
Design Flow . 1–3

Interoperability with the Advanced Blockset . 1–6

Chapter 2. Getting Started Tutorial
Introduction . 2–1
Creating the Amplitude Modulation Model . 2–1

Create a New Model . 2–1
Add the Sine Wave Block . 2–2
Add the SinIn Block . 2–3
Add the Delay Block . 2–5
Add the SinDelay and SinIn2 Blocks . 2–6
Add the Mux Block . 2–7
Add the Random Bitstream Block . 2–8
Add the Noise Block . 2–9
Add the Bus Builder Block . 2–10
Add the GND Block . 2–11
Add the Product Block . 2–11
Add the StreamMod and StreamBit Blocks . 2–12
Add the Scope Block . 2–14
Add a Clock Block . 2–15

Simulate Your Model in Simulink . 2–16
Compiling the Design . 2–18
Performing RTL Simulation . 2–19
Adding the Design to a Quartus II Project . 2–21

Creating a Quartus II Project . 2–21
Add the DSP Builder Design to the Project . 2–22

Chapter 3. Design Rules and Procedures
DSP Builder Naming Conventions . 3–1
Using a MATLAB Variable . 3–1
Fixed-Point Notation . 3–2

Binary Point Location in Signed Binary Fractional Format . 3–3
Bit Width Design Rule . 3–4

Data Width Propagation . 3–4
Tapped Delay Line . 3–5
Arithmetic Operation . 3–5

Frequency Design Rules . 3–7
Single Clock Domain . 3–7
Multiple Clock Domains . 3–8
Using Clock and Clock_Derived Blocks . 3–10

2 Contents

DSP Builder User Guide © November 2008 Altera Corporation

Clock Assignment . 3–10
Using the PLL Block . 3–13

Using Advanced PLL Features . 3–15
Timing Semantics Between Simulink and HDL Simulation . 3–15

Simulink Simulation Model . 3–15
HDL Simulation Models . 3–15
Startup & Initial Conditions . 3–16
DSP Builder Global Reset Circuitry . 3–16
Reference Timing Diagram . 3–17

Signal Compiler and TestBench Blocks . 3–18
Design Flows for Synthesis, Compilation and Simulation . 3–18

Hierarchical Design . 3–19
Goto and From Block Support . 3–20
Black Boxing and HDL Import . 3–21
Using a MATLAB Array or HEX File to Initialize a Block . 3–21
Comparison Utility . 3–21
Adding Comments to Blocks . 3–22
Adding Quartus II Constraints . 3–22
Displaying Port Data Types . 3–23
Displaying the Pipeline Depth . 3–23
Updating HDL Import Blocks . 3–24
Analyzing the Hardware Resource Usage . 3–24
Loading Additional ModelSim Commands . 3–26
Making Quartus II Assignments to Block Entity Names . 3–26
Managing Projects and Files . 3–27

Integration with Source Control Systems . 3–27
HDL Import . 3–28
MegaCore Functions . 3–28
Memory Initialization (.hex) Files . 3–29

Exporting HDL . 3–29
Using Exported HDL . 3–30

Chapter 4. Using MegaCore Functions
Introduction . 4–1

MegaCore Function Libraries . 4–1
Installing MegaCore Functions . 4–1
Updating MegaCore Function Variation Blocks . 4–2
Design Flow Using MegaCore Functions . 4–3

Place the MegaCore Function in the Simulink Model . 4–3
Parameterize the MegaCore Function Variation . 4–3
Generate the MegaCore Function Variation . 4–4
Connect Your MegaCore Function Variation Block to Your Design . 4–4
Simulate the MegaCore Function Variation in Your Model . 4–4

Design Issues When Using MegaCore Functions . 4–4
Simulink Files Associated with a MegaCore Function . 4–4
Simulating MegaCore Functions That Have a Reset Port . 4–5
Using Feedback Between MegaCore Functions . 4–5
Setting the Device Family for MegaCore Functions . 4–7

MegaCore Function Walkthrough . 4–8
Create a New Simulink Model . 4–8
Add the FIR Compiler Function to Your Model . 4–8
Parameterize the FIR Compiler Function . 4–10
Generate the FIR Compiler Function Variation . 4–11
Add Stimulus and Scope Blocks to Your Model . 4–13

Contents 3

© November 2008 Altera Corporation DSP Builder User Guide

Simulate Your Design in Simulink . 4–15
Compile the Design . 4–17
Perform RTL Simulation . 4–18

Chapter 5. Using Hardware in the Loop (HIL)
Introduction . 5–1
HIL Design Flow . 5–1
HIL Requirements . 5–2
HIL Walkthrough . 5–3
Burst & Frame Modes . 5–7

Using Burst Mode . 5–8
Using Frame Mode . 5–9

Troubleshooting HIL Designs . 5–10
Failed to Load the Specified Quartus II Project . 5–10

Project Not Compiled Through the Quartus II Fitter . 5–10
Quartus II Version Mismatch . 5–11
Quartus II Project File is Not Up-to-Date . 5–11

No Inputs Found From the Quartus II Project . 5–11
No Outputs Found From the Quartus II Project . 5–11
HIL Design Stays in Reset During Simulation . 5–11
HIL Compilation Appears to be Hung . 5–11

Chapter 6. Performing SignalTap II Logic Analysis
Introduction . 6–1

SignalTap II Design Flow . 6–1
SignalTap II Nodes . 6–2
SignalTap II Trigger Conditions . 6–2

SignalTap II Walkthrough . 6–3
Open the Walkthrough Example Design . 6–3
Add the Configuration and Connector Blocks . 6–4
Specify the Nodes to Analyze . 6–6
Turn On the SignalTap II Option in Signal Compiler . 6–7
Specify the Trigger Levels . 6–9
Perform SignalTap II Analysis . 6–10

Chapter 7. Using the Interfaces Library
Introduction . 7–1
Avalon-MM Interface . 7–1
Avalon-MM Interface Blocks . 7–2

Avalon-MM Slave Block . 7–2
Avalon-MM Master Block . 7–4
Wrapped Blocks . 7–5

Avalon-MM Write FIFO . 7–6
Avalon-MM Read FIFO . 7–8

Avalon-MM Interface Blocks Walkthrough . 7–9
Add Avalon-MM Blocks to the Example Design . 7–9
Verify Your Design . 7–13
Instantiate Your Design in SOPC Builder . 7–14

Avalon-MM FIFO Walkthrough . 7–17
Open the Walkthrough Example Design . 7–17
Compile the Design . 7–17
Instantiate Your Design in SOPC Builder . 7–19

Avalon-ST Interface . 7–21

4 Contents

DSP Builder User Guide © November 2008 Altera Corporation

Avalon-ST Packet Formats . 7–22
Avalon-ST Packet Format Converter . 7–23

Chapter 8. Using Black Boxes for HDL Subsystems
Introduction . 8–1

Implicit Black Box Interface . 8–1
Explicit Black Box Interface . 8–1

HDL Import Walkthrough . 8–1
Import Existing HDL Files . 8–2
Simulate the HDL Import Model using Simulink . 8–4

Subsystem Builder Walkthrough . 8–6
Create a Black Box System . 8–6
Build the Black Box SubSystem Simulation Model . 8–8
Simulate the Subsystem Builder Model . 8–11
Add VHDL Dependencies to the Quartus II Project and ModelSim . 8–12
Simulate the Design in ModelSim . 8–12

Chapter 9. Using Custom Library Blocks
Introduction . 9–1
Creating a Custom Library Block . 9–1

Create a Library Model File . 9–2
Build the HDL Subsystem Functionality . 9–2
Define Parameters Using the Mask Editor . 9–4
Link the Mask Parameters to the Block Parameters . 9–7
Make the Library Block Read Only . 9–8
Add the Library to the Simulink Library Browser . 9–8

Synchronizing a Custom Library . 9–9

Chapter 10. Adding a Board Library
Introduction . 10–1
Creating a New Board Description . 10–1

Predefined Components . 10–1
Component Types . 10–1

Component Description File . 10–2
Example Component Description File: . 10–3

Board Description File . 10–4
Header Section . 10–4
Board Description Section . 10–4

Building the Board Library . 10–6

Chapter 11. Using the State Machine Library
Introduction . 11–1
Using the State Machine Table Block . 11–2
Using the State Machine Editor Block . 11–8

Chapter 12. Troubleshooting
Troubleshooting Issues . 12–1

Loop Detected While Propagating Bit Widths . 12–1
The MegaCore Blocks Folder Does Not Appear in Simulink . 12–2
The Synthesis Flow Does Not Run Properly . 12–2

Check the Software Paths . 12–2
Change the System Path Settings . 12–2

DSP Development Board Troubleshooting . 12–3

Contents 5

© November 2008 Altera Corporation DSP Builder User Guide

Signal Compiler is Unable to Checkout a Valid License . 12–3
Verifying That Your DSP Builder Licensing Functions Properly . 12–3
Verifying That the LM_LICENSE_FILE Variable Is Set Correctly . 12–4
Verifying the Quartus II Path . 12–5
If You Still Cannot Get a License . 12–5

SignalTap II Analysis Appears to be Hung . 12–5
Error if Output Block Connected to an Altera Synthesis Block . 12–6
DSP Builder Start Up Dependencies . 12–6
Warning if Input/Output Blocks Conflict with clock or aclr Ports . 12–7
Wiring the Asynchronous Clear Signal . 12–7
Simulation Mismatch After Changing Signals or Parameters . 12–7
Error Issued when a Design Includes Pre-v7.1 Blocks . 12–7
Creating an Input Terminator for Debugging a Design . 12–8
A Specified Path Cannot be Found or a File Name is Too Long . 12–8
Incorrect Interpretation of Signed Bit in Output from MegaCores . 12–8
Simulation Mismatch For FIR Compiler MegaCore Function . 12–8
Unexpected Exception Error when Generating Blocks . 12–8
VHDL Entity Names Change if a Model is Modified . 12–9
Algebraic Loop Causes Simulation to Fail . 12–9

Additional Information . Info–1
Revision History . Info–1
How to Contact Altera . Info–2
Typographic Conventions . Info–2
Other Documentation . Info–3

Index

6 Contents

DSP Builder User Guide © November 2008 Altera Corporation

© November 2008 Altera Corporation DSP Builder User Guide

1. About DSP Builder

Release Information
Table 1–1 provides information about this release of DSP Builder.

Device Family Support
DSP Builder supports the following target Altera® device families: Stratix®, Stratix GX,
Stratix II, Stratix II GX, Stratix III, Stratix IV, Arria™ GX, Cyclone®, Cyclone II,
Cyclone III, APEX 20K, APEX 20KE, APEX 20KC, APEX II, FLEX® 10KE, FLEX 6000,
and ACEX® 1K.

Memory Options
A number of the blocks in the Storage library allow you to choose the required
memory block type. In general, all supported memory block types are listed as
options although some may not be available for all device families.

Table 1–2 shows the device families which support each memory block type.

f For more information about each memory block type, refer to the Quartus II online
Help.

Table 1–1. DSP Builder Release Information

Item Description

Version 8.1

Release Date November 2008

Ordering Code IPT-DSPBUILDER

Table 1–2. Supported Memory Block Types

Memory Block Type Device Family

M144K Stratix IV, Stratix III

M9K Stratix IV, Stratix III, Cyclone III

MLAB Stratix IV, Stratix III

M-RAM Stratix II GX, Stratix II, Stratix GX, Stratix, Arria GX

M4K Stratix II GX, Stratix II, Stratix GX, Stratix, Arria GX, Cyclone II, Cyclone

M512 Stratix II GX, Stratix II, Stratix GX, Stratix, Arria GX

1–2 Chapter 1: About DSP Builder
Features

DSP Builder User Guide © November 2008 Altera Corporation

Features
DSP Builder supports the following features:

■ Links The MathWorks MATLAB (Signal Processing ToolBox and Filter Design
Toolbox) and Simulink software with the Altera® Quartus® II software.

■ Automatic VHDL testbench generation and control of Quartus II compilation.

■ Provides a variety of fixed-point arithmetic and logical operators for use with the
Simulink software.

■ Enables rapid prototyping using Altera DSP development boards.

■ Supports the SignalTap® II logic analyzer, an embedded signal analyzer that
probes signals from the Altera device on the DSP board and imports the data into
the MATLAB workspace to facilitate visual analysis.

■ HDL import of VHDL or Verilog HDL design entities and HDL defined in a
Quartus II project file.

■ Hardware in the Loop (HIL) support to enable FPGA hardware accelerated co-
simulation with Simulink.

■ Support for Avalon® Memory-Mapped (Avalon-MM) interfaces including user
configurable blocks that you can use to build custom logic that works with the
Nios® II processor and other SOPC Builder designs.

■ Support for Avalon Streaming (Avalon-ST) interfaces including an Packet Format
Converter block and configurable Avalon-ST Sink and Avalon-ST Source blocks.

■ Altera DSP or Video and Image Processing Suite MegaCore® functions can be
directly instanced in a DSP Builder design model.

■ Supports cycle-accurate or fast functional (bit-accurate) simulation of the Video
and Image Processing Suite MegaCore functions.

■ Support for tabular and graphical state machine editing.

f For information about new features and errata in this release, refer to the DSP Builder
Release Notes and Errata.

Installing DSP Builder
You can choose to optionally install DSP Builder when you install the Quartus II
software.

f For specific information about installing and licensing DSP Builder, refer to DSP
Builder Installation and Licensing.

http://www.altera.com/literature/rn/rn_dsp_builder.pdf
http://www.altera.com/literature/rn/rn_dsp_builder.pdf
http://www.altera.com/literature/mnl/mnl_dsp_install.pdf
http://www.altera.com/literature/mnl/mnl_dsp_install.pdf

Chapter 1: About DSP Builder 1–3
General Description

© November 2008 Altera Corporation DSP Builder User Guide

General Description
Digital signal processing (DSP) system design in Altera programmable logic devices
(PLDs) requires both high-level algorithm and hardware description language (HDL)
development tools.

The Altera DSP Builder integrates these tools by combining the algorithm
development, simulation, and verification capabilities of The MathWorks MATLAB
and Simulink system-level design tools with VHDL and Verilog HDL design flows,
including the Altera Quartus II software.

DSP Builder shortens DSP design cycles by helping you create the hardware
representation of a DSP design in an algorithm-friendly development environment.

You can combine existing MATLAB functions and Simulink blocks with Altera
DSP Builder blocks and Altera intellectual property (IP) MegaCore functions to link
system-level design and implementation with DSP algorithm development. In this
way, DSP Builder allows system, algorithm, and hardware designers to share a
common development platform.

You can use the blocks in DSP Builder to create a hardware implementation of a
system modeled in Simulink in sampled time. DSP Builder contains bit- and cycle-
accurate Simulink blocks—which cover basic operations such as arithmetic or storage
functions—and takes advantage of key device features such as built-in PLLs, DSP
blocks, or embedded memory.

You can integrate complex functions by using MegaCore functions in your
DSP Builder model. You can also achieve the better performance and instrumentation
of hardware co-simulation by implementing parts of your design in an FPGA.

The DSP Builder Signal Compiler block reads Simulink Model Files (.mdl) that
contain other DSP Builder blocks and MegaCore functions. Signal Compiler then
generates the VHDL files and Tcl scripts for synthesis, hardware implementation, and
simulation.

High-Speed DSP with Programmable Logic
Programmable logic offers compelling performance advantages over dedicated
digital signal processors. You can think of programmable logic as an array of
elements, each of which you can configure as a complex processor routine.

You can link these routines together in serial (the same way that a digital signal
processor would execute them), or connect them in parallel. When connected in
parallel, they give many times better performance than standard digital signal
processors by executing hundreds of instructions at the same time.

Algorithms that benefit from this improved performance include forward-error
correction (FEC), modulation/demodulation, and encryption.

Design Flow
When using DSP Builder, you start by creating a design model in the
MATLAB/Simulink software. After you have created your model, you can output
VHDL files for synthesis and Quartus II compilation, or generate files for VHDL or
Verilog HDL simulation.

1–4 Chapter 1: About DSP Builder
Design Flow

DSP Builder User Guide © November 2008 Altera Corporation

Figure 1–1 shows the system-level design flow using DSP Builder.

The design flow involves the following steps:

1. Create a model with a combination of Simulink and DSP Builder blocks using the
MATLAB/Simulink software.

1 The DSP Builder part of your design should be separated from the Simulink
blocks by Input and Output blocks from the DSP Builder IO and Bus
library.

2. Include a Clock block from the DSP Builder AltLab library to specify the base
clock for your design which must have a period greater than 1ps but less than 2.1
ms.

1 If no base clock exists in the design, DSP Builder creates a default clock with
a 20ns real-world period and a Simulink sample time of 1. You can derive
additional clocks from the base clock by adding Clock_Derived blocks.

Figure 1–1. System-Level Design Flow

Chapter 1: About DSP Builder 1–5
Design Flow

© November 2008 Altera Corporation DSP Builder User Guide

3. Set a discrete (no continuous states) solver in Simulink. Choose a Fixed-step
solver type if you are using a single clock domain or a Variable-step type if you
are using multiple clock domains.

To set the solver options, click Configuration Parameters on the Simulation menu
to open the Configuration Parameters dialog box and select the Solver page
(Figure 1–2).

f Refer to the description of the “Solver Pane” in the Simulink Help for
detailed information about solver options.

4. Simulate the model in Simulink using a Scope block to monitor the results.

5. Run Signal Compiler to setup RTL simulation and synthesis.

6. Perform RTL simulation. DSP Builder supports an automated flow for the
ModelSim software (using the TestBench block). You can also use the generated
VHDL for manual simulation in other simulation tools.

7. Use the output files generated by the DSP Builder Signal Compiler block to
perform RTL synthesis. Alternatively, you can synthesize the VHDL files manually
using other synthesis tools.

8. Compile your design in the Quartus II software.

9. Download to a hardware development board and test.

Figure 1–2. Configuration Parameters for Simulation

1–6 Chapter 1: About DSP Builder
Design Flow

DSP Builder User Guide © November 2008 Altera Corporation

For an automated design flow, the Signal Compiler block generates VHDL and Tcl
scripts for synthesis in the Quartus II software. The Tcl scripts let you perform
synthesis and compilation automatically from within the MATLAB and Simulink
environment. You can synthesize and simulate the output files in other software tools
without the Tcl scripts. In addition, the Signal Compiler block generates models
and a testbench for VHDL simulation.

f for information about controlling the DSP Builder design flow using Signal
Compiler, refer to “Design Flows for Synthesis, Compilation and Simulation” on
page 3–18. For detailed information about the blocks in the DSP Builder blockset, refer
to the DSP Builder Reference Manual.

Interoperability with the Advanced Blockset
This release of DSP Builder includes an optional advanced blockset that is described
by separate documentation.

f For information about the advanced blockset refer to the DSP Builder Advanced
Blockset Reference Manual and the DSP Builder Advanced Blockset User Guide. For
information about the differences between the standard and advanced blocksets and
about design flows that combine both blocksets, refer to the DSP Design Flow User
Guide.

http://www.altera.com/literature/manual/mnl_dsp_builder.pdf
http://www.altera.com/literature/ug/ug_dsp_design_flow.pdf
http://www.altera.com/literature/ug/ug_dsp_design_flow.pdf
http://www.altera.com/literature/manual/mnl_dsp_builder_adv.pdf
http://www.altera.com/literature/manual/mnl_dsp_builder_adv.pdf
http://www.altera.com/literature/ug/ug_dsp_builder_adv.pdf

© November 2008 Altera Corporation DSP Builder User Guide

2. Getting Started Tutorial

Introduction
This tutorial uses an example amplitude modulation design, singen.mdl, to
demonstrate the DSP Builder design flow.

The amplitude modulation design example is a modulator that has a sine wave
generator, a quadrature multiplier, and a delay element. Each block in the model is
parameterizable. When you double-click a block in the model, a dialog box is
displayed where you can enter the parameters for the block. Click the Help button in
these dialog boxes to view on-line help for a specific block.

The instructions in this tutorial assume the following:

■ You are using a PC running Windows XP.

■ You are familiar with the MATLAB, Simulink, Quartus II, and ModelSim®
software and the software is installed on your PC in the default locations.

■ You have basic knowledge of the Simulink software. For information on using the
Simulink software, see the Simulink Help.

You can perform a walkthrough by using the singen.mdl model file that is provided
in the <DSP Builder install path>DesignExamples\Tutorials\ GettingStartedSinMdl
directory or you can create your own amplitude modulation model.

Creating the Amplitude Modulation Model
To create the amplitude modulation model, follow the instructions in the following
sections.

Create a New Model
To create a new model, perform the following steps:

1. Start the MATLAB software.

2. On the File menu, point to New and click Model to create a new model window.

3. Click Save on the File menu in the new model window.

4. Browse to the directory in which you want to save the file. This directory becomes
your working directory. This tutorial uses the working directory <DSP Builder
install path>\DesignExamples\Tutorials\GettingStartedSinMdl\my_SinMdl.

5. Type the file name into the File name box. This tutorial uses the name singen.mdl.

6. Click Save.

7. Click the MATLAB Start button . Point to Simulink and click Library
Browser.

1 You can also open Simulink by using the toolbar icon.

2–2 Chapter 2: Getting Started Tutorial
Creating the Amplitude Modulation Model

DSP Builder User Guide © November 2008 Altera Corporation

Add the Sine Wave Block
Perform the following steps to add the Sine Wave block:

1. In the Simulink Library Browser, click Simulink and Sources to view the blocks in
the Sources library.

2. Drag and drop a Sine Wave block into your model.

3. Double-click the Sine Wave block in your model to display the Block Parameters
dialog box (Figure 2–1).

4. Set the Sine Wave block parameters as shown in Table 2–1.

Figure 2–1. 500-kHz, 16-Bit Sine Wave Specified in the Sine Wave Dialog Box

Table 2–1. Parameters for the Sine Wave Block

Parameter Value

Sine type Sample based

Time simulation time

Amplitude 2^15–1

Bias 0

Samples per period 80

Number of offset examples 0

Sample time 25e-9

Interpret vector parameters a 1-D On

Chapter 2: Getting Started Tutorial 2–3
Creating the Amplitude Modulation Model

© November 2008 Altera Corporation DSP Builder User Guide

5. Click OK.

1 See the equation in “Frequency Design Rules” on page 3–7 for information
on how you can calculate the frequency.

Add the SinIn Block
Perform the following steps to add the SinIn block:

1. In the Simulink Library Browser, expand the Altera DSP Builder Blockset folder
to display the DSP Builder libraries (Figure 2–2).

2. Select the IO & Bus library.

3. Drag and drop the Input block from the Simulink Library Browser into your
model. Position the block to the right of the Sine Wave block.

Figure 2–2. Altera DSP Builder Folder in the Simulink Library Browser

2–4 Chapter 2: Getting Started Tutorial
Creating the Amplitude Modulation Model

DSP Builder User Guide © November 2008 Altera Corporation

If you are unsure how to position the blocks or draw connection lines, see the
completed design shown in Figure 2–15 on page 2–15.

1 You can use the Up, Down, Right, and Left arrow keys to adjust the position
of a block while it is selected.

4. Click the text under the block icon in your model. Delete the text Input and type
the text SinIn to change the name of the block instance.

5. Double-click the SinIn block in your model to display the Block Parameters
dialog box (Figure 2–3).

6. Set the SinIn block parameters as shown in Table 2–2.

7. Click OK.

8. Draw a connection line from the right side of the Sine Wave block to the left side
of the SinIn block by holding down the left mouse button and dragging the
cursor between the blocks.

1 Alternatively, you can select a block, hold down the Ctrl key and click the
destination block to automatically make a connection between the two
blocks.

Table 2–2. Parameters for the SinIn Block

Parameter Value

Bus Type Signed Integer

[number of bits].[] 16

Specify Clock Off

Figure 2–3. Setting the 16-Bit Signed Integer Input

Chapter 2: Getting Started Tutorial 2–5
Creating the Amplitude Modulation Model

© November 2008 Altera Corporation DSP Builder User Guide

Add the Delay Block
Perform the following steps to add the Delay block:

1. Select the Storage library from the Altera DSP Builder Blockset folder in the
Simulink Library Browser.

2. Drag and drop the Delay block into your model and position it to the right of the
SinIn block.

3. Double-click the Delay block in your model to display the Block Parameters
dialog box (Figure 2–4).

4. Type 1 as the Number of Pipeline Stages for the Delay block.

5. Click the Optional Ports tab and set the parameters shown in Table 2–3.

The completed dialog box is shown in Figure 2–4 on page 2–5.

Figure 2–4. Setting the Downsampling Delay

Table 2–3. Parameters for the Delay Block.

Parameter Value

Clock Phase Selection 01

Use Enable Port Off

Use Synchronous Clear port Off

2–6 Chapter 2: Getting Started Tutorial
Creating the Amplitude Modulation Model

DSP Builder User Guide © November 2008 Altera Corporation

6. Click OK.

7. Draw a connection line from the right side of the SinIn block to the left side of the
Delay block.

Add the SinDelay and SinIn2 Blocks
Perform the following steps to add the SinDelay and SinIn2 blocks:

1. Select the IO & Bus library from the Altera DSP Builder Blockset folder in the
Simulink Library Browser.

2. Drag and drop two Output blocks into your model, positioning them to the right
of the Delay block.

3. Click the text under the block symbols in your model. Change the block instance
names from Output and Output1 to SinDelay and SinIn2.

4. Double-click the SinDelay block in your model to display the Block Parameters
dialog box.

5. Set the SinDelay block parameters as shown in Table 2–4.

Figure 2–5. Delay Block Optional Ports Tab

Table 2–4. Parameters for the SinDelay Block

Parameter Value

Bus Type Signed Integer

[number of bits].[] 16

External Type Inferred

Chapter 2: Getting Started Tutorial 2–7
Creating the Amplitude Modulation Model

© November 2008 Altera Corporation DSP Builder User Guide

The completed dialog box is shown in Figure 2–6.

6. Click OK.

7. Repeat steps 4 to 6 for the SinIn2 block setting the parameters as shown in
Table 2–5.

8. Draw a connection line from the right side of the Delay block to the left side of the
SinDelay block.

Add the Mux Block
Perform the following steps to add the Mux block:

1. Select the Simulink Signal Routing library in the Simulink Library Browser.

2. Drag and drop a Mux block into your design, positioning it to the right of the
SinDelay block.

3. Double-click the Mux block in your model to display the Block Parameters dialog
box.

4. Set the Mux block parameters as shown in Table 2–6.

Figure 2–6. Setting the 16-Bit Signed Output Bus

Table 2–5. Parameters for the SinIn2 Block

Parameter Value

Bus Type Signed Integer

[number of bits].[] 16

External Type Inferred

Table 2–6. Parameters for the Mux Block

Parameter Value

Number of Inputs 2

Display Options bar

2–8 Chapter 2: Getting Started Tutorial
Creating the Amplitude Modulation Model

DSP Builder User Guide © November 2008 Altera Corporation

The completed dialog box is shown in Figure 2–7.

5. Click OK.

6. Draw a connection line from the bottom left of the Mux block to the right side of
the SinDelay block.

7. Draw a connection line from the top left of the Mux block to the line between the
SinIn2 block.

8. Draw a connection line from the SinIn2 block to the line between the SinIn and
Delay blocks.

Add the Random Bitstream Block
Perform the following steps to add the Random Bitstream block:

1. Select the Simulink Sources library in the Simulink Library Browser.

2. Drag and drop a Random Number block into your model, positioning it
underneath the Sine Wave block.

3. Double-click the Random Number block in your model to display the Block
Parameters dialog box.

4. Set the Random Number block parameters as shown in Table 2–7.

Figure 2–7. Setting the 2-to-1 Multiplexer

Table 2–7. Parameters for the Random number Block

Parameter Value

Mean 0

Variance 1

Initial seed 0

Sample time 25e–9

Interpret vector parameters as 1-D On

Chapter 2: Getting Started Tutorial 2–9
Creating the Amplitude Modulation Model

© November 2008 Altera Corporation DSP Builder User Guide

The completed dialog box is shown in Figure 2–8.

5. Click OK.

6. Rename the Random Noise block Random Bitstream.

Add the Noise Block
Perform the following steps to add the Noise block:

1. Select the IO & Bus library from the Altera DSP Builder Blockset folder in the
Simulink Library Browser.

2. Drag and drop an Input block into your model, positioning it to the right of the
Random Bitstream block.

3. Click the text under the block icon in your model. Rename the block Noise.

4. Double-click the Noise block to display the Block Parameters dialog box.

5. Set the Noise block parameters as shown in Table 2–8.

1 The dialog box options change to display only the relevant options when
you select a new bus type.

Figure 2–8. Setting Up the Random Number Generator

Table 2–8. Parameters for the Noise Block

Parameter Value

Bus Type Single Bit

Specify Clock Off

2–10 Chapter 2: Getting Started Tutorial
Creating the Amplitude Modulation Model

DSP Builder User Guide © November 2008 Altera Corporation

The completed dialog box is shown in Figure 2–9.

6. Click OK.

7. Draw a connection line from the right side of the Random Bitstream block to
the left side of the Noise block.

Add the Bus Builder Block
The Bus Builder block converts a bit to a signed bus. Perform the following steps to
add the Bus Builder block:

1. Select the IO & Bus library from the Altera DSP Builder Blockset folder in the
Simulink Library Browser.

2. Drag and drop a Bus Builder block into your model, positioning it to the right
of the Noise block.

3. Double-click the Bus Builder block in your model to display the Block
Parameters dialog box.

4. Set the Bus Builder block parameters as shown in Table 2–9.

Figure 2–9. Setting the 1-Bit Noise Input Port

Table 2–9. Parameters for the Bus Builder Block

Parameter Value

Bus Type Signer Integer

[number of bits].[] 2

Chapter 2: Getting Started Tutorial 2–11
Creating the Amplitude Modulation Model

© November 2008 Altera Corporation DSP Builder User Guide

The completed dialog box is shown in Figure 2–10.

5. Click OK.

6. Draw a connection line from the right side of the Noise block to the top left side of
the Bus Builder block.

Add the GND Block
Perform the following steps to add the GND block:

1. Select the IO & Bus library from the Altera DSP Builder Blockset folder in the
Simulink Library Browser.

2. Drag and drop a GND block into your model, positioning it underneath the Noise
block.

3. Draw a connection line from the right side of the GND block to the bottom left side
of the Bus Builder block.

Add the Product Block
Perform the following steps to add the Product block:

1. Select the Arithmetic library from the Altera DSP Builder Blockset folder in the
Simulink Library Browser.

2. Drag and drop a Product block into your model, positioning it to the right of the
Bus Builder block and slightly above it. Leave enough space so that you can
draw a connection line under the Product block.

3. Double-click the Product block to display the Block Parameters dialog box.

4. Set the Product block parameters as shown in Table 2–10.

Figure 2–10. Build a 2-Bit Signed Bus

Table 2–10. Parameters for the Product Block

Parameter Value

Bus Type Inferred

Number of Pipeline Stages 0

2–12 Chapter 2: Getting Started Tutorial
Creating the Amplitude Modulation Model

DSP Builder User Guide © November 2008 Altera Corporation

1 The bit width parameters are set automatically when you select Inferred
bus type. The parameters in the Optional Ports and Settings tab of this
dialog box can be left with their default values.

The completed dialog box is shown in Figure 2–11.

5. Click OK.

6. Draw a connection line from the top left of the Product block to the line between
the Delay and SinDelay blocks.

Add the StreamMod and StreamBit Blocks
Perform the following steps to add the StreamMod and StreamBit blocks:

1. Select the IO & Bus library from the Altera DSP Builder Blockset folder in the
Simulink Library Browser.

2. Drag and drop two Output blocks into your model, positioning them to the right
of the Product block.

3. Click the text under the block symbols in your model. Change the block instance
names from Output and Output1 to StreamMod and StreamBit.

4. Double-click the StreamMod block to display the Block Parameters dialog box.

5. Set the StreamMod block parameters as shown in Table 2–11.

Figure 2–11. Product Block Parameters

Table 2–11. Parameters for the StreamMod Block

Parameter Value

Bus Type Signed Integer

[number of bits].[] 19

External Type Inferred

Chapter 2: Getting Started Tutorial 2–13
Creating the Amplitude Modulation Model

© November 2008 Altera Corporation DSP Builder User Guide

The completed dialog box is shown in Figure 2–12.

6. Click OK.

7. Double-click the StreamBit block to display the Block Parameters dialog box
(Figure 2–13).

8. Set the StreamMod block parameters as shown in Table 2–12.

Figure 2–12. Set a 19-Bit Signed Output Bus

Figure 2–13. Set a Single-Bit Output Bus

Table 2–12. Parameters for the StreamMod Block

Parameter Value

Bus Type Single Bit

External Type Inferred

2–14 Chapter 2: Getting Started Tutorial
Creating the Amplitude Modulation Model

DSP Builder User Guide © November 2008 Altera Corporation

9. Draw connection lines from the right side of the Product block to the left side of
the StreamMod block, and from the right side of the Bus Builder block to the
left side of the StreamBit block.

Add the Scope Block
Perform the following steps to add the Scope block:

1. Select the Simulink Sinks library in the Simulink Library Browser.

2. Drag and drop a Scope block into your model and position it to the right of the
StreamMod block.

3. Double-click the Scope block and click the Parameters icon to display the
‘Scope’ parameters dialog box.

4. Set the Scope parameters as shown in Table 2–13.

The completed dialog box is shown in Figure 2–14.

5. Click OK.

6. Close the Scope.

7. Make connections to connect the complete your design as follows:

a. From the right side of the Mux block to the top left side of the Scope block.

b. From the right side of the StreamMod block to the middle left side of the
Scope block.

Table 2–13. Parameters for the Scope Block

Parameter Value

Number of axes 3

Time range auto

Tick labels bottom axis only

Sampling Decimation 1

Figure 2–14. Display Three Signals in Time

Chapter 2: Getting Started Tutorial 2–15
Creating the Amplitude Modulation Model

© November 2008 Altera Corporation DSP Builder User Guide

c. From the right side of the StreamBit block to the bottom left of the Scope
block.

d. From the bottom left of the Product block to the line between the Bus
Builder block and the StreamBit block.

Figure 2–15 shows the required connections.

Add a Clock Block
Perform the following steps to add a Clock block:

1. Select the AltLab library from the Altera DSP Builder Blockset folder in the
Simulink Library Browser.

2. Drag and drop a Clock block into your model.

3. Double-click on the Clock block to display the Block Parameters dialog box
(Figure 2–15 on page 2–15).

4. Set the Clock parameters as shown in Table 2–14.

1 A clock block is required to set a Simulink sample time that matches the
sample time specified on the Sine Wave and Random Bitstream blocks.
If no base clock exists in the design, a default clock with a 20ns real-world
period and a Simulink sample time of 1 is automatically created.

5. Save your model.

Figure 2–15. Amplitude Modulation Design Example

Table 2–14. Parameters for the Clock Block

Parameter Value

Real-World Clock Period 20

Period Unit: ns

Simulink Sample Time 2.5e–008

Reset Name aclr

Reset Type Active Low

Export As Output Pin Off

2–16 Chapter 2: Getting Started Tutorial
Simulate Your Model in Simulink

DSP Builder User Guide © November 2008 Altera Corporation

Simulate Your Model in Simulink
To simulate your model in the Simulink software, perform the following steps:

1. Click Configuration Parameters on the Simulation menu to display the
Configuration Parameters dialog box and select the Solver page (Figure 2–17 on
page 2–17).

2. Set the parameters shown in Table 2–15.

f Refer to the description of the “Solver Pane” in the Simulink Help for
detailed information about solver options.

Figure 2–16. Clock Block Parameters Dialog Box

Table 2–15. Configuration Parameters for the singen Model

Parameter Value

Start time 0.0

Stop time 4e–6

Type Fixed-step

Solver discrete (no continuous states)

Chapter 2: Getting Started Tutorial 2–17
Simulate Your Model in Simulink

© November 2008 Altera Corporation DSP Builder User Guide

3. Click OK.

4. Start simulation by clicking Start on the Simulation menu.

5. Double-click the Scope block to view the simulation results.

6. Click the Autoscale icon (binoculars) to auto-scale the waveforms.

Figure 2–18 shows the scaled waveforms.

Figure 2–17. Configuration Parameters

Figure 2–18. Scope Simulation Results

2–18 Chapter 2: Getting Started Tutorial
Compiling the Design

DSP Builder User Guide © November 2008 Altera Corporation

Compiling the Design
To create and compile a Quartus II project for your DSP Builder design, and to
program the design onto an Altera FPGA, you need to add the Signal Compiler
block.

Perform the following steps:

1. Select the AltLab library from the Altera DSP Builder Blockset folder in the
Simulink Library Browser.

2. Drag and drop a Signal Compiler block into your model.

3. Double-click the Signal Compiler block in your model to display the Signal
Compiler dialog box (Figure 2–19).

The dialog box allows you to set the target device family. For this tutorial, you can
use the default Stratix device family.

4. Click Compile.

Figure 2–19. Signal Compiler Block Dialog Box

Chapter 2: Getting Started Tutorial 2–19
Performing RTL Simulation

© November 2008 Altera Corporation DSP Builder User Guide

5. When the compilation has completed successfully, click OK.

6. Click Save on the File menu to save the model.

Performing RTL Simulation
To perform RTL simulation with the ModelSim software, you need to add a
TestBench block.

Perform the following steps:

1. Select the AltLab library from the Altera DSP Builder BlockSet folder in the
Simulink Library Browser.

2. Drag and drop a TestBench block into your model.

3. Double-click on the new TestBench block.

The Testbench Generator dialog box appears (Figure 2–20).

4. Ensure that Enable Test Bench generation is on.

Figure 2–20. Testbench Generator Dialog Box

2–20 Chapter 2: Getting Started Tutorial
Performing RTL Simulation

DSP Builder User Guide © November 2008 Altera Corporation

5. Click the Advanced tab (Figure 2–21).

6. Turn on the Launch GUI option. This option causes the ModelSim GUI to be
launched when ModelSim simulation is invoked.

7. Click Generate HDL to generate a VDHL-based testbench from your model.

8. Click Run Simulink to generate Simulink simulation results for the testbench.

9. Click Run ModelSim to load the design in ModelSim.

The design is simulated with the output displayed in the ModelSim Wave
window.

1 All waveforms are initially shown using digital format in the ModelSim
Wave window.

The testbench initializes all of the design registers with a pulse on the aclr input
signal.

10. Change the format of the sinin, sindelay and streammod signals to analog by
selecting the signal name in the Wave window and right-clicking on Properties. In
the Format tab, select Analog, and specify height 50, scale 0.001.

Figure 2–21. Testbench Generator Dialog Box Advanced Tab

Chapter 2: Getting Started Tutorial 2–21
Adding the Design to a Quartus II Project

© November 2008 Altera Corporation DSP Builder User Guide

11. Click Zoom Full on the right button pop-up menu in the ModelSim Wave window.
The simulation results display as an analog waveform similar to that shown in
Figure 2–22.

You have now completed the introductory DSP Builder tutorial. The next section
shows how you can add a DSP Builder design to a new or existing Quartus II project.

Subsequent chapters in this user guide provide walkthroughs that illustrate some of
the additional design features supported by DSP Builder.

Adding the Design to a Quartus II Project
The Quartus II project created by the Signal Compiler block is used internally by
DSP Builder. This section describes how to add your design to a new or existing
Quartus II project.

Before following these steps, ensure that the design has been compiled using the
Signal Compiler block as described in “Compiling the Design” on page 2–18.

Creating a Quartus II Project
To create a new Quartus II project, perform the following steps:

1. Start the Quartus II software.

2. Click New Project Wizard on the File menu in the Quartus II software and specify
the working directory for your project. For example, D:\MyQuartusProject.

Figure 2–22. Analog Display

2–22 Chapter 2: Getting Started Tutorial
Adding the Design to a Quartus II Project

DSP Builder User Guide © November 2008 Altera Corporation

3. Specify the name of the project. For example, NewProject and the name of the top
level design entity for the project.

1 The name of the top-level design entity typically has the same name as the
project.

4. Click Next to display the Add Files page. There are no files to add for this tutorial.

5. Click Next to display the Family & Device Settings page and check that the
required device family is selected. This should normally be the same device family
as specified for Signal Compiler in “Compiling the Design” on page 2–18.

6. Click Finish to close the wizard and create the new project.

1 When you specify a directory that does not already exist, a message asks if
the specified directory should be created. Click Yes to create the directory.

Add the DSP Builder Design to the Project
To add your DSP Builder design to the project in the Quartus II software:

1. On the View menu in the Quartus II software, point to Utility Windows and click
Tcl Console to display the Tcl Console.

2. Run the <DSP Builder install path>\DesignExamples\Tutorials\
GettingStartedSinMdl\singen_add.tcl script in the Tcl Console by typing the
following command:

source <install path>/DesignExamples/Tutorials/
GettingStartedSinMdl/ singen_add.tcl

1 You must use / separators instead of \ separators in the command path
name used in the Tcl console window. You can use a relative path if you
organize your design data with the DSP Builder and Quartus II designs in
subdirectories of the same design hierarchy.

An example instantiation is added to your Quartus II project.

3. Click the Files tab in the Quartus II software.

4. Right-click singen.mdl and click Select Set as Top-Level Entity.

5. Compile the Quartus II design by clicking Start Compilation on the Processing
menu.

1 You can copy the component declaration from the example file for your
own code.

© November 2008 Altera Corporation DSP Builder User Guide

3. Design Rules and Procedures

DSP Builder Naming Conventions
DSP Builder generates VHDL files for simulation and synthesis. When there are
blocks or ports in the model that share the same VHDL name, they are given unique
names in the VHDL to avoid name clashes. However, clock and reset ports are never
renamed, and an error is issued if they do not have unique names. Try to avoid name
clashes on other ports, as this results in renaming of the top level ports in the VHDL.

All DSP Builder port names must comply with the following naming conventions:

■ VHDL is not case sensitive. For example, the input port MyInput and MYINPUT is
the same VHDL entity.

■ Avoid using VHDL keywords for DSP Builder port names.

■ Do not use illegal characters. VHDL identifier names can only contain a - z, 0 - 9,
and underscore (_) characters.

■ Begin all port names with a letter (a - z). VHDL does not allow identifiers to begin
with non-alphabetic characters or end with an underscore.

■ Do not use two underscores in succession (__) in port names because it is illegal in
VHDL.

1 White spaces in the names for the blocks/components and signals are converted to an
underscore when Signal DSP Builder converts the Simulink model file (.mdl) into
VHDL.

Using a MATLAB Variable
You can specify many block parameters (such as bit widths and pipeline depth) by
entering a MATLAB base workspace or masked subsystem variable. These variables
can then be set on the MATLAB command line or from a script. The variable is
evaluated and its value passed to the simulation model files. Checks are performed to
make sure that the parameters are in the required range. Values that can be set in this
way are annotated as “Parameterizable” in the block parameter tables shown in the
reference manual.

1 Although DSP Builder no longer restricts parameters to 51 bits, MATLAB evaluates
parameter values to doubles. This restricts the possible values to 51-bit numbers
expressible by a double.

f For information about which values are parameterizable, refer to the DSP Builder
Reference Manual or to the block descriptions that can be accessed using the Help
command in the right button pop-up menu for each block.

http://www.altera.com/literature/manual/mnl_dsp_builder.pdf
http://www.altera.com/literature/manual/mnl_dsp_builder.pdf

3–2 Chapter 3: Design Rules and Procedures
Fixed-Point Notation

DSP Builder User Guide © November 2008 Altera Corporation

Fixed-Point Notation
Table 3–1 describes the fixed-point notation used for I/O formats in the DSP Builder
block descriptions.

Figure 3–1 graphically compares the signed binary fractional, signed binary, and
unsigned binary number formats.

Table 3–1. Fixed-Point Notation

Description Notation
Simulink-to-HDL Translation

(1), (2)

Signed binary:
fractional (SBF)
representation; a
fractional number

[L].[R] where:

■ [L] is the number of bits to the left of the binary
point and the MSB is the sign bit

■ [R] is the number of bits to the right of the binary
point

A Simulink SBF signal A[L].[R] maps in VHDL to
STD_LOGIC_VECTOR({L + R - 1} DOWNTO 0)

Signed binary;
integer (INT)

[L] where:

■ [L] is the number of bits of the signed bus and the
MSB is the sign bit

A Simulink signed binary signal A[L] maps to
STD_LOGIC_VECTOR({L - 1} DOWNTO 0)

Unsigned binary;
integer (UINT)

[L] where:

■ [L] is the number of bits of the unsigned bus

A Simulink unsigned binary signal A[L] maps to
STD_LOGIC_VECTOR({L - 1} DOWNTO 0)

Single bit integer
(BIT)

[1] where:

■ the single bit can have values 1 or 0

A Simulink single bit integer signal maps to
STD_LOGIC

Notes to Table 3–1:

(1) STD_LOGIC_VECTOR and STD_LOGIC are VHDL signal types defined in the (ieee.std_logic_1164.all and ieee.std_logic_signed.all IEEE
library packages).

(2) For designs in which unsigned integer signals are used in Simulink, DSP Builder translates the Simulink unsigned bus type with width w into a
VHDL signed bus of width w + 1 where the MSB bit is set to 0.

Figure 3–1. Number Format Comparison

Chapter 3: Design Rules and Procedures 3–3
Fixed-Point Notation

© November 2008 Altera Corporation DSP Builder User Guide

Binary Point Location in Signed Binary Fractional Format
For hardware implementation, Simulink signals must be cast into the desired
hardware bus format. Therefore, floating-point values must be converted to fixed-
point values.

This conversion is a critical step for hardware implementation because the number of
bits required to represent a fixed-point value plus the location of the binary point
affects both the amount of the hardware resources used and the system accuracy.

Choosing a large number of bits gives excellent accuracy—the fixed-point result is
almost identical to the floating-point result—but consumes a large amount of
hardware. The designer’s task consists of finding the right size/accuracy trade-off.
DSP Builder speeds up the design cycle by enabling simulation with fixed-point and
floating-point signals in the same environment.

The Input block casts floating-point Simulink signals of type double into fixed-point
signals. The fixed-point signals are represented in signed binary fractional (SBF)
format as shown below:

■ [number of bits].[]—Represents the number of bits to the left of the binary point
including the sign bit.

■ [].[number of bits]—Represents the number of bits to the right of the binary point.

In VHDL, the signals are typed as STD_LOGIC_VECTOR (see (Note 1) in Table 3–1
on page 3–2).

For example, the 4-bit binary number 1101 is represented as:

Simulink This signed integer is interpreted as –3

VHDL This signed STD_LOGIC_VECTOR is interpreted as –3

If you change the location of the binary point to 11.01, that is, two bits on the left side
of the binary point and two bits on the right side, the numbers are represented as:

Simulink This signed fraction is interpreted as –0.75

VHDL This signed STD_LOGIC_VECTOR is interpreted as –3

From a system-level analysis point of view, multiplying a number by –0.75 or –3 is
very different, especially when looking at the bit width growth. In the first case, the
multiplier output bus grows on the most significant bit (MSB), in the second case, the
multiplier output bus grows on the least significant bit (LSB).

In both cases, the binary numbers are identical. However, the location of the binary
point affects how a simulator formats the representation of the signal. For complex
systems, you can adjust the binary point location to define the signal range and the
area of interest.

f For more information on number systems, refer to AN 83: Binary Numbering Systems.

http://www.altera.com/literature/an/an083_01.pdf

3–4 Chapter 3: Design Rules and Procedures
Bit Width Design Rule

DSP Builder User Guide © November 2008 Altera Corporation

Bit Width Design Rule
You must specify the bit width at the source of the data path. DSP Builder propagates
this bit width from the source to the destination through all intermediate blocks. Some
intermediate DSP Builder blocks must have a bit width specified, while others have
specific bit width growth rules which are described in the documentation for each
block.

Some blocks which allow bit widths to be specified optionally, have an Inferred
type setting that allows a growth rule to be used. For example, in the amplitude
modulation tutorial design (see Chapter 2, Getting Started Tutorial), the SinIn and
SinDelay blocks have a bit width of 16. Therefore, a bit width of 16 is automatically
assigned to the intermediate Delay block.

Data Width Propagation
You can specify the bit width of many Altera blocks in the Simulink design. However,
you do not need to specify the bit width for all blocks. If the bit width is not explicitly
specified, DSP Builder assigns a bit width during the Simulink-to-VHDL conversion
by propagating the bit width from the source of a data path to its destination.

Some intermediate DSP Builder blocks must have a bit width specified, while others
have specific bit width growth rules which are described in the documentation for
each block. Some blocks which allow bit widths to be specified optionally allow a
growth rule to be used; this is the Inferred type setting.

The following design example illustrates bit-width propagation (Figure 3–2).

The fir3tapsub.mdl design is a 3-tap finite impulse response (FIR) filter and has the
following attributes:

■ The input data signal is an 8-bit signed integer bus

■ The output data signal is a 20-bit signed integer bus

■ Three Delay blocks are used to build the tapped delay line

■ The coefficient values are {1.0000, -5.0000, 1.0000}, a Gain block performs the
coefficient multiplication

Figure 3–2. 3-Tap FIR Filter

Chapter 3: Design Rules and Procedures 3–5
Bit Width Design Rule

© November 2008 Altera Corporation DSP Builder User Guide

Figure 3–3 shows the RTL representation of fir3tapsub.mdl created by Signal
Compiler.

Tapped Delay Line
The bit width propagation mechanism starts at the source of the data path, in this case
at the Input block which is an 8-bit input bus. This bus feeds the register U0, which
feeds U1, which feeds U2. DSP Builder propagates the 8-bit bus in this register chain
where each register is eight bits wide. See Figure 3–4.

Arithmetic Operation
Figure 3–5 shows the arithmetic section of the filter, which computes the output yout:

where c[i] are the coefficients and x[k - i] are the data.

Figure 3–3. 3-Tap FIR Filter in Quartus II RTL View

Figure 3–4. Tap Delay Line in Quartus II Version RTL Viewer

yout k[] x k i–[]c i[]

i 0=

2

∑=

Figure 3–5. 3-Tap FIR Filter Arithmetic Operation in Quartus II Version RTL Viewer

3–6 Chapter 3: Design Rules and Procedures
Bit Width Design Rule

DSP Builder User Guide © November 2008 Altera Corporation

The design requires three multipliers and one parallel adder. The arithmetic
operations increase the bus width in the following ways:

■ Multiplying a × b in SBF format (where l is left and r is right) is equal to:

[la].[ra] × [lb].[rb]

The bus width of the resulting signal is:

([la] + [lb]).([ra] + [rb])

■ Adding a + b + c in SBF format (where l is left and r is right) is equal to:

[la].[ra] + [lb].[rb] + [lc].[rc]

The bus width of the resulting signal is:

(max([la], [lb], [lc]) + 2).(max([ra], [rb], [rc]))

The parallel adder has three input buses of 14, 16, and 14 bits. To perform this
addition in binary, DSP Builder automatically sign extends the 14 bit buses to 16 bits.
The output bit width of the parallel adder is 18 bits, which covers the full resolution.

There are several options that can change the internal bit width resolution and
therefore change the size of the hardware required to perform the function described
in Simulink:

■ Change the bit width of the input data.

■ Change the bit width of the output data. The VHDL synthesis tool removes any
unused logic.

■ Insert a Bus Conversion block to change the internal signal bit width.

Figure 3–6 shows how Bus Conversion blocks can be used to control internal bit
widths.

In this example, the output of the Gain block has 4 bits removed. (Port data type
display is enabled in this example and shows that the inputs to the Delay blocks are
of type INT_8 but the outputs from the Bus Conversion blocks are of type INT_6.)

1 Bus conversion can also be achieved by inserting an AltBus, Round, or Saturate
block.

Figure 3–6. 3-Tap Filter with BusConversion to Control Bit Widths

Chapter 3: Design Rules and Procedures 3–7
Frequency Design Rules

© November 2008 Altera Corporation DSP Builder User Guide

The RTL view illustrates the effect of this truncation. The parallel adder required has a
smaller bit width and the synthesis tool reduces the size of the multiplier to have a 9-
bit output. See Figure 3–7.

f Refer to “Fixed-Point Notation” on page 3–2 for more information.

Frequency Design Rules
This section describes the frequency design rules for single and multiple clock
domains.

Single Clock Domain
If your design does not contain a PLL block or Clock_Derived block, DSP Builder
uses synchronous design rules to convert a Simulink design into hardware. All DSP
Builder registered blocks (such as the Delay block) operate on the positive edge of the
single clock domain, which runs at the system sampling frequency.

The clock pin is not graphically displayed in Simulink unless the Clock block is used.
However, when DSP Builder converts the design to VHDL it automatically connects
the clock pin of the registered blocks (such as the Delay block) to the single clock
domain of the system.

The default clock pin is named clock and there is also a default active-low reset pin
named aclr.

By default, Simulink does not graphically display the clock enable and reset input
pins of the DSP Builder registered blocks. When DSP Builder converts a design to
VHDL, it automatically connects these pins. You can access and drive these optional
ports by checking the appropriate option in the Block Parameters dialog box.

1 Simulink issues a warning if you are using an inappropriate solver for your model.
You should set the solver options to fixed-step discrete when you are using a single
clock domain.

f Refer to “Design Flow” on page 1–3 for information about setting the simulink solver.

Figure 3–7. 3-Tap Filter with BusConversion to Control Bit Widths in Quartus II RTL Viewer

3–8 Chapter 3: Design Rules and Procedures
Frequency Design Rules

DSP Builder User Guide © November 2008 Altera Corporation

For Simulink simulation, all DSP Builder blocks (including registered DSP Builder
blocks) use the sampling period specified in the Clock block. If there is no Clock
block in the design, the DSP Builder blocks use a sampling frequency of 1. You can use
the Clock block to change the Simulink sample period and the hardware clock
period.

Multiple Clock Domains
A DSP Builder model can operate using multiple Simulink sampling periods. The
clock domain can be specified within some DSP Builder block sources, such as the
Counter block. The clock domain can also be specified within DSP Builder rate
change blocks such as Tsamp.

When using multiple sampling periods, DSP Builder must associate each sampling
period to a physical clock domain that can be available from an FPGA PLL or a clock
input pin. Therefore, the DSP Builder model must contain DSP Builder rate change
blocks such as PLL or Clock_Derived at the top level.

You can use a PLL block to synthesize additional clock signals from a reference clock
signal. These internal clock signals are multiples of the system clock frequency.
Table 3–3 on page 3–13 shows the number of PLL internal clock outputs supported by
each device family.

If your design contains the PLL block, Clock or Clock_Derived blocks, the DSP
Builder registered blocks operate on the positive edge of one of the block’s output
clocks.

1 You must set a variable-step discrete solver in Simulink when you are using multiple
clock domains.

f Refer to “Design Flow” on page 1–3 for information about setting the Simulink solver.

To ensure a proper hardware implementation of a DSP Builder design using multiple
clock domains, consider the following:

■ Do not use DSP Builder combinational blocks for rate transitions to ensure that the
behavior of the DSP Builder Simulink model is identical to the generated RTL
representation.

Figure 3–8 illustrates an incorrect use of the DSP Builder Logical Bit
Operator (NOT) block.

Figure 3–8. Example of Incorrect Usage: Mixed Sampling Rate on a NOT Block

Chapter 3: Design Rules and Procedures 3–9
Frequency Design Rules

© November 2008 Altera Corporation DSP Builder User Guide

■ Two DSP Builder blocks can operate with two different sampling periods.
However within most DSP Builder blocks the sampling period of each input port
and each output port must be identical.

Although this rule applies to a large majority of DSP Builder blocks, there are
some exceptions such as the Dual-Clock FIFO block where the sampling period
of the read input port is expected to be different than the sampling period of the
write input port.

■ For a data path using mixed clock domains, additional register decoupling may be
required around the register that is between the domains.

This requirement is especially true when the source data rate is higher than the
destination register, in other words, when the data of a register is toggling at the
higher rate than the register’s clock pin, as shown in Figure 3–9.

A stable hardware implementation is shown in Figure 3–10.

Figure 3–9. Data Toggling Faster than Clock

Figure 3–10. Stable Hardware Implementation

3–10 Chapter 3: Design Rules and Procedures
Frequency Design Rules

DSP Builder User Guide © November 2008 Altera Corporation

Using Clock and Clock_Derived Blocks
DSP Builder maps the Clock and Clock_Derived blocks to two hardware device
input pins; one for the clock input, and one for the reset input for the clock domain. A
design may contain zero or one Clock block and zero or more Clock_Derived
blocks.

If you use Clock_Derived blocks, and there is only one system clock, you must
generate an appropriate clock signal for connection to the hardware device input pins
for the derived clocks.

The Clock block defines the base clock domain, and Clock_Derived blocks define
other clock domains whose sample times are specified in terms of the base clock
sample time. If there is no Clock block, a default base clock is used, with a Simulink
sample time of 1, and a hardware clock period of 20us.

This feature is available across all device families supported by DSP Builder. If no
Clock block is present, a default clock pin named clock and a default active-low
reset pin named aclr are used.

Signal Compiler assigns a clock buffer and a dedicated clock-tree-to-clock-signal-
input pin automatically in order to maintain minimum clock skew. If the design
contains more Clock and Clock_Derived blocks than there are clock buffers
available, non dedicated routing resources are used to route the clock signals.

Clock Assignment
DSP Builder identifies registered DSP Builder blocks such as the Delay block and
implicitly connects the clock, clock enable, and reset signals in the VHDL design for
synthesis. When the design does not contain a Clock block, Clock_Derived block,
or PLL block, all of the registered DSP Builder block clock pins are implicitly
connected to a single clock domain (signal ‘clock’ in VHDL).

Clock domains are defined by the clock source blocks: the Clock block, the
Clock_Derived block and the PLL block.

The Clock block defines the base clock domain. You can specify its Simulink sample
time and hardware clock period directly. If no Clock block is used, there is a default
base clock with a Simulink sample time of 1. You can use the Clock_Derived block
to define clock domains in terms of the base clock. The sample time of a derived clock
is specified as a multiple and divisor of the base clock sample time.

The PLL block maps to a hardware PLL. You can use it to define multiple clock
domains with sample times specified in terms of the PLL input clock. The PLL input
clock may be either the base clock or a derived clock.

Each clock domain has an associated reset pin. The Clock block and each of the
Clock_Derived blocks have their own reset pin, which is named in the block's
parameter dialog box. The clock domains of the PLL block share the reset pin of the
PLL block's input clock.

When the design contains clock source blocks, DSP Builder implicitly connects the
clock pins of all the registered blocks to the appropriate clock pin or PLL output. DSP
Builder also connects the reset pins of the registered blocks to the top-level reset port
for the block's clock domain.

Chapter 3: Design Rules and Procedures 3–11
Frequency Design Rules

© November 2008 Altera Corporation DSP Builder User Guide

DSP Builder blocks fall into the following clocking categories:

■ Combinational blocks—The output always changes at the same sample time slot
as the input.

■ Registered blocks—The output changes after a variable number of sample time
slots.

Figure 3–11 illustrates DSP Builder block combinational behavior.

The Magnitude block translates as a combinational signal in VHDL. DSP Builder
does not add clock pins to this function.

Figure 3–12 illustrates the behavior of a registered DSP block. In the VHDL netlist,
DSP Builder adds clock pin inputs to this function. The Delay block, with the Clock
Phase Selection parameter equal to 100, is converted into a VHDL shift register with a
decimation of three and an initial value of zero.

Figure 3–11. Magnitude Block: Combinational Behavior

Figure 3–12. Delay Block: Registered Behavior

3–12 Chapter 3: Design Rules and Procedures
Frequency Design Rules

DSP Builder User Guide © November 2008 Altera Corporation

For feedback circuitry (that is, the output of a block fed back into the input of a block),
a registered block must be in the feedback loop. Otherwise, an unresolved
combinational loop is created. See Figure 3–13.

You can design multi-rate designs by using the PLL block and assigning different
sampling periods on registered DSP Builder blocks.

Alternatively, you can design multi-rate designs without the DSP Builder PLL block
by using a single clock domain with clock enable and the following design rules:

■ The fastest sample rate is an integer multiple of the slower sample rates. The
values are specified in the Clock Phase Selection field in the Block Parameters
dialog box for the Delay block.

■ The Clock Phase Selection box accepts a binary pattern string to describe the
clock phase selection. Each digit or bit of this string is processed sequentially on
every cycle of the fastest clock. When a bit is equal to one, the block is enabled;
when a bit is equal to zero, the block is disabled.

For example, see Table 3–2.

Figure 3–13. Feedback Loop

Table 3–2. Clock Phase Selection Example

Phase Description

1 The Delay block is always enabled and captures all data passing through the block
(sampled at the rate 1).

10 The Delay block is enabled every other phase and every other data (sampled at the
rate 1) passes through.

0100 The Delay block is enabled on the 2nd phase out of 4 and only the 2nd data out of 4
(sampled at the rate 1) passes through. In other words, the data on phases 1, 3, and 4
do not pass through the Delay block.

Chapter 3: Design Rules and Procedures 3–13
Frequency Design Rules

© November 2008 Altera Corporation DSP Builder User Guide

Figure 3–14 compares the scopes for the Delay block operating at a one quarter rate
on the 1000 and 0100 phases, respectively.

Using the PLL Block
DSP Builder maps the PLL block to the hardware device PLL.

Table 3–3 shows the number of PLL internal clock outputs supported by each device
family.

Figure 3–14. 1000 as Opposed to 0100 Phase Delay

Table 3–3. Device Support for PLL Clocks

Device Family Number of PLL Clocks

Stratix IV 9

Stratix III 9

Stratix II GX 6

Stratix II 6

Stratix GX 6

Stratix 6

Arria GX 6

Cyclone III 5

Cyclone II 3

Cyclone 2

3–14 Chapter 3: Design Rules and Procedures
Frequency Design Rules

DSP Builder User Guide © November 2008 Altera Corporation

Figure 3–15 shows an example of multiple-clock domain support using the PLL block.

Figure 3–16 shows the clock setting configuration for the PLL block in the example
design MultipleClockDelay.mdl. Output clock PLL_clk0 is set to 800 ns, and output
clock PLL_clk1 is set to 100 ns.

Data path A (shown in green in Figure 3–15) operates on output clock PLL_clk0 and
data path B (shown in red in Figure 3–15) operates on output clock PLL_clk1. These
clocks are specified by setting the Specify Clock option and entering the clock name
in the Block Parameter dialog box for each input block.

Figure 3–15. MultipleClockDelay.mdl

Figure 3–16. PLL Setting

Chapter 3: Design Rules and Procedures 3–15
Timing Semantics Between Simulink and HDL Simulation

© November 2008 Altera Corporation DSP Builder User Guide

In this design, the Sample time parameters for the Sine Wave a block and Sine
Wave b block are set explicitly to 1e-006 and 1e-007, so that data is provided to the
input blocks at the rate at which they sample.

Using Advanced PLL Features
The DSP Builder PLL block supports the fundamental multiplication and division
factor for the PLL. If you want to use other PLL features (such as phase shift, duty
cycle), do so in a separate Quartus II project using the following method:

■ Create a new Quartus II project and use the MegaWizard Plugin Manager to
configure the ALTPLL block.

■ Add the DSP Builder .mdl file to the Quartus II project as a source file.

■ You can then create a top-level design that instantiates your ALTPLL variation and
your DSP Builder design.

Timing Semantics Between Simulink and HDL Simulation
DSP Builder uses the Simulink engine to simulate the behavior of hardware
components. However, there are some fundamental differences between the step-
based simulation in Simulink and the event-driven simulation used for VHDL and
Verilog HDL designs.

DSP Builder bridges this gap by establishing a set of timing semantics for translating
between the Simulink and HDL environments.

Simulink Simulation Model
The Simulink timing mode recommended for use with DSP Builder is a discrete
fixed-step simulation, to facilitate correlation between HDL and Simulink simulation.
This is configured in the Configuration Parameters dialog box (Simulation menu) in
Simulink (See Figure 1–2 on page 1–5). Each step is a discrete unit of simulation. The
clock is quantized in an idealized manner as a cycle counter.

At the beginning of each step, Simulink provides each block with known inputs.
Functions are evaluated and the resultant outputs are propagated within the current
step. The outputs of the model are the results of all of these computations.

For all steps, Simulink blocks produce output signals. Outputs varying based on
inputs received in the same step are referred to as direct feedthrough. Some DSP
Builder blocks may include direct feedthrough outputs, depending on the
parameterization of each block.

HDL Simulation Models
Hardware simulation is driven by a clock signal and the availability of input stimuli.
The testbench script generated by the TestBench block has been designed to feed
input signals to the HDL simulator in order to maintain correlation between HDL and
Simulink simulation.

Simulation models in the DSP Builder libraries evaluate their logic on positive clock
edges. To avoid any timing conflicts, external inputs transition on negative clock
edges.

3–16 Chapter 3: Design Rules and Procedures
Timing Semantics Between Simulink and HDL Simulation

DSP Builder User Guide © November 2008 Altera Corporation

Registered outputs are updated on positive clock edges. TestBench block-generated
inputs arrive on negative clock edges, causing an apparent half-cycle delay in the
arrival of output (see Figure 3–17 on page 3–17).

Startup & Initial Conditions
The testbench includes a global reset for each clock domain. All blocks (except the
HDL Import and MegaCore function blocks) automatically connect any reset on the
hardware to the global asynchronous reset for the clock domain.

When a block explicitly declares an asynchronous reset, this reset is ORed with the
global reset.

A Global Reset block (SCLR), which corresponds to this hardware signal is
provided in the Altera DSP Builder Blockset IO & Bus library.

The global reset signal is used as a reset prior to meaningful simulation. When
converting from the Simulink domain to the hardware domain, the reset period is
considered to be before the Simulink simulation begins. Therefore, in Simulink
simulation, the Global Reset block outputs only a constant zero and has no
simulation behavior. This means that the hardware is connected to reset, and thus
reset at the start of a ModelSim testbench simulation.

1 DSP blocks or MegaCore functions may have additional initial conditions or startup
states which are not automatically reset by the global reset signal.

DSP Builder Global Reset Circuitry
By default, Simulink does not graphically display the clock enable and reset input
pins on DSP Builder registered blocks. When DSP Builder converts a design to HDL, it
automatically connects the implied clock enable and reset pins.

If you turn on the optional ports in the Block Parameters dialog box for each of the
DSP Builder registered blocks, you can access and drive the clock enable and reset
input pins graphically in the Simulink software.

In the HDL domain, an asynchronous reset is used for the registered DSP Builder
blocks, as shown in this behavioral VHDL code example:

process(CLOCK, RESET)
begin

if RESET = '1' then
dout <= (others => '0');

else if CLOCK'event and CLOCK = '1' then
dout <= din;

end if;
end

In addition, when targeting a development board, the Block Parameters dialog box
for the DSP Board configuration block typically includes a Global Reset Pin selection
box where you can choose from a list of pins that correspond to the DIP and push
button switches.

The reset logic polarity can be either active-high or active-low. When active-low is
selected, the value of the reset signal in Simulink simulation is still 0 for inactive and 1
for active. However, a NOT gate is inserted on the input pin in the hardware that is
generated. The value of the reset signal in simulation is therefore the value as it exists
across the internal design, rather then the value at the input pin.

Chapter 3: Design Rules and Procedures 3–17
Timing Semantics Between Simulink and HDL Simulation

© November 2008 Altera Corporation DSP Builder User Guide

Quartus® II synthesis interprets this reset as an asynchronous reset, and uses an input
of the logic element look-up table to instantiate the function. The HDL simulates
correctly in this case because the testbench produces the reset input as required.

Reference Timing Diagram
Figure 3–17 shows the timing relationships in a hypothetical case where a register is
fed by the output of a counter. The counter output begins at 10, in other words, the
value is 10 during the first Simulink clock step.

This timing is not true when crossing clock domains. For example, Figure 3–18 shows
the timing delays introduced in a design with a derived clock that has half the base
clock period. In general, DSP Builder is not cycle-accurate when crossing clock
domains.

Figure 3–17. Single-Clock Timing Relationships

Figure 3–18. Multiple-Clock Timing Relationships

3–18 Chapter 3: Design Rules and Procedures
Signal Compiler and TestBench Blocks

DSP Builder User Guide © November 2008 Altera Corporation

Signal Compiler and TestBench Blocks
The Signal Compiler block uses Quartus II synthesis to convert a Simulink design
into synthesizable VHDL including generation of a VHDL testbench and other
supporting files for simulation and synthesis.

Signal Compiler assumes that the design complies with the Simulink rules and
that any variables and inherited variables have been propagated through the whole
design.

You should always run a simulation in Simulink before running Signal Compiler.
The simulation updates all variables in the design (including workspace variables and
inherited parameters), sets up certain blocks (such as the memory blocks, and inputs
from and outputs to workspace blocks), and also traps any design errors that do not
comply with Simulink rules.

The Input and Output blocks map to input and output ports in VHDL and mark the
edge of the generated system. Typically, you connect these blocks to the Simulink
simulation blocks for your testbench. An Output block should not connect to another
Altera block. If you connect more Altera blocks (that map to HDL), empty ports are
created and the HDL does not compile for synthesis.

f For more information on the Input and Output blocks, refer to the IO & Bus Library
chapter of the DSP Builder Reference Manual.

Design Flows for Synthesis, Compilation and Simulation
You can use Signal Compiler to control your design flow for synthesis,
compilation, and simulation. DSP Builder supports the following flows:

■ Automatic Flow—The automated flow allows you to control the entire design
process from within the MATLAB/Simulink environment using the Signal
Compiler block. With this flow, the design is compiled inside a temporary
Quartus II project. The results of the synthesis and compilation are displayed in
the Signal Compiler Messages box. You can also use the automated flow to
download your design into supported development boards.

■ Manual Flow—You can also add the .mdl file to an existing Quartus II project
using the <model name>_add.tcl script. This script is generated whenever the
Signal Compiler or TestBench block is run and can be used to add the .mdl
file and any imported HDL to your project. You can then instantiate your design in
HDL.

■ Simulation Flow—Use the TestBench block to compile your design for
Modelsim simulation. For this to work, ModelSim must be on your path. You can
automatically compare the Simulink and Modelsim simulation results.

f Refer to page 2–15 of the “Getting Started Tutorial” for an example that uses the
Signal Compiler block. For information about setting parameters for the Signal
Compiler block, refer to the Signal Compiler section in the AltLab Library chapter of
the DSP Builder Reference Manual.

http://www.altera.com/literature/manual/mnl_dsp_builder.pdf
http://www.altera.com/literature/manual/mnl_dsp_builder.pdf

Chapter 3: Design Rules and Procedures 3–19
Hierarchical Design

© November 2008 Altera Corporation DSP Builder User Guide

Hierarchical Design
DSP Builder supports hierarchical design using the Simulink Subsystem block.

DSP Builder preserves the hierarchy structure in a VHDL design and each hierarchical
level in a Simulink model file (.mdl) translates into one VHDL file.

For example, Figure 3–19 illustrates a hierarchy for a design fir3tap.mdl, which
implements two FIR filters.

f For information on naming the Subsystem block instances, refer to “DSP Builder
Naming Conventions” on page 3–1.

Figure 3–19. Hierarchical Design Example

3–20 Chapter 3: Design Rules and Procedures
Goto and From Block Support

DSP Builder User Guide © November 2008 Altera Corporation

Goto and From Block Support
DSP Builder supports the Goto and From blocks from the Signal Routing folder in
the generic Simulink library.

You can use these blocks for large fan-out signals and to enhance the diagram clarity.

Figure 3–20 shows an example of the Goto and From blocks.

The Goto blocks ([ReadAddr], [WriteAddr], and [WriteEna] are used with the
From blocks ([ReadAddr], [WriteAddr], and [WriteEna], which are connected to
the dual-port RAM blocks.

Figure 3–20. Goto & From Block Example

Chapter 3: Design Rules and Procedures 3–21
Black Boxing and HDL Import

© November 2008 Altera Corporation DSP Builder User Guide

Black Boxing and HDL Import
You can add your own VHDL or Verilog HDL code to the design and specify which
subsystem block(s) should be translated into VHDL by DSP Builder. This process,
called black boxing, can be implemented implicitly or explicitly.

An explicit black box uses the HDL Input, HDL Output, HDL Entity, and
Subsystem Builder blocks.

1 For information on using these blocks to create an explicit black box, refer
to “Subsystem Builder Walkthrough” in Chapter 8.

An implicit black box uses the HDL Import block to instantiate the black box
subsystem.

f For information on implicit black boxing using your own HDL code, refer
to the “HDL Import Walkthrough” in Chapter 8.

Using a MATLAB Array or HEX File to Initialize a Block
You can use a MATLAB array to specify the values entered in the LUT block or to
initialize the Dual-Port RAM, Single-Port RAM, True Dual-Port RAM, or ROM
blocks. You can also use an Intel format HEX file to initialize a RAM or ROM block.

If the data values specified by the MATLAB array or HEX file are not exactly
representable in the selected data type, they are rounded and a warning is issued. The
values are rounded by expressing the number in binary format, then truncating to the
specified width. This results in rounding towards minus infinity.

For example, if the input value is –0.25 (minimally expressed in signed binary
fractional two’s compliment format as 111) and the selected target data format is
signed fractional [1].[1], then the value is truncated to 11 = –0.5. The value is
rounded towards minus infinity to the nearest representable number.

Similarly, if you select unsigned integer data type and the value is 1.9, this is rounded
down to 1.

Comparison Utility
DSP Builder provides a simple utility that can be used to run simulation comparison
between Simulink and ModelSim from the command line:

alt_dspbuilder_verifymodel('modelname.mdl', 'logfile.txt')r
A testbench GUI is displays messages as the comparison is performed. The command
returns true (1) or false (0) according to whether the simulation results match and the
output is recorded in the specified log file.

f For more information on running a comparison between Simulink and ModelSim,
refer to “Performing RTL Simulation” in Chapter 2.

3–22 Chapter 3: Design Rules and Procedures
Adding Comments to Blocks

DSP Builder User Guide © November 2008 Altera Corporation

Adding Comments to Blocks
You can add comments to any DSP Builder block by right-clicking on the block to
display the Block Properties dialog box and entering text in the Description field of
the dialog box as shown in Figure 3–21.

The comment text is included next to the instantiation of the block in the generated
HDL.

Adding Quartus II Constraints
You can set Quartus II global project assignments in your Simulink model by adding
Quartus II Global Project Assignment blocks from the AltLab library. Each
block sets a single global assignment but multiple blocks can be used for multiple
assignments. You can use these assignments to set Quartus II compilation directives,
such as target device or timing requirements.

f For a description of the Quartus II Global Project Assignment block, refer
to the DSP Builder Reference Manual.

You can add additional Quartus II assignments or constraints that are not supported
within DSP Builder by creating a Tcl script in your design directory. Any file named
<model name>_add_user.tcl is automatically sourced when you run Signal
Compiler.

Figure 3–21. Adding Comments to a Block

http://www.altera.com/literature/manual/mnl_dsp_builder.pdf

Chapter 3: Design Rules and Procedures 3–23
Displaying Port Data Types

© November 2008 Altera Corporation DSP Builder User Guide

The Tcl file can include any number of Quartus II assignments with the syntax:

set_global_assignment -name <assignment> <value>

f For detailed information about Quartus II assignments, refer to the Quartus II Settings
File Reference Manual.

Displaying Port Data Types
You can optionally display the Simulink and DSP Builder port data types for each of
the signals in your Simulink model by turning on Port Data Types in the Port/Signal
Displays section of the Simulink Format menu.

When this option is set, the DSP Builder internal signal type (SBF_L_R, INT_L,
UINT_L, or BIT where L, and R are the number of bit to the left and right of the binary
point) is displayed. For example, SBF_8_4 for a 12-bit signed binary fractional data
type with 4 fractional bits, or UINT_16 for a 16-bit unsigned integer.

Figure 3–22 shows the Amplitude Modulation example from the Getting Started
Tutorial with port data type display enabled.

f For more information about the DSP Builder internal signal types, refer to “Fixed-
Point Notation” on page 3–2.

Displaying the Pipeline Depth
You can optionally display the pipeline depth on the primitive blocks (such as the
Arithmetic library blocks) in your Simulink model by adding a Display Pipeline
Depth block from the AltLab library.

You can change the display mode by double-clicking on the block. When set, the
current pipeline depth is displayed at the top right corner of each block that adds
latency to the design as shown in Figure 3–22. The currently selected mode is shown
on the Display Pipeline Depth block symbol.

Figure 3–22. Tutorial Example Showing Port Data Types and Pipeline Depth

http://www.altera.com/literature/manual/mnl_qsf_reference.pdf
http://www.altera.com/literature/manual/mnl_qsf_reference.pdf

3–24 Chapter 3: Design Rules and Procedures
Updating HDL Import Blocks

DSP Builder User Guide © November 2008 Altera Corporation

Updating HDL Import Blocks
The HDL Import blocks in your design may need updating if you have upgraded
from a previous software version or have moved a design to a different workstation.

You can use the alt_dspbuilder_refresh_hdlimport command to update
these blocks. This command checks that the referenced HDL files (or Quartus II
project) exists. If found, the HDL Import dialog box is opened and a compilation is
automatically invoked to regenerate the Simulink model. If neither is found, but there
is an existing simulation netlist, this netlist is used for simulation.

To run the command, perform the following steps:

1. Start the MATLAB/Simulink software.

2. Open a Simulink model that contains imported HDL.

3. Run the command by typing the following at the MATLAB prompt:

alt_dspbuilder_refresh_hdlimport r
You can optionally select a HDL Import block to run the command on the selected
subsystem only.

Analyzing the Hardware Resource Usage
You can analyze the hardware resources required for your design by using a
Resource Usage block.

Perform the following steps:

1. Select the AltLab library from the Altera DSP Builder BlockSet folder in the
Simulink Library Browser.

2. Drag and drop a Resource Usage block into your model and double-click on
the block to open the Resource Usage dialog box.

3. Double-click on the Signal Compiler block and click Compile to re-compile
the design in the Quartus II software.

The Resource Usage block is updated to show a summary of the estimated
logic, RAM and DSP block usage (Figure 3–23).

The Resource Usage dialog box is updated to show a detailed report of the
resources required by each of the blocks in your model that generate hardware.

Figure 3–23. Resource Usage Block

Chapter 3: Design Rules and Procedures 3–25
Analyzing the Hardware Resource Usage

© November 2008 Altera Corporation DSP Builder User Guide

For example, Figure 3–24 shows the hardware resources required by the Product
block in the Amplitude Modulation example from the Getting Started Tutorial.

f The information displayed depends on the selected device family. Refer to
the device documentation for more information.

You can also click the Timing tab and click Highlight path to highlight the critical
paths on your design.

1 When the source and destination shown in the dialog box are the same and
a single block is highlighted, the critical path is due to the internal function
or a feedback loop. For a more complex example, the entire critical path
through the design may be highlighted.

Figure 3–24. Resource Usage Dialog Box

3–26 Chapter 3: Design Rules and Procedures
Loading Additional ModelSim Commands

DSP Builder User Guide © November 2008 Altera Corporation

Loading Additional ModelSim Commands
When you import HDL as a black box, DSP Builder creates a subdirectory named
DSPBuilder<model name>_import. Any Tcl script named *_add_msim.tcl in this
subdirectory is automatically sourced when you launch ModelSim.

You should not modify the generated scripts, but you can create you own scripts such
as <user name>_add_msim.tcl which contain additional ModelSim commands that
you want to load into ModelSim.

Making Quartus II Assignments to Block Entity Names
The VHDL entity names of the blocks in a DSP Builder design are dependent on the
block’s parameter values. This means that blocks of the same type and same
parameterization share a common VHDL entity.

The entity names have the following format:

<block type name>_GN<8 alphanumeric characters>

For example, a Delay block entity name might be:

alt_dspbuilder_delay_GNLVAGVO3B

Changing the parameterization of the block causes the entity name to change. If you
want to make an assignment to a block in the Quartus II project, and for the
assignment to remain when the block parameters are changed, you can use regular
expressions in the assignments.

For example, you may want to make a Preserve Registers assignment to the Delay
blocks in Figure 3–25 to prevent them from being merged.

Using the Quartus II Assignment Editor and Node Finder tools, you can identify the
names of the registers and make the assignments to them. For example, if the model is
named my_model, the names might be:

my_model_GN:auto_inst|alt_dspbuilder_delay_GNLVAGVO3B:Delay|alt_dsp
builder_SDelay:Delay1i|DelayLine

my_model_GN:auto_inst|alt_dspbuilder_delay_GNLVAGVO3B:Delay1|alt_ds
pbuilder_SDelay:Delay1i|DelayLine

Figure 3–25. Entity Name Assignment Example

Chapter 3: Design Rules and Procedures 3–27
Managing Projects and Files

© November 2008 Altera Corporation DSP Builder User Guide

These assignments prevent merging of the registers. If you change the length of the
delay, the assignments are no longer valid. However, you can edit the To field of the
assignment and use a regular expression that is still valid if the entity name changes
due to a parameter change: Replace the eight alphanumeric characters following the
GN in the block entity name with .{8}, which is a regular expression that matches any
eight characters. The targets of the assignments then become:

my_model_GN:auto_inst|alt_dspbuilder_delay_GN.{8}:Delay|alt_dspbuil
der_SDelay:Delay1i|DelayLine

my_model_GN:auto_inst|alt_dspbuilder_delay_GN.{8}:Delay1|alt_dspbui
lder_SDelay:Delay1i|DelayLine

If you want the assignment to apply to the whole block, not just the specific nodes,
you can use the following code:

my_model_GN:auto_inst|alt_dspbuilder_delay_GN.{8}:Delay

my_model_GN:auto_inst|alt_dspbuilder_delay_GN.{8}:Delay1

Figure 3–26 shows this example in the Quartus II Assignment Editor.

You might want to do this if you are making the assignment to a more complicated
block that contains many registers, and you want the assignment to apply to all of
them.

Managing Projects and Files
The following files are required to store all the components of a DSP Builder design:

■ The top level Simulink model <top_level_name>.mdl

■ The import directory DSPBuilder_<top_level_name>_import and its contents.

■ Any source files for imported HDL.

■ Any memory initialization (.hex) files.

■ Any referenced custom library files.

1 The import directory is required for any design that includes HDL Import, State
Machine Editor or MegaCore functions (excluding the Video and Image Processing
Suite functions).

Integration with Source Control Systems
Altera recommends that you store Quartus II archive (.qar) files rather than
individual HDL files for source control purposes.

Figure 3–26. Preserve Registers Assignment in the Quartus II Assignment Editor

3–28 Chapter 3: Design Rules and Procedures
Managing Projects and Files

DSP Builder User Guide © November 2008 Altera Corporation

To create a .qar file, perform the following steps in the Quartus II software:

1. Create a Quartus II project that sources the top-level Quartus II IP (.qip) file
generated by the DSP Builder Export HDL flow as described in “Exporting HDL”
on page 3–29.

2. Perform analysis and elaboration to ensure any black box system files are
incorporated. (This step may be omitted for simple systems.)

3. Archive the project by clicking Archive Project on the project menu in the
Quartus II software) to generate the .qar file.

1 Any HDL elements introduced into DSP Builder using custom library blocks may
require their own source control. The required files are listed in additional .qip files
referenced in the "# Imported IP files" section of the top-level .qip file.

HDL Import
In general, source files imported using HDL Import are not part of a DSP Builder
project but are referenced in projects generated using the Export HDL flow as external
files, using absolute paths.

When you move a design to a new version of the tools or to a location on a different
computer, run the alt_dspbuilder_refresh_HDLimport script to ensure the
HDL Import blocks are up-to-date.

When migrating to a new computer, it is necessary to re-import the HDL to enable
hardware generation (although simulation in Simulink may be possible without this
step).

MegaCore Functions
The MegaCore IP Library is always installed in the same parent directory as the
Quartus II installation. Note that this is not a subdirectory of the quartus directory but
a relative path to an install directory at the same level as the quartus directory. The
expected directory structure is:

<install_path><QUARTUS_ROOTDIR>\..\ip

This allows the Export HDL flow to use relative paths, and improves portability.

1 Before version 8.0 of the Quartus II software, it was possible to install previous
versions of the MegaCore IP Library in any specified location. If an old version of the
MegaCore IP Library is used in your design, there may still be absolute paths in the
generated Quartus II IP (.qip) files which must be modified when you move projects
to a different location. The .qip file contains all of the assignments and other
information required to process the exported HDL in the Quartus II compiler and
generate hardware.

When moving a design to a new version of the tools or a different location, run the
alt_dspbuilder_refresh_megacore script to ensure that the MegaCore
function blocks are up-to-date.

Successful migration of designs with MegaCore Functions assumes that the new
environment has all the required IP installed. It may be necessary to install the
MegaCore IP Library and run the alt_dspbuilder_setup_megacore script.

Chapter 3: Design Rules and Procedures 3–29
Exporting HDL

© November 2008 Altera Corporation DSP Builder User Guide

Memory Initialization (.hex) Files
These files are required for simulation and hardware generation purposes. If they are
generated by HDL Import or MegaCore function blocks, it is important to ensure that
they are located within the import directory. This is generally not the case if the files
have been generated using HDL Import.

Exporting HDL
You can export the synthesizable HDL generated using DSP Builder to a Quartus II
project can then be used outside DSP Builder by using the Export tab in the Signal
Compiler block (Figure 3–27 on page 3–29).

You can also export HDL by executing the alt_dspbuilder_exportHDL command
in the MATLAB command window.

The syntax for the export HDL command is:

<exportDir_value> alt_dspbuilder_exportHDL(<model>, <exportDir>)

Figure 3–27. Export HDL Tab in Signal Compiler

3–30 Chapter 3: Design Rules and Procedures
Exporting HDL

DSP Builder User Guide © November 2008 Altera Corporation

where:

■ model is the name of the .mdl file being exported. This is always the top-level name
in the exported Quartus II project.

■ exportDir is the directory that contains the exported files. (If this optional argument
is omitted, the default or previously used export directory is used.)

■ exportedDir_value is the return string indicating the output directory containing the
newly generated files.

Running this flow creates a set of source files in the export directory, including a .qip
file corresponding to the top-level of the design.

Using Exported HDL
Once the Export HDL flow is complete, you can create a project using the New Project
Wizard available on the File menu in the Quartus II software. You should enter the
top-level name of the exported project and add the corresponding .qip file as the
single source file for the project. There may be a number of .qip files describing the
requirements for black box components. These are sourced automatically by the top-
level file.

When migrating designs that include MegaCore function blocks to a different
location, it may be necessary to edit their corresponding .qip files if they include
absolute paths to library components.

This project can be archived as required using the Archive Project command in the
Quartus II software.

1 You can migrate the files generated using the Export HDL flow on a Windows
computer to a Linux-based computer. However, this requires adding an additional file
to the project. This additional alt_dspbuilder_package.vhd file is located in the
<QUARTUS_ROOTDIR>\libraries\vhdl\altera directory on a Windows computer
which has DSP Builder installed.

© November 2008 Altera Corporation DSP Builder User Guide

4. Using MegaCore Functions

Introduction
Altera offers a large selection of off-the-shelf MegaCore functions. You can implement
these parameterized blocks of intellectual property (IP) easily, reducing design and
test time.

The OpenCore Plus evaluation feature allows you to download and evaluate
MegaCore functions in hardware and simulation prior to licensing.

You can add a wide variety of Altera DSP MegaCore functions to your Simulink
model. In Simulink, these MegaCore functions are represented by blocks in the Altera
DSP Builder Blockset in the Simulink Library Browser.

MegaCore Function Libraries
There are two separate libraries that can contain MegaCore functions in DSP Builder:

■ The MegaCore Functions library contains CIC, FFT, FIR Compiler, NCO, Reed
Solomon Compiler, and Viterbi Compiler. You must parameterize and generate
these MegaCore functions after you add one of these blocks to your model. See
“MegaCore Function Walkthrough” on page 4–8 for an example of the design flow
using these MegaCore functions.

■ The Video and Image Processing Suite library contains Alpha Blending Mixer,
Chroma Resampler, Clipper, Color Plane Sequencer, CSC (Color Space Converter),
Deinterlacer, 2D FIR Filter, 2D Median Filter, Frame Buffer, Gamma Corrector, Line
Buffer Compiler, Scaler, and Test Pattern Generator. You must parameterize these
MegaCore functions but you do not need to generate them before you can connect
the blocks to your design. All the required VHDL and simulation files are created
only when they are required by your design flow.

1 The use of Video and Image Processing Suite MegaCore functions is deprecated in
DSP Builder version 8.1 and this library will not be supported in future releases.
However, the Video and Image Processing Suite MegaCore functions continue to be
supported in SOPC Builder.

Installing MegaCore Functions
Altera DSP MegaCore functions are installed with the Quartus® II software. Refer to
the MegaCore function user guides for information about each MegaCore function.

It is important to run the DSP Builder MegaCore function setup command after the
installation of new MegaCore functions. This updates DSP Builder for all newly
installed or upgraded MegaCore functions.

To run this setup command, follow these steps:

1. Start the MATLAB software. (If MATLAB is already running, check that the
Simulink library browser is closed.)

4–2 Chapter 4: Using MegaCore Functions
Updating MegaCore Function Variation Blocks

DSP Builder User Guide © November 2008 Altera Corporation

2. Use the cd command at the MATLAB prompt to change directory to the directory
where DSP Builder was installed.

3. Run the setup command by typing the following at the MATLAB prompt:

alt_dspbuilder_setup_megacore r

1 The process of building the MegaCore function blocks can take several minutes. Do
not close MATLAB before the process has completed. Any messages of the form
“Cannot find the declaration of element 'entity'.“are expected when
installing a new MegaCore library and can be ignored.

Running this command, creates a MegaCore Functions subfolder below the Altera
DSP Builder Blockset in the Simulink Library Browser.

Within this folder, there should be two or more of the following blocks representing
each of the installed MegaCore functions:

■ One or more blue blocks with the name of the current version of the MegaCore
function they represent. Use these blocks in all new designs.

■ Dimmed blocks which represent older versions of the MegaCore functions. These
blocks are provided for backwards compatibility.

If you have installed any of the MegaCore functions in the Altera Video and Image
Processing Suite, a separate Video and Image Processing folder is created which
contains these MegaCore functions. All blocks in this library are versioned.

Updating MegaCore Function Variation Blocks
Although a DSP Builder design using MegaCore function blocks from the MegaCore
Functions library can be translated by Signal Compiler into a VHDL or Verilog
HDL model, a MegaCore function variation block always uses an intermediate VHDL
file to record parameters.

These blocks may revert to their unconfigured appearance if the VHDL file which
describes the function variation is available but the simulation database (.simdb) file
is not. A block may also require updating if you have changed the version of the
MegaCore function you are using.

In these cases, you can update the MegaCore function variation blocks in your design
using the alt_dspbuilder_refresh_megacore command.

This command recreates the simulation files based on the VHDL file for each
MegaCore function block in the current Simulink model.

1 A Quartus II license must be available on the machine for the command to execute
without errors.

To run the command, perform the following steps:

1. Start the MATLAB/Simulink software.

2. If necessary, use the cd command at the MATLAB prompt to change directory to
your project directory.

Chapter 4: Using MegaCore Functions 4–3
Design Flow Using MegaCore Functions

© November 2008 Altera Corporation DSP Builder User Guide

3. Run the command by typing the following at the MATLAB prompt:

alt_dspbuilder_refresh_megacore r
1 This procedure is not required for the MegaCore functions in the Video and Image

Processing library.

Design Flow Using MegaCore Functions
Using MegaCore functions in the MATLAB/Simulink environment is a five-step
process.

1. Add the MegaCore function to the Simulink model and give the block a unique
name.

2. Parameterize the MegaCore function variation.

3. Generate the MegaCore function variation.

1 This step is not required for the MegaCore functions in the Video and Image
Processing library.

4. Connect your MegaCore function variation to the other blocks in your model.

5. Simulate the MegaCore function variation in your model.

f Refer to the appropriate MegaCore function user guide for information about the
design flow used for each MegaCore function.

Place the MegaCore Function in the Simulink Model
You can add a MegaCore function to a Simulink model by dragging a copy of the
block from the Simulink Library Browser to the design workspace like any other
Simulink block.

The default name of a MegaCore function block includes its version number. If you
add more than one copy of a block in the same model, this number is automatically
incremented to make the name unique. (The correct version number is still shown on
the body of the block.) Altera recommends that you rename all blocks representing
MegaCore functions with a name describing their use in your design. Using unique
block names ensures that all the generated entities for the same MegaCore function in
a hierarchical design also have unique names.

After adding the block and before parameterization, save the model file.

Parameterize the MegaCore Function Variation
Double-click the MegaCore function block to open the IP Toolbench or MegaWizard
interface.

1 You can also double-click on a block to re-open and modify a previously
parameterized MegaCore function variation.

4–4 Chapter 4: Using MegaCore Functions
Design Issues When Using MegaCore Functions

DSP Builder User Guide © November 2008 Altera Corporation

If you are using one of the MegaCore functions in the Video and Image Processing
library, click Finish in the MegaWizard interface to update your block with the
required input and output ports.

Generate the MegaCore Function Variation
If you are using one of the MegaCore functions in MegaCore function library, you
must generate a MegaCore function variation after you have parameterized the
MegaCore function before you can connect the block to your design.

Click Generate in IP Toolbench (or Finish in the MegaWizard interface) to generate
the necessary files for your MegaCore function variation.

DSP Builder also performs an additional step of optimizing the model for use in
Simulink. This process may take up to a few minutes to complete depending on the
complexity of the MegaCore function variation.

Connect Your MegaCore Function Variation Block to Your Design
The Simulink block now has the required input and output ports as parameterized in
IP Toolbench or the MegaWizard interface. These ports can be connected to other
Altera DSP Builder blocks in your Simulink design.

Simulate the MegaCore Function Variation in Your Model
The Simulink block representing the MegaCore function variation can be simulated
like any other block from the Simulink Library Browser.

1 Ensure that the Simulink simulation engine is set to use the discrete solver by
selecting fixed-step type under Solver Options in the Configuration Parameters
dialog box.

f You should reset the MegaCore function at the start of the simulation to avoid any
functional discrepancy between RTL simulation and Simulink simulation, as
described in “Startup & Initial Conditions” on page 3–16.

Design Issues When Using MegaCore Functions
This section describes some of the design issues that must be considered when using
MegaCore functions in a DSP Builder design.

Simulink Files Associated with a MegaCore Function
The files necessary to support the configuration and simulation of a MegaCore
function variation generated from the MegaCore Functions library are stored in a
subdirectory of the directory containing your Simulink MDL file that is named
DSPBuilder_<design name>_import. When copying a design from one location to
another, make sure that you also copy this subdirectory.

Two specific files are needed to simulate a MegaCore function variation:

■ If your MegaCore function variation is named my_function, and it is generated
in VHDL, the design variation is described in a my_function.vhd file in the design
directory.

Chapter 4: Using MegaCore Functions 4–5
Design Issues When Using MegaCore Functions

© November 2008 Altera Corporation DSP Builder User Guide

■ If the design is named my_design, the simulation information is contained in a
file DSPBuilder_my_design_import/my_function.vo.simdb.

1 These files do not exist for a MegaCore function variation generated from the Video
and Image processing library.

Simulating MegaCore Functions That Have a Reset Port
MegaCores functions that have a reset port need to have a reset cycle in Simulink
simulation at the start in order to produce correct simulation results. This reset cycle
must be of sufficient length, depending on the particular MegaCore function and
parameterization.

For example, in Figure 4–1, the reset cannot be tied to a constant because the
simulation would not match hardware. You must simulate an initial reset cycle (with
the step input) to replicate hardware behavior. As in hardware, this reset cycle must
be sufficiently long to propagate through the core, which may be 50 clock cycles or
more for some MegaCore functions such as the FIR Compiler.

Additional adjustment of the reset cycles may be necessary when a MegaCore
function receives data from other MegaCore functions, to ensure that the blocks leave
the reset state in the correct order and are delayed by the appropriate number of
cycles.

Using Feedback Between MegaCore Functions
If you connect a feedback loop between two MegaCore function variation blocks, you
should set a higher value priority on the sink block than on the source block. This
setting ensures that the sink block is not executed before the source block has created
valid data for it.

1 Lower values of the priority setting ensure that a block is invoked before blocks with
higher settings.

Figure 4–1. MegaCore Function Design With a Reset Port

4–6 Chapter 4: Using MegaCore Functions
Design Issues When Using MegaCore Functions

DSP Builder User Guide © November 2008 Altera Corporation

You can set the priority for a block by choosing Block Properties from the right button
pop-up menu and setting a Priority value as shown in Figure 4–2.

Figure 4–3 shows an example design with a feedback loop from the scaler block to
an input on the chroma_resampler block. Setting a higher value priority on the
scaler block ensures that it is executed after the chroma_resampler block.

Figure 4–2. Setting the Priority for a Block

Figure 4–3. Example Design with Feedback between MegaCore Functions

Chapter 4: Using MegaCore Functions 4–7
Design Issues When Using MegaCore Functions

© November 2008 Altera Corporation DSP Builder User Guide

Setting the Device Family for MegaCore Functions
There are a number of MegaCore functions available in DSP Builder.

Some of these use the IP Toolbench interface (for example, the FIR Compiler
MegaCore function used in the walkthrough later in this chapter).

More recently introduced MegaCore functions (such as the Video and Image
Processing Suite) use an improved MegaWizard user interface.

The newer MegaCore functions always inherit the device family setting from the
Signal Compiler block. If there is no Signal Compiler block in your design, the
Stratix device family is chosen by default. The following MegaCore functions have
this behavior:

■ CIC

■ Alpha Blending Mixer

■ Chroma Resampler

■ Clipper

■ Color Plane Sequencer

■ Color Space Converter (CSC)

■ Deinterlacer

■ 2D FIR Filter

■ 2D Median Filter

■ Frame Buffer

■ Gamma Corrector

■ Line Buffer Compiler

■ Scaler

■ Test Pattern Generator

Older MegaCore functions (using the IP Toolbench user interface) allow you to
modify the device family setting in the IP Toolbench interface.

The following MegaCore functions have this behavior:

■ FFT

■ FIR Compiler

■ NCO

■ Reed Solomon Compiler

■ Viterbi Compiler

If you change the device family in Signal Compiler, you must check that any IP
Toolbench MegaCore Functions have the correct device family set to ensure that the
simulation models and generated hardware are consistent.

You can then run alt_dspbuilder_refresh_megacore as described in
“Updating MegaCore Function Variation Blocks” on page 4–2 to ensure that all the
MegaCore functions are up-to-date and consistent.

4–8 Chapter 4: Using MegaCore Functions
MegaCore Function Walkthrough

DSP Builder User Guide © November 2008 Altera Corporation

MegaCore Function Walkthrough
This walkthrough shows how to create a custom low-pass FIR filter MegaCore
function variation using the IP Toolbench interface.

1 This walkthrough assumes that the Altera MegaCore IP Library is installed.

Create a New Simulink Model
Create a new Simulink workspace by performing the following steps:

1. Start the MATLAB/Simulink software.

2. On the File menu, point to New and click Model to create a new model window.

3. Click Save on the File menu in the new model window.

4. Browse to the directory in which you want to save the file. This directory becomes
your working directory. This walkthrough creates and uses the working directory
<DSP Builder install path>\DesignExamples\Tutorials\MegaCore

5. Type the file name into the File name box. This walkthrough uses the name
mc_example.mdl.

6. Click Save.

Add the FIR Compiler Function to Your Model
To place a FIR Compiler MegaCore function block in your design, perform the
following steps:

1. On the View menu In your Simulink model window, click Library Browser. The
Simulink Library Browser is displayed.

2. Select the MegaCore Functions library from the Altera DSP Builder Blockset
folder in the Simulink Library Browser (Figure 4–4 on page 4–9).

1 If the latest versions of the MegaCore function blocks do not appear as
shown in Figure 4–4, make sure that the MegaCore IP Library, including the
FIR Compiler MegaCore function is installed correctly. The older versions
of the MegaCore function blocks (shown dimmed in the Simulink library
browser) are provided for backwards compatibility and should not be used
in a new design.

f For instructions on installing the MegaCore IP library for use with DSP
Builder, refer to “Installing MegaCore Functions” on page 4–1.

Chapter 4: Using MegaCore Functions 4–9
MegaCore Function Walkthrough

© November 2008 Altera Corporation DSP Builder User Guide

3. Drag and drop a blue versioned fir_compiler_v8.1 block into your model as
shown in Figure 4–5.

Figure 4–4. MegaCore Functions Library

Figure 4–5. FIR Compiler Block Placed in Simulink Model

4–10 Chapter 4: Using MegaCore Functions
MegaCore Function Walkthrough

DSP Builder User Guide © November 2008 Altera Corporation

The block is added with a default instance name which includes the version string.
This name is automatically made unique if you add more than one instance of the
same block. However, you may want to change the name to be more meaningful
within your design.

4. For this tutorial, rename the block to my_fir_compiler. To rename the block,
click the default name (the text outside of the block itself) and edit the text.
Naming conventions are described in “DSP Builder Naming Conventions” on
page 3–1.

1 Always give blocks representing your MegaCore function variations
unique names, to avoid issues caused by two or more entities in a
hierarchical design.

Parameterize the FIR Compiler Function
To use FIR Compiler to create a MegaCore function variation that fits the specific
needs of your design, perform the following steps:

1. Double-click the my_fir_compiler block to start IP Toolbench (Figure 4–6).

2. Click Step 1: Parameterize to specify how the FIR filter should operate.

Figure 4–6. IP Toolbench-Parameterize

Chapter 4: Using MegaCore Functions 4–11
MegaCore Function Walkthrough

© November 2008 Altera Corporation DSP Builder User Guide

The Parameterize - FIR Compiler MegaCore function dialog box is displayed
(Figure 4–7).

3. For this walkthrough, use the default values, specifying a low-pass filter. Click
Finish.

Generate the FIR Compiler Function Variation
After you parameterize the MegaCore function, to generate the files required for
inclusion in the Simulink model and simulation, perform the following steps:

1. Click Step 2: Generate in IP Toolbench (Figure 4–6 on page 4–10).

Figure 4–7. Parameterize - FIR Compiler MegaCore Function Dialog Box

4–12 Chapter 4: Using MegaCore Functions
MegaCore Function Walkthrough

DSP Builder User Guide © November 2008 Altera Corporation

2. The generation report lists the design files that IP Toolbench creates (Figure 4–8).

3. Click Exit.

f For more information about the FIR Compiler including a complete description of the
generated files, refer to the FIR Compiler User Guide.

Figure 4–8. Generation Report

http://www.altera.com/literature/ug/fircompiler_ug.pdf

Chapter 4: Using MegaCore Functions 4–13
MegaCore Function Walkthrough

© November 2008 Altera Corporation DSP Builder User Guide

The my_fir_compiler block in the Simulink model is updated to show the input
and output ports for the given configuration (Figure 4–9).

The FIR filter is ready to be connected to the rest of your Simulink design.

Add Stimulus and Scope Blocks to Your Model
In this section, you create a sample design to test the low-pass filter by feeding the
filter two sine waves as shown in Figure 4–10 on page 4–15.

f For information on how to add blocks to a design and modify their parameters, see
Chapter 2, Getting Started Tutorial.

Perform the following steps:

1. Add two Sine Wave blocks (from the Simulink Sources library).

1 Notice that the second block is automatically given a unique name.

2. Use the Block Parameters dialog box to set the parameters for the Sine Wave
block shown in Table 4–1.

3. Repeat Step 2 for the Sine Wave1 block.

4. Connect the outputs from the Sine Wave and Sine Wave1 blocks to an Add
block (from the Simulink Math Operations library).

Figure 4–9. FIR Compiler Block in Simulink Model After Generation

Table 4–1. Parameters for the Sine Wave Blocks

Parameter

Value

Sine Wave Sine Wave1

Sine type Sample based Sample based

Time Use simulation time Use simulation time

Amplitude 64 64

Bias 0 0

Samples per period 200 7

Number of offset examples 0 0

Sample time 1 1

Interpret vector parameters as 1-D On On

4–14 Chapter 4: Using MegaCore Functions
MegaCore Function Walkthrough

DSP Builder User Guide © November 2008 Altera Corporation

5. Add an Input block (from the IO & Bus library in the Altera DSP Builder
Blockset) and connect it between the Add block and the ast_sink_data pin on
the my_fir_compiler block.

6. Use the Block Parameters dialog box to set the parameters shown in Table 4–2.

7. Add a Constant block (from the IO & Bus library) and connect this block to both
the ast_sink_valid and ast_source_ready pins on the my_fir_compiler
block.

8. Add another Constant block (from the IO & Bus library) and connect this block
to the ast_sink_error pin on the my_fir_compiler block.

9. Use the Block Parameters dialog box to set the parameters for the Constant
block shown in Table 4–3.

10. Repeat Step 9 for the Constant1 block.

11. Add a Single Pulse block (from the Gate & Control library in the Altera DSP
Builder Blockset) and connect it to the reset_n pin on the my_fir_compiler
block.

12. Use the Block Parameters dialog box to set the parameters shown in Table 4–4.

13. Add an Output block (from the IO & Bus library in the Altera DSP Builder
Blockset) to the design and connect it to the ast_source_data pin on the
my_fir_compiler block.

Table 4–2. Parameters for the Input Block

Parameter Value

Bus Type Signed Integer

[number of bits].[] 8

Specify Clock Off

Table 4–3. Parameters for the Constant Blocks

Parameter

Value

Constant Constant1

Constant Value 1 0

Bus Type Single Bit Signed Integer

[Number of Bits].[] – 2

Rounding Mode Truncate Truncate

Saturation Mode Wrap Wrap

Specify Clock Off Off

Table 4–4. Parameters for the Single Pulse Block

Parameter Value

Signal Generation Type Step Up

Delay 50

Specify Clock Off

Chapter 4: Using MegaCore Functions 4–15
MegaCore Function Walkthrough

© November 2008 Altera Corporation DSP Builder User Guide

14. Use the Block Parameters dialog box to set the parameters shown in Table 4–5.

15. Add a Scope block (from the Simulink Sinks library). Use the ‘Scope’
Parameters dialog box to configure the Scope block as a 2-input scope.

16. Connect the Scope block to the Input and Output blocks to monitor the source
noise data as well as the filtered output.

Your model should look similar to that shown in Figure 4–10.

Simulate Your Design in Simulink
To simulate the design, perform the following steps:

1. On the Simulation menu in your model, click Configuration Parameters to
display the Configuration Parameters dialog box (Figure 4–11 on page 4–16).

2. Select the Solver page and set the parameters shown in Table 4–6.

f Refer to the description of the “Solver Pane” in the Simulink Help for
detailed information about solver options.

Table 4–5. Parameters for the Output Block

Parameter Value

Bus Type Signed Integer

[number of bits].[] 18

External Type Inferred

Figure 4–10. Connecting Blocks to the Low-Pass Filter

Table 4–6. Configuration Parameters for the singen Model

Parameter Value

Start time 0.0

Stop time 5000

Type Fixed-step

Solver discrete (no continuous states)

4–16 Chapter 4: Using MegaCore Functions
MegaCore Function Walkthrough

DSP Builder User Guide © November 2008 Altera Corporation

3. Click OK.

4. On the Simulation menu in the simulink model, click Start. The scope output
shows the effect of the low-pass filter in the bottom window, as shown in
Figure 4–12.

Check that the FIR filter block behaves as expected, filtering high-frequency data
as a low-pass filter.

1 You may need to use the Autoscale command in the Scope display to view
the complete waveforms.

Figure 4–11. Configuration Parameters: mc_example/Configuration Dialog Box

Figure 4–12. Simulation Output

Chapter 4: Using MegaCore Functions 4–17
MegaCore Function Walkthrough

© November 2008 Altera Corporation DSP Builder User Guide

Compile the Design
To create and compile a Quartus II project for your DSP Builder design, and to
program the design onto an Altera FPGA, you need to add the Signal Compiler
block. Perform the following steps:

1. Select the AltLab library from the Altera DSP Builder Blockset folder in the
Simulink Library Browser.

2. Drag and drop a Signal Compiler block into your model.

3. Double-click the new Signal Compiler block in your model. The Signal
Compiler dialog box appears (Figure 4–13).

4. Click Compile.

5. When the compilation has completed successfully, click OK.

Figure 4–13. Signal Compiler Dialog Box

4–18 Chapter 4: Using MegaCore Functions
MegaCore Function Walkthrough

DSP Builder User Guide © November 2008 Altera Corporation

Perform RTL Simulation
To perform RTL simulation with the ModelSim software, you need to add a
TestBench block.

Perform the following steps:

1. Select the AltLab library from the Altera DSP Builder BlockSet folder in the
Simulink Library Browser.

2. Drag and drop a TestBench block into your model.

3. Double-click on the new TestBench block. The TestBench Generator dialog box
appears (Figure 4–14).

4. Ensure that Enable Test Bench generation is on.

Figure 4–14. TestBench Generator Dialog Box

Chapter 4: Using MegaCore Functions 4–19
MegaCore Function Walkthrough

© November 2008 Altera Corporation DSP Builder User Guide

5. Click the Advanced Tab (Figure 4–15).

6. Turn on the Launch GUI option. This launches the ModelSim GUI if ModelSim
simulation is invoked.

7. Click Generate HDL to generate a VDHL-based Testbench from your model.

8. Click Run Simulink to generate Simulink simulation results for the testbench.

9. Click Run ModelSim to simulate the design in ModelSim.

The design is loaded into ModelSim and simulated with the output displayed in
the Wave window.

1 All waveforms are initially shown using digital format in the ModelSim
Wave window.

10. Right-click the input signal in the ModelSim Wave window and click Properties
in the pop-up menu to display the Wave Properties dialog box. Click the Format
tab and change the format to Analog with height 75 and Scale 0.25.

11. Repeat Step 10 for the output signal in the ModelSim Wave window and use the
Wave Properties dialog box to change the format to Analog with height 75 and
scale 0.001.

Figure 4–15. TestBench Generator Dialog Box Advanced Tab

4–20 Chapter 4: Using MegaCore Functions
MegaCore Function Walkthrough

DSP Builder User Guide © November 2008 Altera Corporation

12. Click Zoom Full on the right button right button pop-up menu in the ModelSim
Wave window.

The ModelSim simulator now displays the input and output waveforms in analog
format as shown in Figure 4–16.

1. Click Compare Results in the Testbench Generator dialog box to compare the
simulink results with those generated by ModelSim. The message Exact Match
should be issued indicating that the results are identical.

2. Click OK to close the Testbench Generator dialog box when you have finished.

Figure 4–16. Generated HDL for mc_example Simulated in ModelSim Simulator

Note to Figure 4–16:

(1) The waveform display shown here has been formatted to show the input and output signals as analog waveforms.

© November 2008 Altera Corporation DSP Builder User Guide

5. Using Hardware in the Loop (HIL)

Introduction
Adding the Hardware in the Loop (HIL) block to your Simulink model allows you to
co-simulate a Quartus II software design with a physical FPGA board implementing a
portion of that design. You define the contents and function of the FPGA by creating
and compiling a Quartus II project. A simple JTAG interface between Simulink and
the FPGA board links the two.

The main benefits of using the HIL block are faster simulation and richer
instrumentation. The Quartus II project you embed in an FPGA runs faster than a
software-only simulation. To further increase simulation speed, the HIL block offers
frame and burst modes of data transfer that are significantly faster than single-step
mode when used with suitable designs.

The HIL block also makes available to the hardware a large Simulink library of sinks
and sources, such as channel models and spectrum analyzers, which can give you
greater control and observability.

This chapter explains the HIL design flow, walks through an example using the HIL
block, and discusses the optional burst and frame data transfer modes.

HIL Design Flow
The HIL block in AltLab library of the Altera DSP Builder Blockset enables the
Hardware in the Loop functionality. It represents the functions implemented on your
FPGA, and works smoothly with the normal DSP Builder/Simulink work flow.

The HIL design flow comprises the following steps:

1. Create a Quartus II project that defines the functions you want to co-simulate in
hardware and use Signal Compiler block to compile the Quartus II project
through the Quartus II Fitter.

2. Add the HIL block to your Simulink model and import the compiled Quartus II
project into the HIL block. You can also connect instrumentation to your HIL block
by adding additional blocks from the Simulink Sinks and Sources libraries.

1 If the original design contains a Clock block that defines a period and
sample time that is different from the default values, you must add a Clock
block with the same values to the HIL model.

3. Specify parameters for the HIL block, including the following options:

■ The Quartus II project you compiled to define its functionality

■ The clock and reset pins

■ The reset active level

■ The input and output pin characteristics

■ The use of single-step versus burst and frame mode

5–2 Chapter 5: Using Hardware in the Loop (HIL)
HIL Requirements

DSP Builder User Guide © November 2008 Altera Corporation

4. Compile the HIL block to create a programming object file that can be used for
hardware co-simulation.

5. Scan for JTAG cables and hardware devices connected to the local host or any
remotely enabled hosts.

6. Program the board that contains your target FPGA.

7. Simulate the combined software and hardware system in Simulink.

1 When using a HIL block in a Simulink model, set a fixed-step, single
tasking solver.

f Refer to “Design Flow” on page 1–3 for information about setting the
Simulink solver.

Figure 5–1 shows this system-level design flow using DSP Builder.

HIL Requirements
You need the following to use the HIL block:

■ An FPGA board with a JTAG interface (Stratix III, Stratix II, Stratix, Cyclone III,
Cyclone II, or Cyclone device).

■ A valid Quartus II project that contains a single clock domain driven from
Simulink. (An internal Quartus II project is created when you run Signal
Compiler.)

■ A JTAG download cable (for example, a ByteBlasterMV™, ByteBlaster™ II,
ByteBlaster, MasterBlaster™, or USB-Blaster™ cable).

■ A maximum of one HIL block for each JTAG download cable.

Figure 5–1. System-Level Design Flow

Chapter 5: Using Hardware in the Loop (HIL) 5–3
HIL Walkthrough

© November 2008 Altera Corporation DSP Builder User Guide

HIL Walkthrough
DSP Builder includes the following design examples in the <DSP Builder install
path>\DesignExamples\Tutorials\HIL directory that demonstrate the use and
effectiveness of HIL:

■ Imaging Edge Detection

■ Export Example

■ Fast Fourier Transform (FFT)

■ Frequency Sweep

This section walks through the Frequency Sweep design. It assumes you have
completed Chapter 2, Getting Started Tutorial, and are familiar with using DSP
Builder, MATLAB, Simulink, and the Quartus II software.

You also need an FPGA board connected to your computer with a JTAG download
cable.

1 This walkthrough uses a Quartus II project which is created using DSP Builder and
the Stratix II hardware device on an Altera Stratix II EP2S60 DSP Development Board.
However, you could also use a Quartus II project created within the Quartus II
software with any other supported device and board.

Perform the following steps:

1. Run MATLAB, and open the model FreqSweep.mdl in the <DSP Builder install
path>\DesignExamples\Tutorials\HIL\FreqSweep directory. Figure 5–2 shows
the loaded model.

2. Double-click the Signal Compiler block. In the dialog box that appears
(Figure 5–3 on page 5–4), click Compile.

This action creates a Quartus II project, FreqSweep.qpf, compiles the model for
synthesis, and runs the Quartus II Fitter.

Progress is indicated by status messages and a scrolling bar at the bottom of the
dialog box.

Figure 5–2. Frequency Sweep Model

5–4 Chapter 5: Using Hardware in the Loop (HIL)
HIL Walkthrough

DSP Builder User Guide © November 2008 Altera Corporation

3. Review the Messages, then click OK to close the Signal Compiler dialog box.

4. Replace the internal functions of the Frequency Sweep model with an HIL block.
For this walkthrough, you can achieve this by opening the prepared model
FreqSweep_HIL.mdl from the FreqSweep directory specified in Step 1.

Figure 5–4 shows this model, with the HIL block in place.

Figure 5–3. Signal Compiler Dialog Box, Simple Tab

Figure 5–4. Frequency Sweep Design Model Using the HIL Block

Chapter 5: Using Hardware in the Loop (HIL) 5–5
HIL Walkthrough

© November 2008 Altera Corporation DSP Builder User Guide

5. Double-click the Frequency Sweep HIL block to display the Hardware in the loop
dialog box (Figure 5–5).

6. Select the Quartus II project by browsing into the FreqSweep_dspbuilder
directory to locate the FreqSweep.qpf file.

1 The full path to this file should be visible in the dialog box when this file is
selected.

7. Select Clock from the list of available clock pins.

1 HIL does not support multiple clock domains and only the selected signal
can be used as the HIL clock signal. Any other clocks in the design are
treated as input signals.

8. Select aclr from the list of available reset pins.

9. Identify the signed ports:

■ Select the input port and click Unsigned.

■ Select each output port (OutputCordic and OutputFilter) and click Signed.

Figure 5–5. Setting HIL Block Parameters, page 1 of 2

5–6 Chapter 5: Using Hardware in the Loop (HIL)
HIL Walkthrough

DSP Builder User Guide © November 2008 Altera Corporation

10. Select the reset level to be Active_High.

11. Choose the mode of operation by turning off Burst Mode.

12. Click Next page. to display the second page of the Hardware in the loop dialog
box (Figure 5–6).

13. Specify a value for the FPGA device and click Compile with Quartus II to
compile the HIL design.

1 If no output is written to the MATLAB command window, check that the
original Quartus II project is up-to-date and has been compiled by the same
version of the Quartus II software as that used to compile your Simulink
model.

14. Click Scan Jtag to find available cables and hardware devices in the chain.

15. Select the JTAG download cable that references the required FPGA device and
click Configure FPGA to program the FPGA on the board.

16. Click Close.

Figure 5–6. Setting HIL Block Parameters, page 2 of 2

Chapter 5: Using Hardware in the Loop (HIL) 5–7
Burst & Frame Modes

© November 2008 Altera Corporation DSP Builder User Guide

17. Simulate the design in Simulink. Figure 5–7 shows the scope display from the
finished design.

Burst & Frame Modes
The Quartus II software infrastructure that communicates with the FPGA through
JTAG—known as system-level debugging (SLD)—uses a serial data transfer protocol.

To maximize the throughput of this data transfer, the HIL block offers a burst mode
that buffers the stimulus data and presents it in bursts to the hardware. Burst mode
also allows a frame mode for certain types of designs.

Table 5–1 shows the advantages and disadvantages of using burst mode compared
with the normal single-step mode.

Figure 5–7. Scope Output from the FrequencySweep Model with HIL Block

Table 5–1. Comparing Single-Step and Burst Modes

Single-Step Mode Burst Mode

Advantages Cycle accurate simulation.

Feedback is possible outside of
the HIL block.

Low SLD overhead.

Fast HIL results.

Frame mode possible.

Disadvantages High SLD overhead.

No frame mode.

A latency is introduced on the output signals of
the HIL block making feedback loop difficult
outside the FPGA device.

5–8 Chapter 5: Using Hardware in the Loop (HIL)
Burst & Frame Modes

DSP Builder User Guide © November 2008 Altera Corporation

Using Burst Mode
You can activate burst mode by turning on the Burst Mode option in the Hardware in
the loop dialog box as shown in Figure 5–8.

When this option is set, you can specify the required number of data packets as the
Burst length. The HIL block sends data to the hardware in bursts of the size you have
specified.

1 The size of the packet is determined by the larger of the total input data width or the
total output data width. If the packet size multiplied by the Burst length exceeds the
preset data array, the Burst length is set to 1.

Simulation using burst mode works the same as single clock mode, but a latency of
the specific packet size is introduced on the output signals of the HIL blocks. As a
consequence, feedback-loops may not work properly unless they are enclosed within
the HIL block, and some intervention may be necessary when comparing or
visualizing HIL simulation results.

The HIL block uses software buffers to send and receive from the hardware, so you
can change these buffer sizes without recompiling the HIL function.

Figure 5–8. Setting Parameters for the HIL Block in Figure 5–10

Chapter 5: Using Hardware in the Loop (HIL) 5–9
Burst & Frame Modes

© November 2008 Altera Corporation DSP Builder User Guide

Using Frame Mode
You can activate frame mode by turning on the Frame Mode option in the Hardware
in the loop dialog box as shown in Figure 5–8 on page 5–8. Frame mode builds on the
burst functionality and provides a way to partially compensate for the burst mode
output delay.

To use frame mode, the following conditions must be true:

■ The HIL block works with the concept of blocks of data (“frames”).

■ The data frames are provided at regular intervals.

■ There is one input sync and one output sync signal available.

■ The latency between the input sync and output sync signals is constant.

In frame mode, the HIL block monitors the input sync and output sync signals and
increases the output delay to align the output data frames with the input data frames.
For example, if the burst length is 1024 and the latency 3, the delay is 1027 (1024 + 3)
without frame mode or 2048 (aligned to the next frame) with frame mode on.

The burst packet size in frame mode must be a multiple of the frame packet interval.
For example, if packets arrive every 100 clocks, you can use a frame burst size of N ×
100 clocks (N positive integer).

Figure 5–9 illustrates a DSP Builder design using a FFT MegaCore function which has
been configured for the Stratix II target device family, with a transform length of 64
points, data precision of 16 bits, and twiddle precision of 16 bits.

Figure 5–10 on page 5–10 shows the FFT design implemented using a HIL block (with
the parameters shown in Figure 5–8 on page 5–8).

Figure 5–9. DSP Builder Design Using the FFT MegaCore Function

5–10 Chapter 5: Using Hardware in the Loop (HIL)
Troubleshooting HIL Designs

DSP Builder User Guide © November 2008 Altera Corporation

The Avalon-ST interface signals sink_eop and source_valid on the FFT MegaCore
function are respectively used in the HIL block as the input sync and output sync.

f Refer to the FFT MegaCore Function User Guide for additional information on the input
and output port signal timing.

Troubleshooting HIL Designs
This section describes various issues that you may encounter when you are using HIL
designs.

1 If the top-level of your design has changed, the Quartus II project must be compiled
and reloaded into HIL to ensure that all information is up-to-date.

Failed to Load the Specified Quartus II Project
HIL reads the design information, such as clock, reset, and input and output ports,
from the specified Quartus II project. However, it could fail to load the project if the
project was not compiled through the Quartus II Fitter, there is a Quartus II version
mismatch, or the Quartus II project file is not up-to-date.

Project Not Compiled Through the Quartus II Fitter
This occurs when the specified Quartus II project has not been compiled successfully
through the Quartus II Fitter.

Action:

Compile the project through the Quartus II Fitter before running HIL.

Figure 5–10. Using the FFT Design With an HIL Block

http://www.altera.com/literature/ug/ug_fft.pdf

Chapter 5: Using Hardware in the Loop (HIL) 5–11
Troubleshooting HIL Designs

© November 2008 Altera Corporation DSP Builder User Guide

Quartus II Version Mismatch
This occurs when the specified Quartus II project is compiled using a different version
of the Quartus II software than the one that is registered.

Action:

Compile the project using the registered Quartus II software before running HIL.

Quartus II Project File is Not Up-to-Date
This occurs when the specified Quartus II project file (.qpf) is older than the design
model file. It is possible that the design model has changed or been saved after going
through the Quartus II compilation process.

Action:

Recompile the specified the project again before running HIL.

No Inputs Found From the Quartus II Project
This could occur if the DSP Builder model file contains only the internally induced
signals, such as from a counter, and also does not produce any outputs. However, HIL
simulation works correctly.

Action:

None required.

No Outputs Found From the Quartus II Project
This could occur if the design does not have any outputs and makes the HIL
simulation meaningless.

Action:

None required.

HIL Design Stays in Reset During Simulation
An asynchronous reset is permanently asserted for a HIL design.

Action:

Check that the reset active level matches the setting in the original design. Recompile
the HIL design after you have changed the reset level.

HIL Compilation Appears to be Hung
After clicking Compile with Quartus II in the HIL Block Parameters dialog box, no
output is written to the MATLAB command window. This can occur if the original
Quartus II project was out-of-date or compiled by a different version of the Quartus II
software.

Action:

Recompile the original project using the matching version of the Quartus II software.

5–12 Chapter 5: Using Hardware in the Loop (HIL)
Troubleshooting HIL Designs

DSP Builder User Guide © November 2008 Altera Corporation

© November 2008 Altera Corporation DSP Builder User Guide

6. Performing SignalTap II Logic Analysis

Introduction
This chapter describes how to set up and run the SignalTap® II Embedded Logic
Analyzer. In this walkthrough, you analyze three internal nodes in a simple switch
controller design named switch_control.mdl. The design flow described in this
example works for any of the Altera development boards that DSP Builder supports.

f For detailed information on the supported development boards, refer to the Boards
Library chapter in the DSP Builder Reference Manual.

In this design, an LED on the DSP development board turns on or off depending on
the state of user-controlled switches and the value of the incrementer. The design
consists of an incrementer function feeding a comparator, and four switches fed into
two AND gates. The comparator and AND gate outputs feed an OR gate, which feeds
an LED on supported DSP development boards.

The SignalTap II Embedded Logic Analyzer captures the signal activity at the output
of the two AND gates and the incrementer of the design loaded into the Altera device
on DSP Builder-supported development boards. The logic analyzer retrieves the
values and displays them in the MATLAB work space.

f For more information on using the SignalTap II Embedded Logic Analyzer with the
Quartus II software, refer to the Quartus II Help or to Volume 3 of the Quartus II
handbook.

You can instantiate a SignalTap II Logic Analyzer block in DSP Builder with
the following characteristics:

■ Has a simple, easy-to-use interface

■ Analyzes signals in the top-level design file

■ Uses a single clock source

■ Captures data around a trigger point. 88% of the data is pre-trigger and 12% of the
data is post-trigger

1 Alternatively, you can use the Quartus II software to instantiate of the SignalTap II
Embedded Logic Analyzer in your design. The Quartus II software supports
additional features, such as using multiple clock domains, and adjusting the
percentage of data captured around the trigger point.

SignalTap II Design Flow
Working with the SignalTap II Embedded Logic Analyzer in DSP Builder involves the
following flow:

1. Add a SignalTap II Logic Analyzer block to your design.

2. Specify the signals (nodes) that you want to analyze by inserting SignalTap II
Node blocks.

http://www.altera.com/literature/hb/qts/qts_qii5v3.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v3.pdf
http://www.altera.com/literature/manual/mnl_dsp_builder.pdf

6–2 Chapter 6: Performing SignalTap II Logic Analysis
Introduction

DSP Builder User Guide © November 2008 Altera Corporation

3. Turn on the Enable SignalTap option in the Signal Compiler dialog box.

4. Choose one of the JTAG cable ports in the Signal Compiler dialog box or the
SignalTap II Logic Analyzer dialog box.

5. Using Signal Compiler, synthesize your model, perform compilation in the
Quartus II software, and download the design into the DSP development board
(starter or professional).

6. Specify the required trigger conditions in the SignalTap II Logic Analyzer
block.

f For details of the SignalTap II Logic Analyzer and SignalTap II Node
blocks, refer to the descriptions of these blocks in the AltLab Library chapter of the
DSP Builder Reference Manual.

SignalTap II Nodes
By definition, a node represents a wire carrying a signal that travels between different
logical components of a design file. The SignalTap II embedded logic analyzer can
capture signals from any internal device node in a design file, including I/O pins.

The SignalTap II embedded logic analyzer can analyze up to 128 internal nodes or I/O
elements. As more signals are captured, more logic elements (LEs) or embedded
system blocks (ESBs) are used.

Before capturing signals, each node to be analyzed must be assigned to a SignalTap II
embedded logic analyzer input channel. To assign a node to an input channel, you
must connect it to a SignalTap II Node block.

SignalTap II Trigger Conditions
The trigger pattern describes a logic event in terms of logic levels and/or edges. The
SignalTap II Embedded Logic Analyzer uses a comparison register to recognize the
moment when the input signals match the data specified in the trigger pattern.

The trigger pattern is composed of a logic condition for each input signal. By default,
all signal conditions for the trigger pattern are set to “Don’t Care,” masking them
from trigger recognition. You can select one of the following logic conditions for each
input signal in the trigger pattern:

■ Don’t Care

■ Low

■ High

■ Rising Edge

■ Falling Edge

■ Either Edge

The SignalTap II embedded logic analyzer is triggered when it detects the trigger
pattern on the input signals.

http://www.altera.com/literature/manual/mnl_dsp_builder.pdf

Chapter 6: Performing SignalTap II Logic Analysis 6–3
SignalTap II Walkthrough

© November 2008 Altera Corporation DSP Builder User Guide

SignalTap II Walkthrough
Altera provides several design files for this walkthrough in the directory structure
shown in Figure 6–1.

You can start from the design in the original_design directory and go through the
complete walkthrough.

Alternatively, you can use the design in the completed_walkthrough directory and
go directly to “Turn On the SignalTap II Option in Signal Compiler” on page 6–7.

Open the Walkthrough Example Design
Open the template switch_control.mdl design in the <DSP Builder install path>\
DesignExamples\Tutorials\SignalTap\professional\original_design directory.
(Figure 6–2).

Figure 6–1. SignalTap II Design Example Directory Structure

Figure 6–2. Starting Point for the SignalTap II Walkthrough

6–4 Chapter 6: Performing SignalTap II Logic Analysis
SignalTap II Walkthrough

DSP Builder User Guide © November 2008 Altera Corporation

Add the Configuration and Connector Blocks
You must add the board configuration block and connector blocks for the board that
you want to use. This walkthrough uses the Cyclone II EP2C35 development board.

1. Select the Boards library from the Altera DSP Builder Blockset folder in the
Simulink library browser. See Chapter 2, Getting Started Tutorial for instructions
on accessing libraries.

2. Open the CycloneIIEP2C35 folder. Drag and drop the Cyclone II EP2C35 DSP
Development Board configuration block into your model.

3. Drag and drop the SW2 and SW3 blocks close to the AND_Gate2 block in your
model. Connect these switch blocks to the AND_Gate2 inputs.

4. Drag and drop the SW4 and SW5 blocks close to the AND_Gate1 block in your
model. Connect these switch blocks to the AND_Gate1 inputs.

1 You can rotate the SW5 block to make the connection easier by right-clicking
the block and clicking Rotate Block on the Format menu.

5. Drag and drop the LED0 block close to the OR_Gate block in your model. Connect
this block to the OR_Gate output.

6. Select the Simulink Sources library. Drag and drop a Pulse Generator block
near to the SW2 and SW3 blocks and connect it to these blocks.

7. Drag and drop another Pulse Generator block near the SW4 and SW5 blocks
and connect it to these blocks.

Your model should look similar to Figure 6–3.

Figure 6–3. Switch Control Example with Board, Pulse Generator and Terminator Blocks

Chapter 6: Performing SignalTap II Logic Analysis 6–5
SignalTap II Walkthrough

© November 2008 Altera Corporation DSP Builder User Guide

8. Use the Block Parameters dialog box to set the parameters shown in Table 6–1 for
both pulse generator blocks (Figure 6–4).

9. Select the Simulink Sinks library. Drag and drop a Terminator block near to the
OR_Gate block and connect it to this block.

Table 6–1. Parameters for the Pulse Generator Blocks

Parameter Value

Pulse type Time based

Time Use Simulation time

Amplitude 1

Period 2

Pulse Width 50

Phase delay 0

Interpret vector parameters as 1-D On

Figure 6–4. Pulse Generator Dialog Box

6–6 Chapter 6: Performing SignalTap II Logic Analysis
SignalTap II Walkthrough

DSP Builder User Guide © November 2008 Altera Corporation

Specify the Nodes to Analyze
In the following steps, you add SignalTap II Node blocks to the signals (also
called nodes) that you want to analyze; in this walkthrough they are the output of
each AND gate and the output of the incrementer. Perform the following steps:

1. Open the AltLab library in the Simulink Library Browser. Drag a SignalTap II
Node block into your design. Position the block so that it is on top of the
connection line between the AND_Gate1 block and the OR_Gate block. See
Figure 6–5 if you are unsure of the positioning.

1 If you position the block using this method, the Simulink software inserts
the block and joins connection lines on both sides.

2. Click the text under the block icon in your model and change the block instance
name by deleting the text and typing the new text firstandout.

3. Add a SignalTap II Node block between the AND_Gate2 block and the
OR_Gate block and name it secondandout.

4. Add a SignalTap II Node block between the Eightbit Counter block and
the Comparator block and name it cntout.

5. Click Save on the File menu.

Figure 6–5. Completed SignalTap II Design

Chapter 6: Performing SignalTap II Logic Analysis 6–7
SignalTap II Walkthrough

© November 2008 Altera Corporation DSP Builder User Guide

Turn On the SignalTap II Option in Signal Compiler
When you add node blocks to signals, each block is implicitly connected to the
SignalTap II embedded logic analyzer.

This is a functional change to the model and you must re-compile the design before
you can use the SignalTap II embedded logic analyzer.

To compile the design, perform the following steps:

1. Double-click the Signal Compiler block and click the SignalTap II tab in the
Signal Compiler dialog box (Figure 6–6).

2. Verify that the Enable SignalTap II option is on.

When this option is on, Signal Compiler inserts an instance of the SignalTap II
embedded logic analyzer into the design.

3. Select a depth of 128 for the SignalTap II sample buffer (that is, the number of
samples stored for each input signal) in the SignalTap II depth list.

4. Verify that the Use Base Clock option is on.

Figure 6–6. SignalTap II Tab in Signal Compiler

6–8 Chapter 6: Performing SignalTap II Logic Analysis
SignalTap II Walkthrough

DSP Builder User Guide © November 2008 Altera Corporation

5. Click the Simple tab and verify that the Use Board Block to Specify Device
option is on (Figure 6–7).

6. Click the Compile button.

When the conversion is complete, information messages in the dialog box display
the memory allocated during processing.

1 You must compile the design before you open the SignalTap II
Analyzer block because the block relies on data files that are created
during compilation.

7. Click Scan Jtag and select the appropriate download cable and device (for
example, USB-Blaster cable and EP2C35 device).

8. Click Program to download your design to the development board.

9. Click OK.

Figure 6–7. Simple Tab in Signal Compiler

Chapter 6: Performing SignalTap II Logic Analysis 6–9
SignalTap II Walkthrough

© November 2008 Altera Corporation DSP Builder User Guide

Specify the Trigger Levels
To specify the trigger levels, perform the following steps:

1. Double-click the SignalTap II Logic Analyzer block. The dialog box
displays all of the nodes connected to SignalTap II Node blocks as signals to
be analyzed (Figure 6–8).

2. Specify the following trigger condition settings for the firstandout block:

a. Click firstandout under Signal Tap II Nodes.

b. Select Falling Edge in the Set Trigger Level list.

c. Click Change. The condition is updated.

3. Repeat these steps to specify the trigger condition High for the secondandout
block.

The SignalTap II embedded logic analyzer captures data for analysis when it detects
all trigger patterns simultaneously on the input signals. For example, because you
specified Falling Edge for firstandout and High for secondandout, the
SignalTap II embedded logic analyzer is only triggered when it detects a falling edge
on firstandout and a logic level high on secondandout.

Figure 6–8. SignalTap II Logic Analyzer

6–10 Chapter 6: Performing SignalTap II Logic Analysis
SignalTap II Walkthrough

DSP Builder User Guide © November 2008 Altera Corporation

Perform SignalTap II Analysis
You are now ready to run the analyzer and display the results in a MATLAB plot.
After you click Acquire, the SignalTap II embedded logic analyzer begins analyzing
the data and waits for the trigger conditions to occur.

Perform the following steps:

1. Click Scan Jtag in the SignalTap II Logic Analyzer dialog box and select the
appropriate download cable and device.

2. Click Acquire.

3. Press switch SW4 on the DSP development board to trigger the SignalTap II
embedded logic analyzer.

1 Note that if switch SW2 or SW 3 is pressed and held while pressing switch
SW4, the trigger condition is not met and acquisition does not occur.

4. Click OK in the SignalTap II Logic Analyzer dialog box when you are finished.

The captured data are interpreted as unsigned values and displayed in MATLAB
plots. The values are also stored in MATLAB .mat files in the working directory.

Figure 6–9 shows the MATLAB plot for the SignalTap II node firstandout.

Figure 6–10 shows the MATLAB plot for the SignalTap II node secondandout.

Figure 6–9. MATLAB Plot for SignalTap II Node firstandout

Figure 6–10. MATLAB Plot for SignalTap II Node secondandout

Chapter 6: Performing SignalTap II Logic Analysis 6–11
SignalTap II Walkthrough

© November 2008 Altera Corporation DSP Builder User Guide

Figure 6–10 shows the MATLAB plot for the SignalTap II node cntout.

f For more information on the SignalTap II Logic Analyzer block, refer to the
SignalTap II Logic Analyzer block description in the AltLab Library chapter in the
DSP Builder Reference Manual.

Figure 6–11. MATLAB Plot for SignalTap II Node secondandout

http://www.altera.com/literature/manual/mnl_dsp_builder.pdf

6–12 Chapter 6: Performing SignalTap II Logic Analysis
SignalTap II Walkthrough

DSP Builder User Guide © November 2008 Altera Corporation

© November 2008 Altera Corporation DSP Builder User Guide

7. Using the Interfaces Library

Introduction
This chapter describes how to use the Avalon-MM blocks in the Interfaces library to
create a design which functions as a custom peripheral to SOPC Builder.

SOPC Builder is a system development tool for creating systems that can contain
processors, peripherals, and memories. SOPC Builder automates the task of
integrating hardware components into a larger system.

To integrate a DSP Builder design into your SOPC Builder system, your peripheral
must meet the Avalon-MM interface or Avalon-ST interface specification and qualify
as a SOPC Builder-ready component.

The Interfaces library supports peripherals that use the Avalon-MM and Avalon-ST
interface specifications.

1 The correct version of MATLAB with DSP Builder installed must be available on your
system path to integrate DSP Builder MDL files in SOPC Builder.

Avalon-MM Interface
The Avalon Interface Specifications provide peripheral designers with a basis for
describing the address-based read/write interface found on master (for example, a
microprocessor or DMA controller) and slave peripherals (for example, a memory,
UART, or timer).

The Avalon-MM Master and Avalon-MM Slave blocks in DSP Builder provide a
seamless flow for creating a DSP Builder block as a custom peripheral and integrating
the block into your SOPC Builder system. These blocks provide you the following
benefits:

■ Automates the process of specifying Avalon-MM ports that are compatible with
the Avalon-MM bus

■ Supports multiple Avalon-MM master and Avalon-MM slave instantiations

■ Saves time spent hand coding glue logic that connects Avalon-MM ports to DSP
blocks

f For more information on SOPC Builder, refer to the Quartus II Handbook Volume 4:
SOPC Builder. For more information on the Avalon-MM Interface, refer to the Avalon
Interface Specifications.

http://www.altera.com/literature/quartus2/lit-qts-sopc.jsp
http://www.altera.com/literature/quartus2/lit-qts-sopc.jsp
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

7–2 Chapter 7: Using the Interfaces Library
Avalon-MM Interface Blocks

DSP Builder User Guide © November 2008 Altera Corporation

Avalon-MM Interface Blocks
A SOPC Builder component is a design module that SOPC Builder recognizes and can
automatically integrate into a system.

SOPC Builder can recognize a DSP Builder design model provided that it is in the
same working directory as the SOPC Builder project. With the Avalon-MM blocks
provided in the DSP Builder library, you can design the DSP function and add an
Avalon-MM block which makes it a custom peripheral within Simulink environment.

Each Avalon-MM block can be instantiated multiple times in a design to implement
an SOPC component with multiple master and/or slave ports.

Avalon-MM Slave Block
The Avalon-MM Slave block supports the following signals:

■ clock

■ address

■ read

■ readdata

■ write

■ writedata

■ byteenable

■ readyfordata

■ dataavailable

■ endofpacket

■ readdatavalid

■ waitrequest

■ beginbursttransfer

■ burst count

■ irq

■ begintransfer

■ chipselect

f Refer to the DSP Builder Reference Manual for more information about these signals.

http://www.altera.com/literature/manual/mnl_dsp_builder.pdf

Chapter 7: Using the Interfaces Library 7–3
Avalon-MM Interface Blocks

© November 2008 Altera Corporation DSP Builder User Guide

The block shown in Figure 7–1 describes an Avalon-MM slave interface where all of
the Avalon-MM signals have been enabled.

Figure 7–1. Avalon-MM Slave Block Signals

7–4 Chapter 7: Using the Interfaces Library
Avalon-MM Interface Blocks

DSP Builder User Guide © November 2008 Altera Corporation

Each of the input and output ports of the block correspond to the input and output
ports of the pin or bus shown between the ports.

Inputs to the DSP Builder core are displayed as right pointing bus/pins; outputs from
the core are displayed as left pointing pins/buses.

The opposite end of any pins can be used to provide "pass-through" test data from the
Simulink domain.

Avalon-MM Master Block
You may want to use an Avalon-MM Master block (for example, to design a DMA
controller) in a design which functions as an Avalon-MM Master in your SOPC
Builder system.

The Avalon-MM Master block is similar to the Avalon-MM Slave block and
supports the following signals:

■ clock

■ waitrequest

■ address

■ read

■ readdata

■ write

■ writedata

■ byteenable

■ endofpacket

■ readdatavalid

■ flush

■ burstcount

■ irq

■ irqnumber

f Refer to the DSP Builder Reference Manual for more information about these signals.

The block shown in Figure 7–2 on page 7–5 describes an Avalon-MM master interface
where all of the Avalon-MM signals have been enabled.

http://www.altera.com/literature/manual/mnl_dsp_builder.pdf

Chapter 7: Using the Interfaces Library 7–5
Avalon-MM Interface Blocks

© November 2008 Altera Corporation DSP Builder User Guide

Wrapped Blocks
While the Avalon-MM Master and Avalon-MM Slave interface blocks allow you
to generate a SOPC Builder component in DSP Builder, they do little to mask the
complexities of the interface. The Avalon-MM read and write FIFO blocks in the
Interfaces library provide a higher level of abstraction.

You can implement a typical DSP core that handles data in a streaming manner, using
the signals Data, Valid, and Ready. To provide a high level view, configurable
Avalon-MM Write FIFO and Avalon-MM Read FIFO blocks are provided for you
to map Avalon-MM interface signals to this protocol.

Figure 7–2. Avalon-MM Master Block Signals

7–6 Chapter 7: Using the Interfaces Library
Avalon-MM Interface Blocks

DSP Builder User Guide © November 2008 Altera Corporation

Figure 7–3 shows an example system with Avalon-MM Write FIFO and Avalon-
MM Read FIFO blocks.

Avalon-MM Write FIFO
An Avalon-MM Write FIFO has the following ports:

■ TestData (input): This port should be connected to a Simulink block that provides
simulation data to the Avalon-MM Write FIFO. The data is passed to the DataOut
port one cycle after the Ready input port is asserted.

■ Stall (input): This port should be connected to a Simulink block and is used to
simulate stall conditions of the Avalon-MM bus and hence underflow to the SOPC
Builder component. For any simulation cycle where Stall is asserted, the test
data is cached by the Avalon-MM Write Test Converter and released in order, one
sample per clock, when stall is de-asserted.

■ Ready (input): This port should be connected to a DSP Builder block and is used to
indicate that the downstream hardware is ready for data.

■ DataOut (output): This port should be connected to a DSP Builder block and
corresponds to the oldest unsent data sample received on the TestData port.

■ DataValid (output): This port should be connected to a DSP Builder block and is
asserted whenever DataOut corresponds to real data.

Double-clicking on an Avalon-MM Write FIFO block opens the Block Parameters
dialog box which can be used to set parameters for the data type, data width and FIFO
depth.

Figure 7–3. Example System with Avalon-MM Write FIFO and Avalon-MM Read FIFO Blocks

Chapter 7: Using the Interfaces Library 7–7
Avalon-MM Interface Blocks

© November 2008 Altera Corporation DSP Builder User Guide

Figure 7–4 shows the Avalon-MM Write FIFO dialog box.

f Refer to the DSP Builder Reference Manual for information about these parameters.

1 You can open the hierarchy below the Avalon-MM Write FIFO block by right-
clicking the block and clicking Look Under Mask on the pop-up menu.

You can use this design as a template to design new functionality if required (for
example, when an Avalon-MM address input is used to split incoming streams).

Figure 7–4. Figure 4: Avalon-MM Write FIFO Block Parameters

http://www.altera.com/literature/manual/mnl_dsp_builder.pdf

7–8 Chapter 7: Using the Interfaces Library
Avalon-MM Interface Blocks

DSP Builder User Guide © November 2008 Altera Corporation

The internal content of an Avalon-MM Write FIFO is shown in Figure Figure 7–5.

The Avalon-MM Write Test Converter block handles caching and conversion of
Simulink/MATLAB data into accesses over the Avalon-MM interface and can be used
to test the functionality of your design. The Avalon-MM Write Test Converter
is simulation only and does not synthesize to HDL.

Avalon-MM Read FIFO
An Avalon-MM Read FIFO has the following ports:

■ Stall (input): This port should be connected a Simulink block that is used to
simulate stall conditions of the Avalon-MM bus and hence back pressure to the
SOPC Builder component. For any simulation cycle where Stall is asserted, no
Avalon-MM reads take place and the internal FIFO fills. When full, the Ready
output is de-asserted so that no data is lost.

■ Data (input): This port should be connected to a DSP Builder block and should be
connected to outgoing data from the user design.

■ DataValid (input): This port should be connected to a DSP Builder block and
should be asserted whenever the signal on the Data port corresponds to real data.

■ TestDataOut (output): This port should be connected to a Simulink block and
corresponds to data received over the Avalon-MM bus.

■ TestDataValid (output): This port should be connected to a Simulink block and is
asserted whenever TestDataOut corresponds to real data.

■ Ready (output): When asserted, indicates that the block is ready to receive data.

Double-clicking on an Avalon-MM Write FIFO block opens the Block Parameters
dialog box which can be used to set parameters for the data type, data width and FIFO
depth.

f Refer to the DSP Builder Reference Manual for information about these parameters.

Figure 7–5. Avalon-MM Write FIFO Content

http://www.altera.com/literature/manual/mnl_dsp_builder.pdf

Chapter 7: Using the Interfaces Library 7–9
Avalon-MM Interface Blocks Walkthrough

© November 2008 Altera Corporation DSP Builder User Guide

You can open the hierarchy below the Avalon-MM Read FIFO block by right-
clicking on the block and choosing Look Under Mask from the pop-up menu.

The internal content of an Avalon-MM Read FIFO is shown in Figure 7–6.

The Avalon-MM Read Data Converter block handles caching and conversion of
Simulink/MATLAB data into accesses over the Avalon-MM interface and can be used
to test the functionality of your design. The Avalon-MM Read Data Converter is
simulation only and does not synthesize to HDL.

Avalon-MM Interface Blocks Walkthrough
This walkthrough describes how to interface a design using the Avalon-MM Blocks as
a custom peripheral to the Nios II embedded processor in SOPC Builder.

The design consists of a 4-tap FIR filter with variable coefficients. The coefficients are
loaded using the Nios II embedded processor while the input data is supplied by an
off-chip source through an analog-to-digital converter. The filtered output data is sent
off-chip through a digital-to-analog converter.

Add Avalon-MM Blocks to the Example Design
To complete the example design, perform the following steps:

1. Click Open on the File menu in the MATLAB software.

2. Browse to the <DSP Builder install path>\DesignExamples\Tutorials\
SOPCBuilder\SOPCBlock directory.

Figure 7–6. Avalon-MM Read FIFO Content

7–10 Chapter 7: Using the Interfaces Library
Avalon-MM Interface Blocks Walkthrough

DSP Builder User Guide © November 2008 Altera Corporation

3. Select the new_topavalon.mdl file and click Open.

Figure 7–7 shows new_topavalon.mdl.

4. Rename the file by clicking Save As on the File menu. Create a new folder called
MySystem and save your new MDL file as topavalon.mdl in this folder.

5. Open the Simulink Library Browser by clicking on the icon or by typing
simulink at the MATLAB command prompt.

6. Expand the Altera DSP Builder Blockset in the Simulink Library Browser and
select Avalon Memory-Mapped in the Interfaces library.

7. Drag and drop an Avalon-MM Slave block into the top left of the model. Change
the block name to Avalon_MM_Write_Slave.

8. Double-click on the Avalon_MM_Write_Slave block to bring up the Block
Parameters dialog box.

9. Select Write for the address type, Signed Integer for the data type, and specify 8
bits for the data width. Turn off the Allow Byte Enable option (Figure 7–8 on
page 7–11).

Figure 7–7. new_topavalon.mdl Example Design

Chapter 7: Using the Interfaces Library 7–11
Avalon-MM Interface Blocks Walkthrough

© November 2008 Altera Corporation DSP Builder User Guide

10. Click OK.

Notice that the Avalon_MM_Write_Slave block is redrawn with three ports:
Address i1:0, Write ibit, and Write Data i7:0.

Figure 7–8. Block Parameters for Avalon_MM_Write_Slave in topavalon.mdl

7–12 Chapter 7: Using the Interfaces Library
Avalon-MM Interface Blocks Walkthrough

DSP Builder User Guide © November 2008 Altera Corporation

11. Connect the ports as shown in Figure 7–9.

1 Note that you can re-size a block by dragging the resize handles at each
corner.

12. Drag and drop another Avalon-MM Slave block into the top right of the model
and change the name of this block instance to Avalon_MM_Read_Slave.

13. Double-click on the Avalon_MM_Read_Slave block to bring up the Block
Parameters dialog box.

14. Select Read for the address type, Signed Integer for the data type, and specify
8 bits for the data width.

15. Click OK and notice that the Avalon_MM_Read_Slave block is redrawn with
three ports: Address i1:0, Read ibit, and Read Data o7:0.

16. Complete the design by connecting the Avalon_MM_Read_Slave ports as shown
in Figure 7–9.

17. Click Save on the File menu in the model window to save your model.

Figure 7–9. topavalon.mdl Example Design

Chapter 7: Using the Interfaces Library 7–13
Avalon-MM Interface Blocks Walkthrough

© November 2008 Altera Corporation DSP Builder User Guide

Verify Your Design
Before using your design in SOPC Builder, you should use the TestBench block to
verify your design.

Perform the following steps:

1. Double-click the TestBench block to display the TestBench Generator dialog
box.

2. Click Compare against HDL (Figure 7–10).

This process generates HDL, runs Simulink and ModelSim, and then compares the
simulation results. Progress messages are issued in the dialog box which should
complete with a message “Exact Match”.

3. Click OK.

Figure 7–10. TestBench Dialog Box

7–14 Chapter 7: Using the Interfaces Library
Avalon-MM Interface Blocks Walkthrough

DSP Builder User Guide © November 2008 Altera Corporation

Instantiate Your Design in SOPC Builder
To instantiate your design as a custom peripheral to the Nios II embedded processor
in SOPC Builder, perform the following steps:

1. Start the Quartus® II software.

2. On the File menu in the Quartus II software, click New Project Wizard.

a. Specify the working directory for your project by browsing to the <DSP Builder
install path>\DesignExamples\Tutorials\SOPCBuilder\SOPCBlock\
MySystem directory.

b. Specify a name for your project. This walkthrough uses SOPC for the project
name.

1 The Quartus II software automatically specifies a top-level design entity
that has the same name as the project. This walkthrough assumes that the
names are the same.

c. Click Finish to create the Quartus II project.

3. On the Tools menu, click Tcl Scripts and perform the following steps:

a. Select topavalon_add.tcl in the Project folder.

b. Click Run to load your .mdl file and other required files into the Quartus II
project.

4. On the Tools menu, click SOPC Builder and set the following parameters in the
Create New System dialog box (Figure 7–11):

a. Specify nios32 as the system name.

b. Select VHDL for the target HDL.

c. Click OK.

5. Click the System Contents tab in SOPC Builder and set the following options:

a. Expand Memories and Memory Controllers.

b. Expand On-Chip and double-click On Chip Memory (RAM or ROM).

c. Click Finish to add an on-chip RAM device with default parameters.

Figure 7–11. SOPC Builder Create New System Dialog Box

Chapter 7: Using the Interfaces Library 7–15
Avalon-MM Interface Blocks Walkthrough

© November 2008 Altera Corporation DSP Builder User Guide

6. Double-click Nios II Processor in the System Contents tab to display the
MegaWizard interface (Figure 7–12).

7. Set the reset and exception vectors to use onchip_mem and click Finish to add the
processor to your system with all other parameters set to their default values.

Figure 7–12. Nios II Processor Configuration

7–16 Chapter 7: Using the Interfaces Library
Avalon-MM Interface Blocks Walkthrough

DSP Builder User Guide © November 2008 Altera Corporation

8. Expand DSPBuilder Systems in the System Contents tab and double-click the
topavalon_interface module to include it in your Nios II system (see Figure 7–13).

1 If the memory device, Nios II processor, and DSP Builder system are added in this
order, you should not need to set a base address. However, you can click Auto-Assign
Base Addresses on the System menu to automatically add a base address if necessary.

You can now design the rest of your Nios II embedded processor system using the
standard Nios II embedded processor design flow.

f For information on using SOPC Builder to create a custom Nios II embedded
processor, see AN 351: Simulating Nios II Embedded Processor Designs.

1 A completed version of the topavalon.mdl design is available in the <DSP Builder
install path>\DesignExamples\Tutorials\SOPCBuilder\SOPCBlock\Finished
Example directory.

Figure 7–13. Including Your DSP Builder Design Module in SOPC Builder

http://www.altera.com/literature/an/an351.pdf

Chapter 7: Using the Interfaces Library 7–17
Avalon-MM FIFO Walkthrough

© November 2008 Altera Corporation DSP Builder User Guide

Avalon-MM FIFO Walkthrough
This walkthrough describes how to interface a design built using the Avalon-MM
FIFO block as a custom peripheral to the Nios® II embedded processor in SOPC
Builder.

The design consists of a Prewitt edge detector with one Avalon-MM Write FIFO and
one Avalon-MM Read FIFO. An additional slave port is used as a control port.

f Refer to AN364: Edge Detection Reference Design for a full description of the Prewitt
edge detector design.

For the hardware implementation described in the application note, the image is
stored in the compact flash and loaded via DMA using a Nios II embedded processor.
The edge detected image is output through a VGA controller. The DSP Builder model
uses Simulink to read in the original image and to capture the edge detected result.

Open the Walkthrough Example Design
To open the example design, perform the following steps:

1. Click Open on the File menu in the MATLAB software.

2. Browse to the <DSP Builder install path>\DesignExamples\Tutorials\
SOPCBuilder\AvalonFIFO directory.

3. Select the sopc_edge_detector.mdl file and click Open.

Figure 7–14 shows sopc_edge_detector.mdl.

Compile the Design
In this example, you use the Signal Compiler block to verify that the design
generates valid HDL.

1 Alternatively, you could use the TestBench block as described for the “Avalon-MM
Interface Blocks Walkthrough” in “Verify Your Design” on page 7–13.

Figure 7–14. sopc_edge_detector.mdl Example Design

http://www.altera.com/literature/an/an364.pdf

7–18 Chapter 7: Using the Interfaces Library
Avalon-MM FIFO Walkthrough

DSP Builder User Guide © November 2008 Altera Corporation

Perform the following steps to verify the design:

1. Double-click the Signal Compiler block.

2. Select the family and device for the DSP Development board you are using. The
walkthrough design is configured for a Stratix 1S25 board (Figure 7–15).

3. Click Compile.

4. When the compilation has completed successfully, click OK.

1 The Avalon-MM Read/Write Converter is simulation only and does not synthesize to
HDL.

Figure 7–15. Signal Compiler Dialog Box

Chapter 7: Using the Interfaces Library 7–19
Avalon-MM FIFO Walkthrough

© November 2008 Altera Corporation DSP Builder User Guide

Instantiate Your Design in SOPC Builder
To instantiate your design as a custom peripheral to the Nios II embedded processor
in SOPC Builder, perform the following steps:

1. Start the Quartus II software.

2. On the File menu in the Quartus II software, click New Project Wizard and set the
following options:

a. Specify the working directory for your project by browsing to the <DSP Builder
install path>\DesignExamples\Tutorials\SOPCBuilder\AvalonFIFO
directory.

b. Specify a name for your project. This walkthrough uses FIFO for the project
name.

1 The Quartus II software automatically specifies a top-level design entity
that has the same name as the project. This walkthrough assumes that the
names are the same.

c. Click Finish to create the Quartus II project.

3. On the Tools menu, click Tcl Scripts and set the following options:

a. Load your design by selecting sopc_edge_detector_add.tcl in the Project
folder.

b. Click Run.

4. On the Tools menu, click SOPC Builder to display the Create New System dialog
box.

a. Specify AvalonFIFO as the system name.

b. Select VHDL for the target HDL.

c. Click OK.

5. Click the System Contents tab in SOPC Builder and set the following options:

a. Expand Memories and Memory Controllers.

b. Expand On-Chip and double-click On Chip Memory (RAM or ROM).

c. Click Finish to add an on-chip RAM device with default parameters.

6. Double-click the Nios II Processor module in the System Contents tab to display
the MegaWizard interface.

7. Set the reset and exception vectors to use onchip_memory2_0 and click Finish to
add the processor to your system with all other parameters set to their default
values.

7–20 Chapter 7: Using the Interfaces Library
Avalon-MM FIFO Walkthrough

DSP Builder User Guide © November 2008 Altera Corporation

8. Expand DSPBuilder Systems in the System Contents tab and double-click the
sopc_edge_detector_interface module to include it in your Nios II system
(Figure 7–16).

You can now design the rest of your NIOS embedded processor using the standard
SOPC Builder design flow.

f See “Instantiate Your Design in SOPC Builder” on page 7–14 in the “Avalon-MM
Interface Blocks Walkthrough” for more detailed instructions.

Figure 7–16. Including Your DSP Builder Avalon-MM FIFO Design Module in SOPC Builder

Chapter 7: Using the Interfaces Library 7–21
Avalon-ST Interface

© November 2008 Altera Corporation DSP Builder User Guide

Avalon-ST Interface
All DSP MegaCore functions in the DSP Builder MegaCore Functions library have
interfaces that are compliant with the Avalon Interface Specifications. You can combine
multiple MegaCore functions and easily because they use a common interface. This
section summarizes the key features of the Avalon-ST interface.

The Avalon Interface Specifications define how to convey data between a source
interface and a sink interface. The integrity of the data is indicated by a feed forward
signal, valid. The specification also defines how the MegaCore functions may stall
other blocks (backpressure) or regulate the rate at which data is provided by using a
feedback sideband signal, ready.

You can configure the DSP Builder Avalon-ST Source and Avalon-ST Sink
blocks with a ready latency of 0 or 1. The ready latency is the number of cycles that a
source must wait after a sink has asserted ready so that a data transfer is possible. The
source interface provides valid data at the earliest time possible, and it holds that data
until ready is asserted by the sink. The ready signal notifies the source interface that
the data has been sampled on that clock cycle.

For the ready_latency = 0 mode, Figure 7–17 shows the interaction that occurs between
the source interface valid signal and the sink interface ready signal.

On cycle one, the source provides data and asserts valid even though the sink is not
ready. The source waits until cycle two and the sink acknowledges that it has
sampled the data by asserting ready. On cycle three, the source happens to provide
data on the same cycle that the sink is ready to receive it and so the transfer occurs
immediately. On the fourth cycle, the sink is ready but because the source has not
provided any valid data, the data bus is not sampled.

A beat is defined as the transfer of one unit of data between a source and sink
interface. This unit of data may consist of one or more symbols, so it can support
modules that convey more than one piece of information on each valid cycle. This
concept is useful because some modules have parallel input interfaces and other
instances require serial input interfaces. For example, when conveying an in-phase
and quadrature component on the same clock cycle. The choice depends on the
algorithm, optimization technique, and throughput requirements.

Figure 7–17. Avalon-ST Interface Timing for ready-latency=0

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

7–22 Chapter 7: Using the Interfaces Library
Avalon-ST Interface

DSP Builder User Guide © November 2008 Altera Corporation

Figure 7–18 gives an example of a data transfer where two symbols are conveyed on
each beat - an in phase symbol I and a quadrature symbol Q. In this example, each
symbol is eight bits wide.

The Avalon Interface Specifications also describe several mechanisms to support the
transfer of data associated with multiple channels. Altera recommends that this is
achieved using packet based transfers where each packet has a deterministic format
and each channel is allocated a specific field (time slot within a packet).

Packet transfers require two additional signals that mark the start and the end of the
packet. The MegaCore functions are designed with internal counters that count the
samples in a packet so they know which channel a particular sample is associated
with and synchronize appropriately with the start and end of packet signals. In
Figure 7–18, the in phase and quadrature components associated with three different
channels are conveyed between two MegaCore functions.

Avalon-ST Packet Formats
The data associated with each channel can be allocated a field within a packet. To
describe the relationship between the input and the output interfaces of a MegaCore
function, you must define the packets associated with each interface.

The basic format of a packet is described using two parameters: SymbolsPerBeat,
and PacketDescription. The SymbolsPerBeat parameter defines the number of
symbols that are presented in parallel on every valid cycle. The
PacketDescription is a string description of the fields in the packet.

A basic PacketDescription is a comma-separated list of field names, where a field
name starts with a letter and may include the characters a-zA-Z0-9_. Typical field
names include Channel1, Channel2, and Q. Field names are case sensitive and
white space is not permitted.

Figure 7–18. Packetized Data Transfer

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

Chapter 7: Using the Interfaces Library 7–23
Avalon-ST Interface

© November 2008 Altera Corporation DSP Builder User Guide

Figure 7–19 shows an example of a generic function that has two input interfaces and
performs a transformation on the two input streams.

Avalon-ST Packet Format Converter
The packet format converter (PFC) is a flexible, multipurpose component that
transforms packets that are received from one function into a packet format that is
supported by another function.

The PFC takes packet data from one or more input interfaces, and provides field
reassignment in time and space to one or more output packet interfaces. You can
specify the input packet format and the desired output packet format. The
appropriate control logic is automatically generated.

Each input interface has Avalon-ST ready, valid, startofpacket, endofpacket,
empty, and data signals. Each output interface has an additional error bit, which is
asserted to indicate a frame delineation error.

The PFC performs data mapping on a packet by packet basis, so that there is exactly
one input packet on each input interface for each output packet on each output
interface. The packet rate of the converter is limited by the interface with the longest
packet. When the PFC has multiple output interfaces, the packets on each output
interface are aligned so that the startofpacket signal is presented on the same
clock cycle.

If each interface supports fixed-length packets, the multi-packet mapping option can
be selected, and the PFC can map fields from multiple input packets to multiple
output packets.

f For a complete description of the Avalon-ST interface, refer to the Avalon Interface
Specifications. For an example of a design that uses Avalon-ST interfaces and the
Packet Format Converter blocks, refer to AN442: Tool Flow for Design of Digital IF for
Wireless Systems.

Figure 7–19. Generic Function

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/an/an442.pdf
http://www.altera.com/literature/an/an442.pdf

7–24 Chapter 7: Using the Interfaces Library
Avalon-ST Interface

DSP Builder User Guide © November 2008 Altera Corporation

© November 2008 Altera Corporation DSP Builder User Guide

8. Using Black Boxes for HDL Subsystems

Introduction
The Signal Compiler block converts subsystems described using blocks from the
DSP Builder block libraries into HDL code. Non-DSP Builder blocks, such as
encapsulations of your own pre-existing HDL code, require the Signal Compiler
block to recognize them as black boxes so that they are not altered by the conversion
process.

There are two types of black box interface in DSP Builder: implicit and explicit.

Implicit Black Box Interface
The implicit black box interface can be inferred by using the HDL Import block.

The Signal Compiler block recognizes the HDL Import block as a black box and
bypasses this block during the HDL translation.

f For information on the HDL Import block, refer to the block description in the AltLab
Library chapter of the DSP Builder Reference Manual.

Explicit Black Box Interface
The explicit black box interface is specified using the HDL Input, HDL Output, HDL
Entity, and Subsystem Builder blocks.

Using the HDL Input, HDL Output, and HDL Entity blocks prevents Signal
Compiler from translating the subsystem into HDL. You can also use a Subsystem
Builder block to create a new subsystem and then automatically populate its ports
using the specified HDL.

You would typically use the explicit black box interface to encapsulate non-DSP
Builder blocks from the main Simulink blocksets.

f For information on the HDL Input, HDL Output, HDL Entity, and Subsystem
Builder blocks, refer to the block descriptions in the AltLab Library chapter of the
DSP Builder Reference Manual.

HDL Import Walkthrough
The HDL Import block provides an interface to import a HDL module into your DSP
Builder design.

1 Imported VHDL must be defined using std_logic_1164 types. If your design uses any
other VHDL type definitions (such as arithmetic or numeric types), you should write
a wrapper which converts them to std_logic or std_logic_vector.

The following sections show an example of importing an existing HDL design written
in VHDL into the DSP Builder environment using the HDL Import block.

http://www.altera.com/literature/manual/mnl_dsp_builder.pdf
http://www.altera.com/literature/manual/mnl_dsp_builder.pdf

8–2 Chapter 8: Using Black Boxes for HDL Subsystems
HDL Import Walkthrough

DSP Builder User Guide © November 2008 Altera Corporation

Import Existing HDL Files
To import existing HDL files into a DSP Builder design, perform the following steps in
the Simulink software:

1. In MATLAB, change the current directory setting to: <DSP Builder install
path>\DesignExamples\Tutorials\BlackBox\HDLImport

2. On the File menu, click Open and select empty_MyFilter.mdl.

This design file has some of the peripheral blocks instantiated including the
input/output ports and source blocks that provide appropriate stimulus for
simulation. It is missing the main filter function which you can import as HDL.

3. Rename the file by clicking Save As on the File menu. Name your new MDL file
MyFilter.mdl.

4. Open the Simulink Library Browser by clicking on the icon or by typing
simulink at the MATLAB command prompt.

5. In the Simulink Library Browser, expand the Altera DSP Builder Blockset and
select the AltLab library.

6. Drag and drop a HDL Import block into the model.

7. Double-click on the HDL Import block to bring up the DSP Builder HDL Import
dialog box (Figure 8–6 on page 8–7).

8. In the HDL Import dialog box, enable the Import HDL radio button and click on
the Add button to select the HDL input files.

9. From the VHDL Black Box File dialog box, select the files fir_vhdl.vhd,
four_mult_add.vhd, and final_add.vhd, then click on Open.

10. Ensure that fir_vhdl is specified as the name of the top-level design entity. The
fir_vhdl.vhd file describes the top level entity which implements an 8-tap low-
pass FIR filter design.

Figure 8–1.

Chapter 8: Using Black Boxes for HDL Subsystems 8–3
HDL Import Walkthrough

© November 2008 Altera Corporation DSP Builder User Guide

11. Turn on the option to Sort top-level ports by name.

12. Under Generate Simulink Model, click Compile to generate a Simulink
simulation model for the imported HDL design.

Figure 8–2. HDL Import Dialog Box

8–4 Chapter 8: Using Black Boxes for HDL Subsystems
HDL Import Walkthrough

DSP Builder User Guide © November 2008 Altera Corporation

13. Progress messages are issued in the HDL Import dialog box ending with the
message:

Quartus II Analysis & Synthesis was successful.

14. The HDL Import block in the MyFilter.mdl model is updated to show the ports
defined in the imported HDL.

15. Click OK to close the HDL Import dialog box.

16. Connect the input and output ports to the symbol, as shown in Figure 8–3. The
code generated for the HDL Import block is automatically black boxed.

17. Click Save on the File menu to save the MyFilter.mdl file.

Simulate the HDL Import Model using Simulink
Perform the following steps to run simulation in Simulink:

1. Double-click on the manual switch connected to the Tsamp block which feeds into
the fir_data_in input port.

This toggles the switch and sets the impulse_in stimulus which is used to verify
the impulse response of the low-pass filter.

2. Click on the Start Simulation icon or select Start from the Simulation menu in
the model window.

3. Double-click on the Scope block to view the simulation results.

4. Click the Autoscale icon to resize the scope. This scales both axes to display all
stored simulation data until the end of the simulation (which is set to 500*Tsamp
for this model).

5. Click the Zoom X-axis icon and drag the cursor to zoom in on the first 70 X-axis
time units.

The simulation results should look similar to Figure 8–4 on page 8–5.

Figure 8–3. Completed Design

Chapter 8: Using Black Boxes for HDL Subsystems 8–5
HDL Import Walkthrough

© November 2008 Altera Corporation DSP Builder User Guide

6. Double-click on the manual switch connected to the Tsamp block to select the
chirp_in stimulus. (This is a sinusoidal signal whose frequency increases at a
linear rate with time.)

7. Click on the Start Simulation icon or select Start from the Simulation menu in
the model window.

8. Double-click on the Scope block to view the simulation results.

9. Press the Autoscale icon to resize the scope.

The simulation results should look similar to Figure 8–5.

This completes the HDL Import walkthrough. You can optionally compile your model
for synthesis or perform RTL simulation on your design by following similar
procedures to those described in the “Getting Started Tutorial”.

Figure 8–4. Simulink Simulation Results for the Impulse Stimulus

Figure 8–5. Simulink Simulation Results for the Chirp Stimulus

8–6 Chapter 8: Using Black Boxes for HDL Subsystems
Subsystem Builder Walkthrough

DSP Builder User Guide © November 2008 Altera Corporation

Subsystem Builder Walkthrough
The Subsystem Builder block makes it easy for you to import the input and
output signals for a VHDL or Verilog HDL design into a Simulink subsystem.

If your HDL design contains any LPM or Megafunctions that are not supported by the
HDL Import block, you should use the Subsystem Builder block. The
Subsystem Builder block also allows you to create your own Simulink simulation
model from non-DSP Builder blocks for faster simulation speed.

Unlike the HDL Import block described in the previous section, the Subsystem
Builder block does not create a Simulink simulation model for the imported HDL
design.

f For more information on the Subsystem Builder block, refer to the block
description in the AltLab Library chapter in the DSP Builder Reference Manual.

In addition to porting the HDL design to a Simulink subsystem, you must create the
Simulink simulation model for the block. The simulation models describes the
functionality of the particular HDL subsystem. The following list shows the options
available to create Simulink simulation models:

■ Simulink generic library

■ Simulink Blocksets (such as the DSP and Communications blocksets)

■ DSP Builder blockset

■ MATLAB functions

■ S-functions

1 You need to add a Non-synthesizable Input block and a Non-synthesizable
Output block around any DSP Builder blocks in the subsystem.

The following section shows an example which uses an S-function to describe the
simulation models of the HDL code.

Create a Black Box System
To create a black box system, perform the following steps:

1. In MATLAB, change the current directory to: <DSP Builder install
path>\DesignExamples\Tutorials\BlackBox\SubSystemBuilder

2. Click Open on the File menu. Select the filter8tap.mdl file and click OK.

3. Open the Simulink Library Browser by clicking the Simulink icon or typing
simulink at the MATLAB command prompt.

4. In the Simulink Library Browser, expand the AltLab library under the Altera
DSP Builder blockset.

5. Drag a Subsystem Builder block into your model.

http://www.altera.com/literature/manual/mnl_dsp_builder.pdf

Chapter 8: Using Black Boxes for HDL Subsystems 8–7
Subsystem Builder Walkthrough

© November 2008 Altera Corporation DSP Builder User Guide

6. Double-click the Subsystem Builder block.

The Subsystem Builder dialog box is displayed (Figure 8–6).

7. In the dialog box, browse for the fir_vhdl.vhd file and click Build.

This builds the subsystem and adds the signals for the fir_vhdl subsystem to
the symbol in your filter8tap.mdl model. The Subsystem Builder dialog box is
automatically closed.

8. Connect the ports as shown in Figure 8–7.

Figure 8–6. Subsystem Builder Dialog Box

Figure 8–7. filter8tap Design

8–8 Chapter 8: Using Black Boxes for HDL Subsystems
Subsystem Builder Walkthrough

DSP Builder User Guide © November 2008 Altera Corporation

9. Double-click on the fir_vhdl symbol. The filter8tap/fir_vhdl subsystem is
opened (Figure 8–8).

The subsystem contains two HDL Input blocks (simulink_sclr and
data_in) and a HDL Output block (data_out). Each of these blocks is in turn
connected to a subsystem input or output. A HDL Entity block is also created to
store the name of the HDL file and the names of the clock and reset ports.

1 No port is created in the subsystem for the clock since this is handled
implicitly.

10. Leave the model window open for use in the next section.

In the next section, you build the simulation model that represents the
functionality of this block in your Simulink simulations.

Build the Black Box SubSystem Simulation Model
For this example, you use a S-function C++ simulation model to represent the 8-tap
FIR filter block created in the previous section.

To create the model, perform the following steps:

1. In the Simulink Library Browser, expand the Simulink folder.

2. From the User-Defined Functions library, drag and drop a S-Function block
into the model window.

3. Double-click the S-Function block to display the Function Block Parameters:
S-Function dialog box (Figure 8–9 on page 8–9).

4. In the Block Parameters dialog box, change the S-Function name to Sfir8tap
and enter the parameters -1 3962 4817 5420 5733 5733 5420 4817 3962.

The Sfir8tap function is a C++ Simulink S-Function simulation model written
for the 8-tap Fir filter block.

The first parameter refers to the sampling rate (-1 indicates it inherits the sampling
rate from the preceding block) and the rest of the parameters represent the eight
filter coefficients.

1 The S-function modules parameter should be left with its default value.

Figure 8–8. Library: filter8tap/fir_vhdl Window

Chapter 8: Using Black Boxes for HDL Subsystems 8–9
Subsystem Builder Walkthrough

© November 2008 Altera Corporation DSP Builder User Guide

5. Click the Edit button to view the code that describes the S-Function.

1 If the code does not appear automatically, click Browse and select the
Sfir8tap.CPP file.

6. Scroll down in the Sfir8tap.CPP file to the S-function methods section.

The following code is an excerpt of the Simulink C++ S-Mex function code which can
be used to design a Simulink filter simulation model:

/*====================*

* S-function methods *

====================/

/* Function: mdlInitializeSizes=======================================

* Abstract:

* The sizes information is used by Simulink to determine the S-function

* block's characteristics (number of inputs, outputs, states, etc.).

*/

static void mdlInitializeSizes(SimStruct *S)

{

/* See sfuntmpl.doc for more details on the macros below */

ssSetNumSFcnParams(S, 9); /* Number of expected parameters */

if (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S)) {

/* Return if number of expected != number of actual parameters */

return;

}
// Set DialogParameters not tunable

const int iMaxssGetSFcnParamsCount = ssGetSFcnParamsCount(S);

Figure 8–9. Block Parameters: S-Function Dialog Box

8–10 Chapter 8: Using Black Boxes for HDL Subsystems
Subsystem Builder Walkthrough

DSP Builder User Guide © November 2008 Altera Corporation

for (int p=0;p<iMaxssGetSFcnParamsCount;p++)

{

ssSetSFcnParamTunable(S, p, 0);

}

if (!ssSetNumInputPorts(S, 1)) return;

ssSetInputPortWidth(S, 0, 1);

ssSetInputPortDataType(S, 0, SS_DOUBLE);

if (!ssSetNumOutputPorts(S, 1)) return;

ssSetOutputPortWidth(S, 0, 1);

ssSetOutputPortDataType(S, 0, SS_DOUBLE);

ssSetNumContStates(S, 0);

ssSetNumDiscStates(S, 1);

ssSetNumSampleTimes(S, 1);

ssSetNumRWork(S, 0);

ssSetNumIWork(S, 0);

ssSetNumDWork(S, DYNAMICALLY_SIZED); // reserve element in the

ssSetNumModes(S, 0); // pointers vector to store a C++ object

ssSetNumNonsampledZCs(S, 0);

ssSetOptions(S, 0);

}

During simulation, Simulink invokes certain callback methods from the S-function.
The callback methods are sub-functions that initialize, update discrete states, and
calculate output. The callback methods used in the example design are described in
Table 8–1.

1. At the MATLAB command prompt, type:

mex Sfir8tap.CPP r
The mex command compiles and links the source file into a shared library
executable from within MATLAB called Sfir8tap.mexw32. (The extension is
specific to 32-bit version of MATLAB run in Windows).

2. Close the editor window and click on OK to close the Function Block Parameters
dialog box.

Table 8–1. Callback Methods Used in the S-Function

Callback Method Description

mdlInitializeSizes Specify the number of inputs, outputs, states, parameters,
and other characteristics of the S-function.

mdlInitializeSampleTimes Specify the sample rates at which this S-function operates.

mdlStart Initialize the vectors of this S-function.

mdlOutputs Compute the signals that this block emits.

mdlUpdate Update the states of the block.

mdlTerminate Perform any actions required at termination of simulation.

Chapter 8: Using Black Boxes for HDL Subsystems 8–11
Subsystem Builder Walkthrough

© November 2008 Altera Corporation DSP Builder User Guide

3. In the filter8tap/fir_vhdl window, connect the input port of the S-function block to
the data_in block, and connect the output port of the S-function block to the
data_out block as shown in Figure 8–10.

1 You do not have to connect the simulink_sclr block. The HDL Entity
block automatically maps any input ports named simulink_clock in the
VHDL entity to the global clock signal, and any input ports named
simulink_sclr to the global synchronous clear signal.

4. Click Save on the File menu to save the filter8tap.mdl file.

Simulate the Subsystem Builder Model
Perform the following steps to run the Simulink simulation:

1. Click the Start Simulation icon or choose Start (Simulation menu) in the
filter8tap.mdl window to begin the simulation.

2. Double-click the Scope block to view the simulation results. Click Autoscale to
resize the scope.

3. Click the Zoom X-axis icon and use the cursor to zoom in on the first 22 x-axis
time units.

The simulation results should appear similar to Figure 8–11.

1 Because the input is a pulse, the simulation results show the impulse response of the
8-tap FIR filter, which translates to the eight coefficient values. You can change the
input stimulus to verify the step and random response of the filter.

Figure 8–10. S-Function Block Connection

Figure 8–11. Simulink Simulation Results of 8-Tap FIR Filter, Scope Window

8–12 Chapter 8: Using Black Boxes for HDL Subsystems
Subsystem Builder Walkthrough

DSP Builder User Guide © November 2008 Altera Corporation

Add VHDL Dependencies to the Quartus II Project and ModelSim
The VHDL file used in this example is dependent on two other VHDL files. As
currently specified, these two files are not examined by the Quartus II software or
ModelSim, and compilation either fails or gives unexpected results. To resolve this,
perform the following steps:

1. Double-click on the Signal Compiler block and click Compile. (Ignore the
result for now.) This creates a directory called DSPBuilder_filter8tap_import in
the directory containing the design.

1 Alternatively, you can create the directory DSPBuilder_filter8tap_import
directly.

2. Copy the extra_add.tcl and extra_add_msim.tcl files from the original design
directory to the DSPBuilder_filter8tap_import directory.

The extra_add.tcl file adds final_add.vhd and four_mult_add.vhd to the Quartus II
project, while extra_add_msim.tcl compiles them in ModelSim when the design is
run using the TestBench block. Any files ending with _add.tcl are executed by the
Quartus II software when the project is created. Files ending with _add_msim.tcl are
executed by ModelSim when it compiles the design testbench.

Simulate the Design in ModelSim
Perform the following steps to test the simulation model against the HDL in
ModelSim:

1. In the Simulink Library Browser, expand AltLab library under Altera DSP
Builder Blockset.

2. Drag a TestBench block into your model.

3. Double-click on the TestBench block and click Compare against HDL
(Figure 8–12 on page 8–13).

When the comparison has completed successfully an Exact Match message is
issued in the TestBench Generator dialog box.

1 If you want to use ModelSim directly, click on the Advanced tab, turn on the Launch
GUI option, and then click Run ModelSim.

This completes the Subsystem Builder walkthrough. You can optionally compile your
model for synthesis by following similar procedures to those described in the
“Getting Started Tutorial”.

Chapter 8: Using Black Boxes for HDL Subsystems 8–13
Subsystem Builder Walkthrough

© November 2008 Altera Corporation DSP Builder User Guide

Figure 8–12. Testbench Generator Dialog Box for the filter8tap Design

8–14 Chapter 8: Using Black Boxes for HDL Subsystems
Subsystem Builder Walkthrough

DSP Builder User Guide © November 2008 Altera Corporation

© November 2008 Altera Corporation DSP Builder User Guide

9. Using Custom Library Blocks

Introduction
A parameterizable custom library block is a Simulink subsystem in which the block
functionality is described using DSP Builder primitives. This design flow also
supports parameterizable hierarchical subsystem structures.

An example of a custom library block is provided at <DSP Builder install path>\
DesignExamples\Tutorials\BuildingCustomLibrary\top.mdl. (Figure 9–1).

The RamBasedDelay block used in top.mdl, is an example of a custom
parameterizable Simulink block and is defined in the library file MyLib.mdl. The
RamBasedDelay block has one parameter, Delay.

Creating a Custom Library Block
To create your own custom block, you perform the following steps:

1. Create a Library Model File

2. Build the HDL Subsystem Functionality

3. Define Parameters Using the Mask Editor

4. Link the Mask Parameters to the Block Parameters

5. Make the Library Block Read Only

6. Add the Library to the Simulink Library Browser

Figure 9–1. top.mdl Example

9–2 Chapter 9: Using Custom Library Blocks
Creating a Custom Library Block

DSP Builder User Guide © November 2008 Altera Corporation

Create a Library Model File
Create a Library Model File for your custom block by performing the following steps
in the Simulink software:

1. In MATLAB, change the current directory setting to: <DSP Builder install
path>\DesignExamples\Tutorials\BuildingCustomLibrary.

2. Open the Simulink Library Browser by clicking the Simulink icon or typing
simulink at the MATLAB command prompt.

3. On the File menu in the Simulink Library Browser, point to New and click Library
to open a new library model window.

4. Expand the Simulink Ports & Subsystems library in the Simulink Library Browser
and drag a Subsystem block into your model.

5. Click on the Subsystem text below the block and rename the block DelayFIFO.

1 You should always rename a block representing an HDL Subsystem to
ensure that all the generated entities in a hierarchical design are unique.

6. Click Save on the File menu and save the library file as NewLib.mdl.

Build the HDL Subsystem Functionality
To add functionality to the DelayFIFO block, perform the following steps:

1. Double-click on the DelayFIFO block to open the NewLib/DelayFIFO subsystem
window.

2. Drag and drop a Shift Taps block from the Storage library in the Altera DSP
Builder Blockset into the model window. Insert the Shift Taps block between
the input and output blocks (Figure 9–2).

3. Double-click the Shift Taps block to open the Block Parameters dialog box (see
Figure 9–3 and Figure 9–4 on page 9–3). Set the parameters shown in Table 9–1.

Figure 9–2. Shift Taps Block

Table 9–1. Parameters for the Shift Taps Block

Parameter Value

Main Tab

Number Of Taps 1

Distance Between Taps 10

Optional Ports and Settings Tab

Use Shift Out Port Off

Chapter 9: Using Custom Library Blocks 9–3
Creating a Custom Library Block

© November 2008 Altera Corporation DSP Builder User Guide

Use Enable port: On

Use Dedicated Circuitry On

Memory Block Type Auto

Figure 9–3. Shift Taps Block Parameters

Figure 9–4. Shift Taps Block Optional Parameters

Table 9–1. Parameters for the Shift Taps Block

Parameter Value

9–4 Chapter 9: Using Custom Library Blocks
Creating a Custom Library Block

DSP Builder User Guide © November 2008 Altera Corporation

4. Click OK to close the Block Parameters dialog box.

5. Add an Input block (In2) from the Simulink Ports & Subsystems library and
connect it to the ena port on the Shift Taps block.

6. Rename the blocks as shown in Table 9–2.

7. Click Save on the File menu.

Figure 9–5 shows the completed DelayFIFO subsystem.

Figure 9–6 shows the NewLib library model which now shows the input and
output ports defined in the DelayFIFO subsystem.

Define Parameters Using the Mask Editor
Create parameters for the DelayFIFO block using the Mask Editor by performing the
following steps:

1. Right-click the DelayFIFO block in the NewLib model and click Mask
Subsystem on the pop-up menu.

2. In the Mask Editor dialog box (Figure 9–7 on page 9–5, Figure 9–8 on page 9–6,
and Figure 9–9 on page 9–6), set the options shown in Table 9–3 on page 9–5.

Table 9–2. Renaming the Blocks

Old Name New Name

In1 InDin

In2 InEna

Shift Taps DRB

Out1 OutDout

Figure 9–5. DelayFIFO Subsystem

Figure 9–6. NewLib Model

Chapter 9: Using Custom Library Blocks 9–5
Creating a Custom Library Block

© November 2008 Altera Corporation DSP Builder User Guide

Table 9–3. Parameters for the Mask Editor

Parameter Value

Icon Tab

Frame Visible

Transparency Opaque

Rotation Fixed

Units Autoscale

Drawing Commands port_label('input',1,'din');
port_label('input',2,'ena');
port_label('output',1,'dout');
fprintf('Delay %d',d)

Parameters Tab (Note 1)

Prompt Delay

Variable d

Documentation Tab

Mask type SubSystem AlteraBlockSet

Mask description RAM-Based Delay Element
Altera Corporation

Note to Table 9–3:

(1) To add a parameter in the Parameters tab, click the button.

Figure 9–7. Mask Editor Icon Tab

9–6 Chapter 9: Using Custom Library Blocks
Creating a Custom Library Block

DSP Builder User Guide © November 2008 Altera Corporation

3. Click OK in the Mask Editor dialog box.

4. Double-click on the DelayFIFO block in your NewLib model to display the Block
Parameters dialog box.

5. Specify a Delay of 5 (Figure 9–10 on page 9–7).

Figure 9–8. Mask Editor Parameters Tab

Figure 9–9. Documentation Tab

Chapter 9: Using Custom Library Blocks 9–7
Creating a Custom Library Block

© November 2008 Altera Corporation DSP Builder User Guide

6. Click OK in the Block Parameters dialog box.

7. Click Save on the File menu to save your library model.

f For more information on the Mask Editor, refer to the MATLAB Help.

Link the Mask Parameters to the Block Parameters
To pass parameters from the symbol’s mask into the block, you use a model
workspace variable.

1. Double-click the DRB block in the NewLib/DelayFIFO window to open the Block
Parameters dialog box.

2. Copy the mask parameter variable name d from the Parameters tab of the Mask
Editor into the Distance Between Taps field in the Block Parameters dialog box.
(Figure 9–11)

Figure 9–10. Delay FIFO Block Parameters

Figure 9–11. Shift Taps Block Parameters

9–8 Chapter 9: Using Custom Library Blocks
Creating a Custom Library Block

DSP Builder User Guide © November 2008 Altera Corporation

3. Click OK to close the Shift Taps Block Parameters dialog box.

4. Close the model window.

Make the Library Block Read Only
A library block should be made read only so that it is not accidentally edited from
within a design model. To set the read/write permissions, perform the following
steps:

1. Right-click the DelayFIFO block in the NewLib model and click SubSystem
Parameters on the pop-up menu to display the Block Parameters dialog box.

2. In the Read/Write permissions list, select ReadOnly as shown in Figure 9–12.

1 The ReadWrite option would allow edits from both the library and the
design. The NoReadOrWrite option would not allow Signal Compiler
to generate HDL for the design. If you want to modify a library model,
open the model, click Unlock Library on the File menu and change the
read/write permissions in the Block Parameters dialog box. Remember to
reset ReadOnly after changing the library model. Your changes are
automatically propagated to all instances in the design.

3. Click OK to close the Block Parameters dialog box.

4. Click Save on the File menu to save your library model.

Add the Library to the Simulink Library Browser
You can add a custom library to the Simulink library browser by creating a file called
slblocks.m. This file must be in the same location as your library file and both files
must be in search path for MATLAB. To create this file, perform the following steps:

1. On the File menu in MATLAB, point to New and click M-File to open a new editor
window.

Figure 9–12. Delay FIFO Block Parameters

Chapter 9: Using Custom Library Blocks 9–9
Synchronizing a Custom Library

© November 2008 Altera Corporation DSP Builder User Guide

2. Enter the following text in the editor window:

function blkStruct = slblocks

blkStruct.Name = ['Custom Library DSP Builder'];
blkStruct.OpenFcn = 'NewLib';
blkStruct.MaskDisplay = '';
% Define the Browser structure array, the first
% element contains the information for the Simulink
% block library and the second for the Simulink
% Extras block library.
Browser(1).Library = 'NewLib';
Browser(1).Name = 'Custom Library DSP Builder';
Browser(1).IsFlat = 0;
blkStruct.Browser = Browser;

% End of slblocks

3. Save the M-file with the file name slblocks.m in the same directory as
NewLib.mdl. The next time that you display the Simulink library browser the
Custom Library should be available as shown Figure 9–13.

You can drag and drop a block from your custom library in the same way as from any
other library in the Simulink library browser.

You can create a custom library with multiple blocks by creating the required blocks
in the same library file.

f Refer to the MATLAB help for more information about M-files. A template slblocks.m
file with explanatory comments can be found at <MATLAB install path>\toolbox\
simulink\blocks\slblocks.m.

Synchronizing a Custom Library
A custom library can contain MegaCore functions, HDL import, or state machine
editor blocks. If your design is copied or moved, it may be necessary to synchronize
the model containing these blocks by using the following command:

alt_dspbuilder_refresh_user_library_blocks

Figure 9–13. Custom Library in the Simulink Library Browser

9–10 Chapter 9: Using Custom Library Blocks
Synchronizing a Custom Library

DSP Builder User Guide © November 2008 Altera Corporation

1 This command is automatically called when you use either of the commands:

alt_dspbuilder_refresh_hdlimport

or

alt_dspbuilder_refresh_megacore

© November 2008 Altera Corporation DSP Builder User Guide

10. Adding a Board Library

Introduction
This chapter describes how to create and build a customer board library to use inside
DSP Builder using built-in board components.

A XML board description file is used to define a new board library. This board
description file contains all the board components and their FPGA pin assignments.

The following development boards are already supported in DSP Builder:

■ Cyclone II DE2 Starter board

■ Cyclone II EP2C35 board

■ Cyclone II EP2C70 board

■ Cyclone III EP3C25 Starter board

■ Cyclone III EP3C120 board

■ Stratix EP1S25 board

■ Stratix EP1S80 board

■ Stratix II EP2S60 board

■ Stratix II EP2S180 board

■ Stratix II EP2SGX90 PCI Express board

■ Stratix III EP3SL150 board

f Refer to the DSP Builder Reference Manual for information about these boards.

Creating a New Board Description
Additional boards can be added by creating new board description files. You only
need to create a board description file for each new board and run a MATLAB
command to build it into DSP Builder Library.

The existing components can be used or new components created.

Predefined Components
Predefined components can be found in the following folder:

<install dir>\quartus\dsp_builder\lib\boardsupport\components

There is a single XML file that describes each separate board component named
<component_name>.component. This file defines its data type, direction, bus width,
and appearance. The file also contains a brief description of the component.

Component Types
There are three main types of component: Single Bit, Fixed Size Bus, and Selectable
Single Bit.

http://www.altera.com/literature/manual/mnl_dsp_builder.pdf

10–2 Chapter 10: Adding a Board Library
Creating a New Board Description

DSP Builder User Guide © November 2008 Altera Corporation

Single Bit Type:

These components have a single bit with one FPGA pin assigned to each component.
The components are either inputs or outputs and cannot be changed. Predefined
components of this type include:

■ Red and Green LEDs (LED0 to LED17 and LEDG0 to LEDG8)

■ Software switches (SW0 to SW17)

■ User push buttons (PB0 to PB3)

■ Reset push buttons (IO_DEV_CLRn and USER_RESETN)

■ RS232 receive output and RS232 transmit input pins (RS232Rout and RS232Tin)

Fixed-Size Bus Type:

These components have a fixed-sized group of same type (either Input or Output)
pins with one FPGA pin assigned to each bit of the bus. Predefined components of
this type include:

■ 12-bit analog-to-digital converter (A2D1Bit12 and A2D2Bit12)

■ 14-bit analog-to-digital converter (A2D1Bit14 and A2D2Bit14)

■ 14-bit digital-to-analog converter (D2A1 and D2A2)

■ 8-bit dual in-line package switch (DipSwitch)

■ 7-Segment display with a decimal point (SevenSegmentDisplay0 to
SevenSegmentDisplay1)

■ Simple 7-Segment display without a decimal point (Simple7SegmentDisplay0
to Simple7SegmentDisplay7)

Selectable Single Bit Type:

These components have a single bit, but the pin can be selected from a group of
predefined FPGA pins. Furthermore, the pin can be set as either input or output.
Predefined components of this type include:

■ Debug pins (DebugA and DebugB)

■ Prototyping pins (PROTO, PROTO1 to PROTO3)

■ Evaluation input pin (EvalIoIn)

■ Evaluation output pin (EvalIoOut)

Component Description File
You can define a new component by creating a corresponding component file named
<component_name>.component in the same folder as the predefined components.

The component description file contains a root element component which contains
several attributes and sub-elements that define the component. The component
attributes are defined as follows:

■ displayname= Specifies the name of the component, which is referenced by the
board description file.

Chapter 10: Adding a Board Library 10–3
Creating a New Board Description

© November 2008 Altera Corporation DSP Builder User Guide

■ direction= Specifies the direction of the signal. It can have the value of Input
or Output. You can omit this attribute for the Selectable Single Bit Type, because it
is set later.

■ type= Specifies the data type of the signal. The type can be BIT, INT, or UINT.
followed by the size in square brackets. For example, "BIT[1,0]" defines a single
bit while "UINT[12,0]" is a 12-bit unsigned integer.

The component sub-elements are defined as follows:

■ <documentation> text </documentation> This sub-element contains text
describing the component and one of the following variable that define how the
pin name, or list of pin-names appears in the new board library:

■ %pinname% for Single Bit Type

■ %pinlist% for Selectable Single Bit Type

■ %indexedpinliat% for Fixed Size Bus Type

■ <display [attributes]> This sub-element has the attributes:

■ icon= Specifies the image file name for the component

■ width= Specifies the display width for the image file

■ height= Specifies the display height for the image file

1 For components without an image, you can omit the icon attribute and
define a visual representation using the plot and fprintf commands.
For example:

<display width="90" height="26">

plot([0 19 20 21 22 21 20 19], [0 0 1 0 0 0 -1 0]);

fprintf('EVAL IO OUT \n%pinname% ');

</display>

Example Component Description File:
<component displayname="EVAL IO OUT" direction="Output"

type="BIT[1,0]">

<documentation>

Prototyping Area Pin Single Bit Output

%pinlist%

</documentation>

<display width="90" height="26">

plot([0 19 20 21 22 21 20 19],[0 0 1 0 0 0 -1 0]);

fprintf('EVAL IO OUT \n%pinname% ');

</display>

</component>

10–4 Chapter 10: Adding a Board Library
Creating a New Board Description

DSP Builder User Guide © November 2008 Altera Corporation

Board Description File
The board description file is named <board_name>.board and should be created in the
folder:

<install dir>\quartus\dsp_builder\lib\boardsupport\boards

The board description file is divided into Header and Board Description sections.

Header Section
This section contains a line that defines the XML version and character encoding used
in the document:

<?xml version="1.0" encoding="UTF-8"?>

In this case, the document conforms to the 1.0 specification of XML and uses the ISO-
8859-1 (Latin-1/West European) character set.

You should not modify this line.

Board Description Section
The main body of the document is a root element board that has several attributes
and sub-elements which define the details of the board.

<board Attributes>

<displayname> Text </displayname>

<component Attributes />

...........

<component Attributes />

<configuration Attributes>

<devices> Attributes>

</devices>

<option Attributes>

</option>

</configuration>

</board>

1 The last line in the file must be a closing tag for the root element board </board>.

The board attributes are defined as follows:

■ uniquename= A unique name used to reference the board.

■ family= Device family of the FPGA on board (assuming only one device is on the
board).

The board must contain a displayname sub-element containing text that describes
the board. For example:

<displayname>Cyclone II XYZ Board</displayname>

Chapter 10: Adding a Board Library 10–5
Creating a New Board Description

© November 2008 Altera Corporation DSP Builder User Guide

This is followed by component sub-elements that declare the components:

■ Single bit type examples:

<component name="LED0" pin="Pin_E5"/>

<component name="LED1" pin="Pin_B3"/>

where attribute name defines the name of the component on the board and pin
defines the FPGA pin to which the component is connected. The name must match
one of the predefined components and can only be used once per board.

■ Fixed-size bus type example:

<component name="DipSwitch" label="S1">

<pin location="Pin_AC13"/> <!-- LSB -->

<pin location="Pin_A19"/>

<pin location="Pin_C21"/>

<pin location="Pin_C23"/>

<pin location="Pin_AE18"/>

<pin location="Pin_AE19"/> <!-- MSB-->

</component>

where attribute name defines the name of the component on the board and label
defines the name of the component as it appears in Simulink. For a component
with width n, there must be n pin sub-elements. The pin location must be a valid
FPGA pin name. Note that the pin ordering is listed from LSB to MSB, with LSB on
top of the list.

■ Selectable single bit type example:

<component name="PROTO1">

<pin location="Pin_C3"/>

<pin location="Pin_D2"/>

<pin location="Pin_L3"/>

<pin location="Pin_J7"/>

<pin location="Pin_J6"/>

<pin location="Pin_K6"/>

</component>

This element has the same format as the fixed-size bus type, but each pin element
can be chosen from a specified list of available FPGA pin locations.

The configuration element defines the board configuration block. For example:

<configuration icon="dspboard2c35.bmp" width="166" height="144">

<devices jtag-code="0x020B40DD">

<device name="EP2C35F672C6" />

</devices>

<!-- Input clock selection list -->

<option name="ClockPinIn" label="Clock Pin In">

<pin location="Pin_N2"/>

<pin location="Pin_N25"/>

10–6 Chapter 10: Adding a Board Library
Building the Board Library

DSP Builder User Guide © November 2008 Altera Corporation

<pin location="Pin_AE14"/>

<pin location="Pin_AF14"/>

<pin location="None"/>

</option>

<!-- Global Reset Pin -->

<option name="GlobalResetPin" label="Global Reset Pin">

<pin location="Pin_A14"/>

<pin location="Pin_AC18"/>

<pin location="Pin_AE16"/>

<pin location="Pin_AE22"/>

<pin location="None"/>

</option>

</configuration>

The configuration attributes are defined as follows:

■ icon = The image file to be used for the board configuration block

■ width = The width of the image

■ height = The height of the image

The devices sub-element has the following attributes:

■ jtag-code = The JTAG code of the FPGA device

■ device name = The device name of the FPGA used on the board

Each option sub-element has the following attributes:

■ name = The name of the option (clock or reset pin)

■ label = Labels that identifies the pins on the blocks

■ pin location = A list of selectable clock or reset pins

f Refer to any of the existing board description files for further examples.

Building the Board Library
Restart MATLAB without opening the Simulink library and run the following
command in the MATLAB command window to create the new board library:

alt_dspbuilder_createComponentLibrary

© November 2008 Altera Corporation DSP Builder User Guide

11. Using the State Machine Library

Introduction
This chapter describes the design flow used to implement a state machine in
DSP Builder.

Separate procedures are provided for “Using the State Machine Table Block” on
page 11–2 and “Using the State Machine Editor Block” on page 11–8.

1 The State Machine Table block is deprecated and should not be used
in new designs.

The example design, fifo_control_logic.mdl, contains a simple state machine used to
implement the control logic for a first-in first-out (FIFO) memory structure.

The design files for this example are installed in the <DSP Builder install path>\
DesignExamples\Tutorials\StateMachine\StateMachineTable directory.

Figure 11–1 shows the top-level schematic for the FIFO design example.

The state machine in this design example feeds the control inputs of a Dual-Port
RAM block and the inputs of an address counter.

Figure 11–1. FIFO Design Example Top-Level Schematic

11–2 Chapter 11: Using the State Machine Library
Using the State Machine Table Block

DSP Builder User Guide © November 2008 Altera Corporation

The operation of the state machine is as follows:

■ When the push input is asserted and the address counter is less than 250, the
address counter is incremented and a byte of data is written to memory.

■ When the pop input is asserted and the address counter is greater than 0, the
address counter is decremented and a byte of data is read from memory.

■ When the address counter is equal to 0, the empty flag is asserted.

■ When the address counter is equal to 250, the full flag is asserted.

Using the State Machine Table Block
The following steps show how you can use the State Machine Table block to
create the FIFO controller in the example design:

1. Add a State Machine Table block to your Simulink design and assign it a new
name. Figure 11–2 shows the default State Machine Table block. In this
example, the block is named fifo_controller.

1 You must save you model and change the default name of the State
Machine Table block before you define the state machine properties.

2. Double-click the fifo_controller block to define the state machine properties.

The State Machine Builder dialog box appears with the Inputs tab selected. The
Inputs tab displays the input names defined for your state machine and provides
an interface to allow you to add, and delete input names.

3. Delete the default input names In2, In3, In4, and In5 and enter the following
new input names:

■ count_in

■ pop

■ push

1 You can add or delete inputs but you cannot change an existing input name
directly. You cannot delete or change the reset input.

Figure 11–2. fifo_controller State Machine Table Block

Chapter 11: Using the State Machine Library 11–3
Using the State Machine Table Block

© November 2008 Altera Corporation DSP Builder User Guide

Figure 11–3 on page 11–3 shows the Inputs tab after the inputs have been defined
for the FIFO design example.

4. Click the States tab.

The States tab displays the state names defined for your state machine and
provides an interface to allow you to add, change, and delete state names. The
States tab also allows you to select the reset state for your state machine. The reset
state is the state to which the state machine transitions when the reset input is
asserted.

1 You must define at least two states for the state machine. You cannot delete
or change the name of a state while it is selected as the reset state.

5. Use the Add, Change, and Delete buttons to replace the default states S1, S2, S3,
S4, and S5 with the following states:

■ empty (reset state)

■ full

■ idle

■ pop_not_empty

■ push_not_full

Figure 11–4 shows the State Machine Builder States tab after the states have been
edited for the FIFO design example.

Figure 11–3. State Machine Builder Inputs Tab

11–4 Chapter 11: Using the State Machine Library
Using the State Machine Table Block

DSP Builder User Guide © November 2008 Altera Corporation

6. After specifying the input and state names, click the Conditional Statements tab
and use it to describe the behavior of your state machine by adding the statements
shown in Table 11–1.

Figure 11–4. State Machine Builder States Tab

Table 11–1. FIFO Controller Conditional Statements

Current State Condition Next State

empty (push=1)&(count_in!=250) push_not_full

empty (push=0)&(pop=0) idle

full (push=0)&(pop=0) idle

full (pop=1) pop_not_empty

idle (pop=1)&(count_in=0) empty

idle (push=1) push_not_full

idle (pop=1)&(count_in!=0) pop_not_empty

idle (push=1)&(count_in=250) full

pop_not_empty (push=0)&(pop=0) idle

pop_not_empty (pop=1)&(count_in=0) empty

pop_not_empty (push=1)&(count_in!=250) push_not_full

pop_not_empty (pop=1)&(count_in!=0) pop_not_empty

pop_not_empty (push=1)&(count_in=250) full

push_not_full (push=0)&(pop=0) idle

push_not_full (pop=1)&(count_in=0) empty

push_not_full (push=1)&(count_in!=250) push_not_full

push_not_full (push=1)&(count_in=250) full

push_not_full (pop=1)&(count_in!=0) pop_not_empty

Chapter 11: Using the State Machine Library 11–5
Using the State Machine Table Block

© November 2008 Altera Corporation DSP Builder User Guide

The Conditional Statements tab displays the state transition table, which contains
the conditional statements that define your state machine.

1 There must be at least one conditional statement defined in the Conditional
Statements tab.

A conditional statement consists of a current state, a condition that causes a
transition to take place, and the next state to which the state machine transitions.
The current state and next state values must be state names defined in the States
tab and can be selected from a list in the dialog box.

1 To indicate in a conditional statement that a state machine always
transitions from the current state to the next state, specify the conditional
expression to be one.

Figure 11–5 on page 11–5 shows the Conditional Statements tab, after defining the
conditional statements for the FIFO controller.

When a state machine is in a particular state, it may have to evaluate more than
one condition to determine the next state to which it transitions. If the conditions
contain a single operator, the priority is determined by the priority of the
conditional operator.

Figure 11–5. State Machine Builder Conditional Statements Tab

11–6 Chapter 11: Using the State Machine Library
Using the State Machine Table Block

DSP Builder User Guide © November 2008 Altera Corporation

Table 11–2 shows the conditional operators that can be used to define a conditional
expression.

If the conditions contain multiple operators, they are evaluated in the order that
you list them in the conditional statements table.

Table 11–3 shows the conditional statements when the current state is idle.

The condition (pop=1)&(count_in=0) is higher in the table than the condition
(push=1)&(count_in=250), therefore it has higher priority.

The condition (pop=1)&(count_in!=0) has the next highest priority and the
condition (push=1)&(count_in=250) has the lowest priority.

7. Use the Move Up and Move Down buttons to change the order of the conditional
statements, as shown in Table 11–4.

Table 11–2. Comparison Operators Supported in Conditional Expressions

Operator Description Priority Example

- (unary) Negative 1 -1

(...) Brackets 1 (1)

= Numeric equality 2 in1=5

!= Not equal to 2 in1!=5

> Greater than 2 in1>in2

>= Greater than or equal to 2 in1>=in2

< Less than 2 in1<in2

<= Less than or equal to 2 in1<=in2

& AND 2 (in1=in2)&(in3>=4)

| OR 2 (in1=in2)|(in1>in2)

Table 11–3. Idle State Condition Priority

Current State Condition Next State

idle (pop=1)&(count_in=0) empty

idle push=1 push_not_full

idle (pop=1)&(count_in!=0) pop_not_empty

idle (push=1)&(count_in=250) full

Table 11–4. Idle State Condition Priority (Reordered)

Current State Condition Next State

idle (pop=1)&(count_in=0) empty

idle (push=1)&(count_in=250) full

idle (pop=1)&(count_in!=0) pop_not_empty

idle push=1 push_not_full

Chapter 11: Using the State Machine Library 11–7
Using the State Machine Table Block

© November 2008 Altera Corporation DSP Builder User Guide

8. Click the Design Rule Check tab. You can use this tab to verify that the state
machine you defined in the previous steps does not violate any of the design rules.
Click Analyze to evaluate the design rules for your state machine. If a design rule
is violated, an error message, highlighted in red, is listed in the Analysis Results
box. If error messages appear in the analysis results, fix the errors and re-run the
analysis until no error messages appear before simulating and generating VHDL
for your design. Figure 11–6 shows the Design Rule Check tab after clicking
Analyze.

9. To save the changes made to your state machine, click OK.

The State Machine Builder dialog box closes and returns you to your Simulink
design file. The design file is automatically updated with the input and output
names defined in the previous steps.

1 You may need to resize the block to ensure that the input and state names
do not overlap and are displayed correctly.

Figure 11–7 shows the updated fifo_controller block.

Figure 11–6. State Machine Builder Design Rule Check Tab

Figure 11–7. fifo_controller Block After Closing the State Machine Table

11–8 Chapter 11: Using the State Machine Library
Using the State Machine Editor Block

DSP Builder User Guide © November 2008 Altera Corporation

Using the State Machine Editor Block
The following steps show how you can use the State Machine Editor block to
create the FIFO controller in the example design:

1. Add a State Machine Editor block to your Simulink design and assign it a
new name. Figure 11–2 shows the default State Machine Editor block. In this
example, the block is named fifo_controller.

1 You should save you model and change the default name of the State
Machine Editor block before you define the state machine properties.

2. Double-click the fifo_controller block to open the State Machine Editor in
the Quartus II software (Figure 11–9).

3. On the Tools menu in the Quartus II State Machine Editor, point to State Machine
Wizard and click Create a new state machine design.

Figure 11–8. fifo_controller State Machine Editor Block

Figure 11–9. Quartus II State Machine Editor Window

Chapter 11: Using the State Machine Library 11–9
Using the State Machine Editor Block

© November 2008 Altera Corporation DSP Builder User Guide

4. The first page of the wizard allows you to choose the reset mode, whether the reset
is active-high or active-low, and whether the outputs are registered. Accept the
default values (synchronous, active-high, registered outputs) and click Next to
display the Transitions page of the wizard.

5. Delete the default state names (state1, state2, state3) and type the following
new state names:

■ empty

■ full

■ idle

■ pop_not_empty

■ push_not_full

6. Delete the default input port names (input1, input2) and type the following
new input port names:

■ count_in[7:0]

■ pop

■ push

1 Do not change the clock and reset port names. The count_in port must
be defined as an 8-bit vector to allow count values up to 250.

7. Edit the state transitions by entering the statements shown in Table 11–1.

Table 11–5. FIFO Controller Transitions

Source State Destination State Condition

empty push_not_full (push==1)&(count_in!=250)

empty idle (push==0)&(pop==0)

full idle (push==0)&(pop==0)

full pop_not_empty (pop==1)

idle empty (pop==1)&(count_in==0)

idle push_not_full (push==1)

idle pop_not_empty (pop==1)&(count_in!=0)

idle full (push==1)&(count_in==250)

pop_not_empty idle (push==0)&(pop==0)

pop_not_empty empty (pop==1)&(count_in==0)

pop_not_empty push_not_full (push==1)&(count_in!=250)

pop_not_empty pop_not_empty (pop==1)&(count_in!=0)

pop_not_empty full (push==1)&(count_in==250)

push_not_full idle (push==0)&(pop==0)

push_not_full empty (pop==1)&(count_in==0)

push_not_full push_not_full (push==1)&(count_in!=250)

push_not_full full (push==1)&(count_in==250)

push_not_full pop_not_empty (pop==1)&(count_in!=0)

11–10 Chapter 11: Using the State Machine Library
Using the State Machine Editor Block

DSP Builder User Guide © November 2008 Altera Corporation

1 The transitions are validated on entry and must conform with Verilog HDL
syntax.

Figure 11–10 shows the Transitions page after the states, inputs, and transitions
have been defined.

8. Click Next to display the Actions page. Delete the default output port name
(output1) and enter the following new output port names:

■ out_empty

■ out_full

■ out_idle

■ out_pop_not_empty

■ out_push_not_full

Figure 11–10. State Machine Editor Wizard Transitions Page

Chapter 11: Using the State Machine Library 11–11
Using the State Machine Editor Block

© November 2008 Altera Corporation DSP Builder User Guide

9. Specify the output logic for each output port by specifying the action conditions to
set each output port to 1 when the state is true and 0 for all other states as shown in
Table 11–6.

Table 11–6. FIFO Controller Output Actions

Output Port Output Value In State

out_empty 1 empty

out_full 1 full

out_idle 1 idle

out_pop_not_empty 1 pop_not_empty

out_push_not_full 1 push_not_full

out_empty 0 full

out_empty 0 idle

out_empty 0 pop_not_empty

out_empty 0 push_not_full

out_full 0 empty

out_full 0 idle

out_full 0 pop_not_empty

out_full 0 push_not_full

out_idle 0 empty

out_idle 0 full

out_idle 0 pop_not_empty

out_idle 0 push_not_full

out_pop_not_empty 0 empty

out_pop_not_empty 0 full

out_pop_not_empty 0 idle

out_pop_not_empty 0 push_not_full

out_push_not_full 0 empty

out_push_not_full 0 full

out_push_not_full 0 idle

out_push_not_full 0 pop_not_empty

11–12 Chapter 11: Using the State Machine Library
Using the State Machine Editor Block

DSP Builder User Guide © November 2008 Altera Corporation

Figure 11–11 shows the Actions page after the output ports, and action conditions
have been defined.

10. Click Next to display the Summary page. Check that the summary lists the five
states (empty, full, idle, pop_not_empty, and push_not_full), the five
input ports (clock, count_in[7:0], pop, push, and reset), and the five
output ports (out_empty, out_full, out_idle, out_pop_not_full, and
out_push_not_full).

11. Click Finish to complete the state machine definition. The state machine is
displayed graphically in the State Editor window and should look similar to
Figure 11–12 on page 11–13.

Figure 11–11. State Machine Editor Wizard Actions Page

Chapter 11: Using the State Machine Library 11–13
Using the State Machine Editor Block

© November 2008 Altera Corporation DSP Builder User Guide

1 The first state that you entered in the wizard is marked as the default state.
This should be the empty state and is the state to which the state machine
transitions when the reset input is asserted.

12. On the Tools menu in the Quartus II State Machine Editor, click Generate HDL
File to display the Generate HDL File dialog box. Select VHDL and click OK to
confirm your choice. Click Yes to save the fifo_controller.smf file and check that
there are no FSM verification errors.

1 There should be five warning messages stating that FSM verification is
skipped in each state. These messages can be ignored.

If there are any errors, you can edit the state machine using the Properties dialog
boxes that can be displayed from the right button pop-up menu when a state or
transition is selected. You can also edit the state machine in table format by
clicking the tabs at the bottom of the State Machine Editor window.

f For information about editing state machine properties and drawing a graphical state
machine, refer to the About the State Machine Editor topic in the Quartus II online help
that is available from the Help menu in the editor window.

13. On the File menu in the Quartus II State Machine Editor, click Exit.

The fifo_controller block on your model is updated with the input and
output ports defined in the state machine.

Figure 11–12. Graphical fifo_controller State Machine Diagram

11–14 Chapter 11: Using the State Machine Library
Using the State Machine Editor Block

DSP Builder User Guide © November 2008 Altera Corporation

1 You may need to resize the block to ensure that the input and state names do not
overlap and are displayed correctly.

Figure 11–7 shows the updated fifo_controller block for the FIFO design
example.

Figure 11–13. fifo_controller Block After Closing the State Machine Editor

© November 2008 Altera Corporation DSP Builder User Guide

12. Troubleshooting

Troubleshooting Issues
This chapter contains information about resolving the issues and error conditions
listed in Table 12–1.

Loop Detected While Propagating Bit Widths
You may get an error if you have a feedback loop in your design and the feedback
loop’s bit width is not defined explicitly. Figure 12–1 shows this error.

Table 12–1. Troubleshooting Issues

Loop Detected While Propagating Bit Widths

The MegaCore Blocks Folder Does Not Appear in Simulink

The Synthesis Flow Does Not Run Properly

DSP Development Board Troubleshooting

Signal Compiler is Unable to Checkout a Valid License

SignalTap II Analysis Appears to be Hung

Error if Output Block Connected to an Altera Synthesis Block

DSP Builder Start Up Dependencies

Warning if Input/Output Blocks Conflict with clock or aclr Ports

Wiring the Asynchronous Clear Signal

Simulation Mismatch After Changing Signals or Parameters

Error Issued when a Design Includes Pre-v7.1 Blocks

Creating an Input Terminator for Debugging a Design

A Specified Path Cannot be Found or a File Name is Too Long

Incorrect Interpretation of Signed Bit in Output from MegaCores

Simulation Mismatch For FIR Compiler MegaCore Function

Unexpected Exception Error when Generating Blocks

VHDL Entity Names Change if a Model is Modified

Algebraic Loop Causes Simulation to Fail

Figure 12–1. Feedback Loop With Unresolved Width Error

12–2 Chapter 12: Troubleshooting
Troubleshooting Issues

DSP Builder User Guide © November 2008 Altera Corporation

To avoid this error, include an AltBus block configured as an internal node to specify
the bit width in the feedback loop explicitly, as shown in Figure 12–2.

The MegaCore Blocks Folder Does Not Appear in Simulink
The Simulink Library Browser may not display Altera MegaCore functions if you
installed DSP Builder before you installed the Altera MegaCore IP Library.

To fix this problem, type the following command after you have installed the Altera
MegaCore IP Library:

alt_dspbuilder_setup_megacore r

The Synthesis Flow Does Not Run Properly
The DSP Builder automated flows allow you to control your entire synthesis and
compilation flow from within the MATLAB/Simulink environment using the Signal
Compiler block. With the automated flow, the Signal Compiler block outputs
VHDL files and Tcl scripts and then automatically begins synthesis and compilation
in the Quartus II software.

If the Quartus II software does not run automatically, check the software paths and if
necessary, change the system path settings.

Check the Software Paths
If you have multiple versions of the same software product on your PC (for example,
Quartus II Web Edition and a full version of the Quartus II software), your registry
settings may point to the wrong version.

DSP Builder obtains the software path from the QUARTUS_ROOTDIR environment
variable.

Change the System Path Settings
If the paths to the software are incorrect, fix them by performing the following steps:

1. Open the Environment Variables dialog box from the Advanced tab of the
Windows System Properties dialog box. This can be opened by right clicking on
My Computer on the Desktop, or by double-clicking on System in Control Panel.

2. Make sure that system variable QUARTUS_ROOTDIR points to the correct
version of the Quartus II software. If QUARTUS_ROOTDIR does not appear in the
dialog box, create a new system variable and assign a valid value, such as
C:\Altera\<version>\quartus.

Figure 12–2. Feedback Loop With AltBus Block as an Internal Node

Chapter 12: Troubleshooting 12–3
Troubleshooting Issues

© November 2008 Altera Corporation DSP Builder User Guide

3. Check that %QUARTUS_ROOTDIR%\bin is included in the Path system variable
and located just after the Windows operating system.

4. Click OK to exit the Environment Variables and System Properties dialog boxes.

DSP Development Board Troubleshooting
If Signal Compiler does not appear to have configured the device on the DSP
development board, check the following:

■ Ensure that the board is set up and connected to your PC and you have installed
any necessary drivers. See the DSP development board’s getting started user
guide for instructions.

■ When the board is powered up, the CONF_DONE LED is illuminated. The
CONF_DONE LED turns off and then on when configuration completes
successfully. If you do not observe the LED operating in this way, configuration
was unsuccessful.

■ You can configure the DSP board manually using an SRAM Object File (.sof), a
ByteBlasterMV, ByteBlaster II, ByteBlaster, or USB-Blaster download cable, and the
Quartus II Programmer in JTAG mode. Signal Compiler generates the SRAM
object file (.sof) file in your working directory. See any of the white papers
included with the Stratix II or Stratix DSP development kit for instructions on
using a .sof file to configure the board.

Signal Compiler is Unable to Checkout a Valid License
You may receive this error message if you try to generate VHDL files and Tcl scripts
(or try to generate VHDL stimuli) without having installed a license for DSP Builder.

f For information on how to obtain a license, refer to the DSP Builder Installation and
Licensing manual.

Verifying That Your DSP Builder Licensing Functions Properly
Type the following command in the MATLAB Command Window:

dos('lmutil lmdiag C4D5_512A') r
where C4D5_512 is the DSP Builder feature ID.

This command outputs the status of the DSP Builder license.

For example, if you are using a node locked license:

lmutil - Copyright (C) 1989-2006 Macrovision Europe Ltd. and/or
Macrovision Corporation. All Rights Reserved.

FLEXnet diagnostics on Mon 8/11/2008 14:36

License file: c:\qdesigns\license.dat

"C4D5_512A" v0000.00, vendor: alterad

uncounted nodelocked license, locked to Vendor-defined
"GUARD_ID=T000001297" no expiration date

http://www.altera.com/literature/manual/mnl_dsp_install.pdf
http://www.altera.com/literature/manual/mnl_dsp_install.pdf

12–4 Chapter 12: Troubleshooting
Troubleshooting Issues

DSP Builder User Guide © November 2008 Altera Corporation

1 You receive a message about the hostid if you are using an Altera software guard for
licensing.

Alternatively, if you are using a floating license:

>> dos('lmutil lmdiag C4D5_512A')

lmutil - Copyright (c) 1989-2006 Macrovision Europe Ltd. and/or
Macrovision Corporation. All Rights Reserved.

FLEXnet diagnostics on Mon 8/11/2008 10:49

License file: node@lic_server

"C4D5_512A" v2030.12, vendor: alterad

License server: lic_server

floating license expires: 31-dec-2030

This license can be checked out

If the command does not work as described above, your license file may not be set up
correctly. For information on how to check your system path and registry settings, see
“The Synthesis Flow Does Not Run Properly” on page 12–2.

If your license file has a SERVER line, type the following command in the MATLAB
Command Window:

dos('lmutil lmstat -a') r
This command outputs the status of the DSP Builder license in the following format:

lmutil - Copyright (c) 1989-2006 Macrovision Europe Ltd. and/or
Macrovision Corporation. All Rights Reserved.

Flexible License Manager status on Mon 8/11/2008 15:36

License server status:

[Detecting lmgrd processes...]
License server status: node@lic_server

License file(s) on shama: /usr/licenses/quartus/license.dat:

lic_server: license server UP (MASTER) v10.8

Vendor daemon status (on lic_server):

alterad: UP v9.2

Feature usage info:

Users of C4D5_512A: (Total of 100 licenses issued; Total of 0 licenses
in use)

If the command does not work as described above, your license file may not be set up
correctly.

Verifying That the LM_LICENSE_FILE Variable Is Set Correctly
The LM_LICENSE_FILE system variable must point to your license.dat file that
includes the DSP Builder FEATURE line for the DSP Builder to operate properly.

Chapter 12: Troubleshooting 12–5
Troubleshooting Issues

© November 2008 Altera Corporation DSP Builder User Guide

1 If you have multiple versions of software that uses a license.dat file (for example,
Quartus II Limited Edition and a full version of the Quartus II software), make sure
that LM_LICENSE_FILE points to the version of software that you want to use with
DSP Builder.

Other software products, such as Mentor Graphics LeonardoSpectrum, also use the
LM_LICENSE_FILE variable to point to a license file. You can combine several
license.dat files into one or you can specify multiple license.dat files in the steps
below.

Perform the following steps to set the LM_LICENSE_FILE variable:

1. On the Windows Start menu point to Settings and click Control Panel.

2. Double-click the System icon in the Control Panel window.

3. In the System Properties dialog box, click the Advanced tab.

4. Click on Environment Variables.

5. Click the System Variable list to highlight it, and then click New.

6. In the Variable Name box, type LM_LICENSE_FILE.

7. In the Variable Value box, type <path to license file>\license.dat.

8. Click OK.

Verifying the Quartus II Path
Verify that the QUARTUS_ROOTDIR environment variable points at the correct
version of the Quartus II software by typing the following command in the MATLAB
Command Window:

!echo %QUARTUS_ROOTDIR% r
This command should return the path specified by the QUARTUS_ROOTDIR
environment variable. For example:

C:\altera\81\quartus

If You Still Cannot Get a License
■ Try adding the following paths to your system path:

■ quartus/bin

■ matlab/bin

■ Remove and reinstall DSP Builder. After removing DSP Builder, delete any
DSP Builder files or directories that remain in the file system to ensure that you re-
install a clean file set.

SignalTap II Analysis Appears to be Hung
The SignalTap II Embedded Logic Analyzer should terminate successfully after all
trigger conditions are met. However, if one or more of the trigger conditions are not
met, the SignalTap II analyzer does not terminate and the JTAG node remains locked.

You can either disconnect and reconnect the USB cable, or switch off the board and
switch it on again. You need to program the board again if it is powered off.

12–6 Chapter 12: Troubleshooting
Troubleshooting Issues

DSP Builder User Guide © November 2008 Altera Corporation

Error if Output Block Connected to an Altera Synthesis Block
An Output block maps to output ports in VHDL and marks the edge of the generated
system. You should normally use these blocks to connect simulation blocks (that is,
Simulink blocks) for your testbench. If you want to use DSP Builder blocks outside
your synthesizable system (such as for test bench generation or verification) put Non-
synthesizable Input and Non-synthesizable Output blocks around them.

DSP Builder Start Up Dependencies
Before version 6.0, DSP Builder did not have any explicit dependencies on the
Quartus II software. Signal Compiler could be started in DSP Builder provided
there was a version of the Quartus II software registered on the computer where DSP
Builder was running. From the version 6.0 release, DSP Builder is built using the
Quartus II libraries to share functionality that exists in the Quartus II software. This,
however, places explicit dependencies on the Quartus II versions.

DSP Builder is Simulink dependent. After installing DSP Builder, you need to register
it inside MATLAB to enable the DSP Builder features. You can then create DSP
designs using DSP Builder blocks and run Simulink simulations without any
requirements on the Quartus II software.

However, when you want to generate VHDL for the DSP design and to fit the design
onto an FPGA, DSP Builder requires the Quartus II synthesis, and Fitter tools.

The Signal Compiler tool inside DSP Build can only be started with a matching
version of the Quartus II software and explicitly depends on the correct version
libraries and DLLs from the Quartus II libraries. The second page of the Signal
Compiler dialog box does not display without a matching version of the Quartus II
software.

If Signal Compiler does not run properly, you can follow the steps given below to
check whether a compatible version of the Quartus II software is registered when DSP
Builder is run.

1. After installing DSP Builder inside MATLAB, type ver in the MATLAB command
window. The DSP Builder version and build numbers are displayed under DSP
Builder - Altera Corporation.

2. Open a DOS command prompt and type either env or set to display the
environment settings. Check that the environment variable QUARTUS_ROOTDIR
points to the correct Quartus II software installation.

3. Check the PATH environment variable to ensure that the correct version of
Quartus\bin is in the path.

4. When Cygwin is installed, make sure that it is listed after Quartus in the path.
Correct environment settings in Cygwin do not guarantee that Signal
Compiler starts properly, as DSP Builder relies on DOS settings rather than
Cygwin. (When MATLAB is started from a Cygwin command prompt window,
system env in the MATLAB command window only reflects the Cygwin
settings.)

5. If there are any other operation systems, such as WinVar, installed on top of
Windows, make sure that they are listed after Quartus in the PATH environment
variable.

Chapter 12: Troubleshooting 12–7
Troubleshooting Issues

© November 2008 Altera Corporation DSP Builder User Guide

Warning if Input/Output Blocks Conflict with clock or aclr Ports
A warning is issued if an input or output port has the same name as a clock or reset
signal used in the model. For example if your design has an input port named aclr,
this is the same name as the default system reset and the following warning is issued
during analysis:

Warning: aclrInputPortTest/aclr has been renamed to avoid conflict:
aclr has been renamed to aclr_1:

The input port is renamed during HDL conversion. If you want to keep the port called
aclr, you should add a Clock block and use it to rename the name used for the reset
port.

Wiring the Asynchronous Clear Signal
The asynchronous clear signal should be wired via a register to make sure that the end
of the aclr cycle is synchronized with the clock as shown in Figure 12–3.

1 A design may not match the hardware if an asynchronous clear is performed during
simulation because the aclr cycle may last several clocks - depending on clock speed
and the device.

Simulation Mismatch After Changing Signals or Parameters
The simulation results may not match unless you delete the previous testbench
directory (tb_<model name>) before re-running a testbench comparison after changing
any signal names or parameters.

Error Issued when a Design Includes Pre-v7.1 Blocks
An error of the following form is issued if you attempt to simulate a design which
includes un-upgraded pre-v7.1 blocks:

Data type mismatch. Input port 1 of '<old block>' expects a signal
of data type 'double'. However, it is driven by a signal of data type
'DSPB_Type'.

f Refer to the DSP Builder Installation and Licensing manual for information about
upgrading your designs.

Figure 12–3. Wiring the Asynchronous Clear Signal

http://www.altera.com/literature/manual/mnl_dsp_install.pdf

12–8 Chapter 12: Troubleshooting
Troubleshooting Issues

DSP Builder User Guide © November 2008 Altera Corporation

Creating an Input Terminator for Debugging a Design
If there is a problem somewhere in a design, it can be useful to disconnect some
subsystems so that you can analyze a small portion of the design. This may cause bit
width propagation and inheritance problems.

You can avoid these problems by inserting a Non-synthesizable Output block
followed immediately by a Non-synthesizable Input block. This combination
functions as a temporary input terminator and can be removed after the design has
been debugged.

A Specified Path Cannot be Found or a File Name is Too Long
The maximum length for a path is limited to 256 characters in the Windows operating
system.

When the file path to a model or the name of the model is very long, DSP Builder may
attempt to create a file path exceeding this limit.

If this problem occurs, reduce the length of the file path to the model, and/or the
length of its name.

Incorrect Interpretation of Signed Bit in Output from MegaCores
For some MegaCore functions, DSP Builder may be unable to infer whether output
signals should be interpreted as signed or unsigned. This can cause problems when
visualizing the output (for example, by directly attaching scopes), when the signal
waveform may be obscured due to the misinterpretation of the highest bit.

This can be corrected by connecting to the output via an AltBus block or a Non-
synthesizable Output block (as appropriate) with the correct bus type
assignment.

Simulation Mismatch For FIR Compiler MegaCore Function
Functional simulation models generated by a FIR Compiler MegaCore function
generally do not output valid data until the data storage of these models is clear.

f Refer to the Simulate the Design section in the FIR Compiler User Guide for more
information including a formula which can be used to estimate the number of cycles
required before relevant samples are available.

Unexpected Exception Error when Generating Blocks
Errors of the following form may be issued when you generate a DSP Builder system:

Info: IP Generator Info: stderr: No clock info for
my_alt_dspbuilder_clock

Info: IP Generator Info: stderr: Failed to find clock
my_alt_dspbuilder_clock

Info: IP Generator Info: stderr: Failed to find clock
my_alt_dspbuilder_clock

Error: IP Generator Error: Unexpected exception thrown by MDLFactory:
java.lang.NullPointerException

http://www.altera.com/literature/ug/fircompiler_ug.pdf

Chapter 12: Troubleshooting 12–9
Troubleshooting Issues

© November 2008 Altera Corporation DSP Builder User Guide

Error: Node instance "dut" instantiates undefined entity
"TestBarrelShifter" File: <path>/mytoplevel.vhd Line: 30

This problem is caused by corrupted Librarian IP cache and can be resolved by
deleting the IP cache directory which is normally located at:

C:\Documents and Settings\<user>\.altera.quartus\ip_cache

VHDL Entity Names Change if a Model is Modified
The VHDL files generated by Signal Compiler have a random number suffix
appended to the file if the model is modified.

For example, if you change the pipeline delay on a Delay block, the corresponding
VHDL file: alt_dspbuilder_delay_<randomnumber> changes, while the VHDL file
name for the rest of the blocks in the model remain the same.

This may be a problem if you have project assignments to a specific entity. This
problem can be solved by using a regular expression in the project assignments as
described in “Making Quartus II Assignments to Block Entity Names” on page 3–26.

Algebraic Loop Causes Simulation to Fail
HDL Import and IP Toolbench-based MegaCore function blocks provide an interface
for changing the direct feedthrough settings of their inputs.

Algebraic loops are loops entirely comprised of blocks having some inputs which are
direct feedthrough, that is, inputs that have a purely combinational path to at least
one output of the block.

f For more information about algebraic loops, refer to the MATLAB help.

The feature to automatically infer the correct direct feedthrough values is disabled by
default for HDL Import (and all inputs are by treated as direct feedthrough). It can be
enabled by typing the following command in the MATLAB command window:

set_param(<HDL Import block name>, 'use_dynamic_feedthrough_data', 'on')

The direct feedthrough settings for the HDL Import block are updated after a
successful compile of the HDL when this parameter is on.

1 This feature is not guaranteed to generate correct settings when importing
low-level LPM-based HDL.

A more direct method of changing the direct feedthrough settings is to modify the
InDelayed parameter on HDL Import or MegaCore function blocks, using the
following command:

set_param(<block name>, 'inDelayed', <feedthrough setting>)

For example, if the block is named My_HDL:

set_param(<My_HDL>, 'inDelayed', '1 0 0 1')

A valid value of this parameter is a series of digits, one for each of the inputs on the
block (from top to bottom), with a 0 indicating direct feedthrough, and a 1 indicating
that all paths to outputs from this input are registered.

12–10 Chapter 12: Troubleshooting
Troubleshooting Issues

DSP Builder User Guide © November 2008 Altera Corporation

1 Specifying a value of 1 for an input, when it is in fact direct feedthrough,
causes Simulink to treat combinational paths as registered, and results in
incorrect simulation results.

It is possible to adjust the order in which Simulink exercises all the blocks in a
feedback loop, by giving blocks a priority value. This is useful if you know which
block is providing the correct initial values.

The priority of a block can be set using the General tab in the block properties for a
block. A lower value of priority causes a block to be executed before a block with a
higher value.

© November 2008 Altera Corporation DSP Builder User Guide

Additional Information

Revision History
The table below displays the revision history for the chapters in this user guide.

Date Version Changes Made

November 2008 8.1 Applied new technical publications style. Removed obsolete Simulation Accelerator chapter.
Updated HIL block user interface. Miscellaneous GUI updates.

May 2008 8.0 Revised introduction and design flow section, added new procedure sections for “Displaying
Port data Types”, “Displaying the Pipeline Depth”, “Adding Quartus II Constraints”. and
“Analyzing the Hardware Resource Usage”, Managing Projects and Files”, and “Exporting
HDL”, Added procedures for using the Quartus II state machine editor.

October 2007 7.2 Minor updates to all chapters. Added a new chapter which describes how to create a custom
board library.

June 2007 7.1 SP1 Updated various out-of-date screenshots and other minor corrections.

May 2007 7.1 Major updates to all chapters. New Using the Simulator Accelerator chapter.

March 2007 7.0 Updated for version 7.0 of the Quartus® II software.

December 2006 6.1 SOPC Builder Links library renamed as Interfaces library with the Avalon® blocks renamed
as Avalon Memory-Mapped (Avalon-MM) interface blocks. New tbdiff comparison utility and
updated description of the dspbuilder_sh utility. Updated the MegaCore® function
walkthrough.

April 2006 6.0 Updates for using MATLAB variables, additional Avalon signal and custom instruction
support. Moved the example Tcl script appendix from reference manual.

January 2006 5.1 SP1 Updated the Tutorial, Design Rules, Using Hardware in the Loop, Performing SignalTap II
Logic Analysis, Using the State Machine Library chapters, and Creating Custom Library
Blocks chapters. Various other minor content and format corrections.

October 2005 5.1.0 Updated the Tutorial, Design Rules, Using MegaCore Functions, Using SOPC Builder Links
(new Avalon blocks), Using Black Boxes (new HDL Import block), Creating Custom Library
Blocks, and the Troubleshooting chapters.

August 2005 5.0.1 Added support for the Stratix® II EP2S180 DSP Development board.

April 2005 5.0.0 Updated version from 3.0.0 to 5.0.0. Added support for the Cyclone® II DSP board.
Removed the “Supporting Custom Boards with DSP Builder” chapter.

January 2005 3.0.0 Added support for Hardware in the Loop (HIL).

Added additional blocks and design examples.

August 2004 2.2.0 Added support for use of MegaCore® functions and Cyclone II and Stratix® II devices.

July 2003 2.1.3 Split the documentation into two books, the DSP Builder User Guide, which provides how-to
information, and the DSP Builder Reference Manual, which provides design rules and block
reference.

April 2003 2.1.2 Added information on the Stratix DSP Board EP1S80 library. Minor additional changes.

February 2003 2.1.1 Added information on using DSP Builder modules in external RTL designs. Added
information on creating custom library blocks. Additional minor documentation updates.

December 2002 2.1.0 Added support for Stratix GX devices, Cyclone devices, the state machine, and PLL blocks.
Added information and walkthrough for the DSP board, the PLL block, and Simulink v5.0.
Updated information on the Signal Compiler block.

Part Number ######

1–2 Additional Information
How to Contact Altera

DSP Builder User Guide © November 2008 Altera Corporation

How to Contact Altera
For the most up-to-date information about Altera® products, see the following table.

Typographic Conventions
The following table shows the typographic conventions that this document uses.

June 2002 2.0.0 Updated information on the Signal Compiler block. Added information and walkthrough for
the SignalTap® blocks. Added block descriptions for new arithmetic, storage, DSP board,
complex signals, and SOPC blocks. Described support for Stratix devices. Updated the
tutorial.

October 2001 1.0 First version of the user guide for DSP Builder version 1.0.0.

Date Version Changes Made

Contact (Note 1)
Contact
Method Address

Technical support Website www.altera.com/support

Technical training Website www.altera.com/training

Email custrain@altera.com

Altera literature services Email literature@altera.com

Non-technical support (General) Email nacomp@altera.com

(Software Licensing) Email authorization@altera.com

Note:

(1) You can also contact your local Altera sales office or sales representative.

Visual Cue Meaning

Bold Type with Initial Capital
Letters

Indicates command names, dialog box titles, dialog box options, and other GUI
labels. For example, Save As dialog box.

bold type Indicates directory names, project names, disk drive names, file names, file name
extensions, and software utility names. For example, \qdesigns directory, d: drive,
and chiptrip.gdf file.

Italic Type with Initial Capital Letters Indicates document titles. For example, AN 519: Stratix IV Design Guidelines.

Italic type Indicates variables. For example, n + 1.

Variable names are enclosed in angle brackets (< >). For example, <file name> and
<project name>.pof file.

Initial Capital Letters Indicates keyboard keys and menu names. For example, Delete key and the Options
menu.

“Subheading Title” Quotation marks indicate references to sections within a document and titles of
Quartus II Help topics. For example, “Typographic Conventions.”

http://www.altera.com/support
http://www.altera.com/training
mailto:custrain@altera.com
mailto:literature@altera.com
mailto:nacomp@altera.com
mailto:authorization@altera.com

Additional Information 1–3
Other Documentation

© November 2008 Altera Corporation DSP Builder User Guide

Other Documentation
Refer to the DSP Builder Reference Manual for a description of the parameters
supported by each of the blocks inthe DSP Builder standard blockset.

Refer to the DSP Builder Advanced Blockset Reference Manual for a description of the
parameters supported by each of the blocks inthe DSP Builder advanced blockset.

1 The block descriptions can also be accessed in HTML format from the right mouse
menu in a design model or in the Simulink library browser.

Refer to the DSP Builder Advanced Blockset User Guide for user information and
descriptions of the example designs provided with the advanced blockset.

Refer to the DSP Builder Installation and Licensing manual for information about
system requirements, obtaining and installing the software, setting up licensing, and
upgrading from a pre-v7.1 release.

Refer to the DSP Builder Release Notes and Errata for information about new features,
known errata issues and workarounds.

Courier type Indicates signal, port, register, bit, block, and primitive names. For example, data1,
tdi, and input. Active-low signals are denoted by suffix n. Example: resetn.

Indicates command line commands and anything that must be typed exactly as it
appears. For example, c:\qdesigns\tutorial\chiptrip.gdf.

Also indicates sections of an actual file, such as a Report File, references to parts of
files (for example, the AHDL keyword SUBDESIGN), and logic function names (for
example, TRI).

1., 2., 3., and
a., b., c., and so on.

Numbered steps indicate a list of items when the sequence of the items is important,
such as the steps listed in a procedure.

■ ■ Bullets indicate a list of items when the sequence of the items is not important.

1 The hand points to information that requires special attention.

c A caution calls attention to a condition or possible situation that can damage or
destroy the product or your work.

w A warning calls attention to a condition or possible situation that can cause you
injury.

r The angled arrow instructs you to press the Enter key.

f The feet direct you to more information about a particular topic.

Visual Cue Meaning

http://www.altera.com/literature/manual/mnl_dsp_builder.pdf
http://www.altera.com/literature/rn/rn_dsp_builder.pdf
http://www.altera.com/literature/manual/mnl_dsp_install.pdf
http://www.altera.com/literature/manual/mnl_dsp_builder_adv.pdf
http://www.altera.com/literature/ug/ug_dsp_builder_adv.pdf

1–4 Additional Information
Other Documentation

DSP Builder User Guide © November 2008 Altera Corporation

© November 2008 Altera Corporation DSP Builder User Guide

Index

Symbols
.hex file 3–29
.mdl file 1–3
.qar file 3–27
.qip file 3–28

A
alt_dspbuilder_createComponentLibrary

Create component library command 10–6
alt_dspbuilder_exportHDL command 3–29
alt_dspbuilder_refresh_hdlimport

Update HDL command 3–24
alt_dspbuilder_refresh_megacore

Update MegaCore command 4–2
alt_dspbuilder_refresh_user_library_blocks

Update user libraries command 9–9
alt_dspbuilder_setup_megacore

Setup MegaCore command 4–2
Altera Quartus II software 1–2

Integration with MATLAB 1–3
asynchronous clear signal

wiring 12–7
Automatic flow 3–18
Avalon-MM interface

Blocks walkthrough 7–9
Features 1–2
FIFO walkthrough 7–17
Master block 7–4
Read FIFO 7–8
Slave block 7–2
SOPC Builder integration 7–1
Write FIFO 7–6

Avalon-ST interface
Features 1–2
SOPC Builder integration 7–21

B
Bit width design rule 3–4
Black box

Explicit 8–1
explicit 3–21
HDL import

Walkthrough 8–1
Implicit 8–1
implicit 3–21
Subsystem Builder

Walkthrough 8–6
Using HDL import 8–1

Using SubSystem Builder 8–1

C
Clock

Setting the base clock 1–4
Clock assignment 3–10
Clocking 3–7

Categories 3–11
Clock enable signal 3–7
Configuration parameters 1–5
Global reset 3–16
HDL simulation models 3–15
Multiple clock domains 3–8
Sampling period 3–8
Simulink simulation model 3–15
Single clock domain 3–7
Timing relationships 3–17
Using a PLL block 3–13
Using advanced PLL features 3–15
Using Clock and Clock_Dervied blocks 3–10

Controlling synthesis and compilation 3–18
Custom library

Adding to the library browser 9–8
Creating a library model file 9–1
Walkthrough 9–1

D
Data width propagation 3–4
Design flow 1–3

Control using SignalCompiler 3–18
Overview 1–3
Using a State Machine Editor block 11–8
Using a State Machine Table Block 11–2
Using hardware in the loop 5–1
Using MegaCore functions 4–3

Design rules 3–1
Bit width 3–4
Frequency 3–7
SignalCompiler 3–18

Device family support 1–1
Digital signal processing (DSP) 1–3

E
Error message

Data type mismatch 12–7
Loop while propagating bit widths 12–1
Output connected to Altera block 12–6

Example designs

Index–2

DSP Builder User Guide © November 2008 Altera Corporation

Custom library block 9–1
Getting started tutorial 2–1
Hardware in the loop 5–3
HDL import 8–1
SignalTap II 6–3
SOPC Builder peripheral 7–9
State machine example 11–1

F
Frequency

Design Rules 3–7

G
Generating a Testbench 2–19

H
Hardware in the loop (HIL) 1–2

Burst & frame modes 5–7
Design flow 5–1
Overview 5–1
Requirements 5–2
Walkthrough 5–3

HDL export 3–29
HDL import

Black box 8–1
Features 1–2
Updating 3–24
Walkthrough 8–1

Hierarchical design 3–19

M
Manual flow 3–18
MathWorks 1–2
MATLAB 1–2

Integration with 1–3
Opening the Simulink library browser 2–1
Using a base or masked subsystem variable 3–1

MegaCore function 1–3
Design flow 4–3
Device family 4–7
Feedback loop 4–5
Generating a variation 4–4
Installing 4–1
OpenCore Plus evaluation 4–1
Optimizing 4–4
Parameterizing 4–3
Setting block priority 4–5
Signal Compiler 4–7
Simulating 4–4
Simulating in the tutorial design 4–15
Updating variations 4–2
Version numbers 4–2
Walkthrough 4–8

Memory block types 1–1
Model

Creating 2–1
Performing RTL simulation 2–19
Simulating in Simulink 2–16

N
Naming conventions 3–1
Nios II

Support 1–2
Notation

Binary point location 3–3
Fixed-point 3–2

P
Pipeline depth

display 3–23
PLL clocks

device support 3–13
Port data type

display format 3–23

R
Reset

Asynchronous 3–16
global 3–16, 3–16

Resource usage
Analyzing 3–24

S
Signal data type

display format 3–23
SignalCompiler 3–18

Adding to a model 2–18
Enabling SignalTap II options 6–7
License 12–3
Synthesis and compilation flows 3–18

SignalTap II logic analyzer 6–1
Features 1–2
Performing logic analysis 6–1
SignalCompiler options 6–7
Trigger conditions 6–9

Simulation 2–19
Setting the Simulink solver 1–5
Using Simulink 2–16

Simulation flow 3–18
Simulink 1–3
Solver

Setting simulation parameters 1–5
SOPC Builder

Interfaces library 7–1
Support 1–2

State machine

Index–3

© November 2008 Altera Corporation DSP Builder User Guide

Implementing 11–1
State Machine Editor

Walkthrough 11–8
State Machine table

Walkthrough 11–2
Subsystem Builder

Walkthrough 8–6

T
TestBench

Adding to a model 2–19
Tutorial 2–1

U
Using ModelSim 2–19

W
Walkthrough

Avalon-MM blocks 7–9
Avalon-MM FIFO 7–17
Black box

HDL import 8–1
Subsystem Builder 8–6

Custom library 9–1
Hardware in the loop 5–3
MegaCore function 4–8
State Machine Editor 11–8
State Machine Table 11–2

Index–4

DSP Builder User Guide © November 2008 Altera Corporation

	DSP Builder User Guide
	Contents
	1. About DSP Builder
	Release Information
	Device Family Support
	Memory Options

	Features
	Installing DSP Builder
	General Description
	High-Speed DSP with Programmable Logic

	Design Flow
	Interoperability with the Advanced Blockset

	2. Getting Started Tutorial
	Introduction
	Creating the Amplitude Modulation Model
	Create a New Model
	Add the Sine Wave Block
	Add the SinIn Block
	Add the Delay Block
	Add the SinDelay and SinIn2 Blocks
	Add the Mux Block
	Add the Random Bitstream Block
	Add the Noise Block
	Add the Bus Builder Block
	Add the GND Block
	Add the Product Block
	Add the StreamMod and StreamBit Blocks
	Add the Scope Block
	Add a Clock Block

	Simulate Your Model in Simulink
	Compiling the Design
	Performing RTL Simulation
	Adding the Design to a Quartus II Project
	Creating a Quartus II Project
	Add the DSP Builder Design to the Project

	3. Design Rules and Procedures
	DSP Builder Naming Conventions
	Using a MATLAB Variable
	Fixed-Point Notation
	Binary Point Location in Signed Binary Fractional Format

	Bit Width Design Rule
	Data Width Propagation
	Tapped Delay Line
	Arithmetic Operation

	Frequency Design Rules
	Single Clock Domain
	Multiple Clock Domains
	Using Clock and Clock_Derived Blocks
	Clock Assignment
	Using the PLL Block
	Using Advanced PLL Features

	Timing Semantics Between Simulink and HDL Simulation
	Simulink Simulation Model
	HDL Simulation Models
	Startup & Initial Conditions
	DSP Builder Global Reset Circuitry
	Reference Timing Diagram

	Signal Compiler and TestBench Blocks
	Design Flows for Synthesis, Compilation and Simulation

	Hierarchical Design
	Goto and From Block Support
	Black Boxing and HDL Import
	Using a MATLAB Array or HEX File to Initialize a Block
	Comparison Utility
	Adding Comments to Blocks
	Adding Quartus II Constraints
	Displaying Port Data Types
	Displaying the Pipeline Depth
	Updating HDL Import Blocks
	Analyzing the Hardware Resource Usage
	Loading Additional ModelSim Commands
	Making Quartus II Assignments to Block Entity Names
	Managing Projects and Files
	Integration with Source Control Systems
	HDL Import
	MegaCore Functions
	Memory Initialization (.hex) Files

	Exporting HDL
	Using Exported HDL

	4. Using MegaCore Functions
	Introduction
	MegaCore Function Libraries

	Installing MegaCore Functions
	Updating MegaCore Function Variation Blocks
	Design Flow Using MegaCore Functions
	Place the MegaCore Function in the Simulink Model
	Parameterize the MegaCore Function Variation
	Generate the MegaCore Function Variation
	Connect Your MegaCore Function Variation Block to Your Design
	Simulate the MegaCore Function Variation in Your Model

	Design Issues When Using MegaCore Functions
	Simulink Files Associated with a MegaCore Function
	Simulating MegaCore Functions That Have a Reset Port
	Using Feedback Between MegaCore Functions
	Setting the Device Family for MegaCore Functions

	MegaCore Function Walkthrough
	Create a New Simulink Model
	Add the FIR Compiler Function to Your Model
	Parameterize the FIR Compiler Function
	Generate the FIR Compiler Function Variation
	Add Stimulus and Scope Blocks to Your Model
	Simulate Your Design in Simulink
	Compile the Design
	Perform RTL Simulation

	5. Using Hardware in the Loop (HIL)
	Introduction
	HIL Design Flow
	HIL Requirements
	HIL Walkthrough
	Burst & Frame Modes
	Using Burst Mode
	Using Frame Mode

	Troubleshooting HIL Designs
	Failed to Load the Specified Quartus II Project
	Project Not Compiled Through the Quartus II Fitter
	Quartus II Version Mismatch
	Quartus II Project File is Not Up-to-Date

	No Inputs Found From the Quartus II Project
	No Outputs Found From the Quartus II Project
	HIL Design Stays in Reset During Simulation
	HIL Compilation Appears to be Hung

	6. Performing SignalTap II Logic Analysis
	Introduction
	SignalTap II Design Flow
	SignalTap II Nodes
	SignalTap II Trigger Conditions

	SignalTap II Walkthrough
	Open the Walkthrough Example Design
	Add the Configuration and Connector Blocks
	Specify the Nodes to Analyze
	Turn On the SignalTap II Option in Signal Compiler
	Specify the Trigger Levels
	Perform SignalTap II Analysis

	7. Using the Interfaces Library
	Introduction
	Avalon-MM Interface
	Avalon-MM Interface Blocks
	Avalon-MM Slave Block
	Avalon-MM Master Block
	Wrapped Blocks
	Avalon-MM Write FIFO
	Avalon-MM Read FIFO

	Avalon-MM Interface Blocks Walkthrough
	Add Avalon-MM Blocks to the Example Design
	Verify Your Design
	Instantiate Your Design in SOPC Builder

	Avalon-MM FIFO Walkthrough
	Open the Walkthrough Example Design
	Compile the Design
	Instantiate Your Design in SOPC Builder

	Avalon-ST Interface
	Avalon-ST Packet Formats
	Avalon-ST Packet Format Converter

	8. Using Black Boxes for HDL Subsystems
	Introduction
	Implicit Black Box Interface
	Explicit Black Box Interface

	HDL Import Walkthrough
	Import Existing HDL Files
	Simulate the HDL Import Model using Simulink

	Subsystem Builder Walkthrough
	Create a Black Box System
	Build the Black Box SubSystem Simulation Model
	Simulate the Subsystem Builder Model
	Add VHDL Dependencies to the Quartus II Project and ModelSim
	Simulate the Design in ModelSim

	9. Using Custom Library Blocks
	Introduction
	Creating a Custom Library Block
	Create a Library Model File
	Build the HDL Subsystem Functionality
	Define Parameters Using the Mask Editor
	Link the Mask Parameters to the Block Parameters
	Make the Library Block Read Only
	Add the Library to the Simulink Library Browser

	Synchronizing a Custom Library

	10. Adding a Board Library
	Introduction
	Creating a New Board Description
	Predefined Components
	Component Types

	Component Description File
	Example Component Description File:

	Board Description File
	Header Section
	Board Description Section

	Building the Board Library

	11. Using the State Machine Library
	Introduction
	Using the State Machine Table Block
	Using the State Machine Editor Block

	12. Troubleshooting
	Troubleshooting Issues
	Loop Detected While Propagating Bit Widths
	The MegaCore Blocks Folder Does Not Appear in Simulink
	The Synthesis Flow Does Not Run Properly
	Check the Software Paths
	Change the System Path Settings

	DSP Development Board Troubleshooting
	Signal Compiler is Unable to Checkout a Valid License
	Verifying That Your DSP Builder Licensing Functions Properly
	Verifying That the LM_LICENSE_FILE Variable Is Set Correctly
	Verifying the Quartus II Path
	If You Still Cannot Get a License

	SignalTap II Analysis Appears to be Hung
	Error if Output Block Connected to an Altera Synthesis Block
	DSP Builder Start Up Dependencies
	Warning if Input/Output Blocks Conflict with clock or aclr Ports
	Wiring the Asynchronous Clear Signal
	Simulation Mismatch After Changing Signals or Parameters
	Error Issued when a Design Includes Pre-v7.1 Blocks
	Creating an Input Terminator for Debugging a Design
	A Specified Path Cannot be Found or a File Name is Too Long
	Incorrect Interpretation of Signed Bit in Output from MegaCores
	Simulation Mismatch For FIR Compiler MegaCore Function
	Unexpected Exception Error when Generating Blocks
	VHDL Entity Names Change if a Model is Modified
	Algebraic Loop Causes Simulation to Fail

	Additional Information
	Revision History
	How to Contact Altera
	Typographic Conventions
	Other Documentation

	Index

