
WP279 (v1.0) July 18, 2008 www.xilinx.com 1

© 2008 Xilinx, Inc. XILINX, the Xilinx logo, Virtex, Spartan, ISE, and other designated brands included herein are trademarks of Xilinx in the United States and other countries.
All other trademarks are the property of their respective owners.

Many designers feel uncomfortable at the mention of
digital signal processing (DSP). The approach to DSP
adopted in this white paper is intended to instill
confidence in designers who are implementing DSP
algorithms in their designs, resulting in more
efficient hardware implementations. Rather than
beginning with mathematical descriptions of a
system, designers can learn how simple functions in
the analog world can be modeled and then can
convert those functions into digital representations.

This white paper examines how to remove the DC
content from a digitally sampled waveform using
DSP without complicated mathematics. The first half
of the white paper examines DSP in a qualitative
manner and illustrates how to create a circuit capable
of performing the required signal processing. The
second half describes how to optimize the derived
function for use in audio telecommunications
applications using SRL16Es.

White Paper: Xilinx FPGAs

WP279 (v1.0) July 18, 2008

Digitally Removing a DC Offset:
DSP Without Mathematics

By: Ken Chapman

R

http://www.xilinx.com

2 www.xilinx.com WP279 (v1.0) July 18, 2008

Creating the Circuit
R

Creating the Circuit
This section of the white paper presents a brief discussion of digital signal processing
and describes a method of creating a circuit that can perform DSP. The circuit is
implemented using a Spartan®-3 generation device, although Virtex® devices can be
used as well.

Sampled Waveforms
DSP utilizes digital samples, which are numbers that represent the amplitude of a
waveform and are taken at regular intervals. These samples are normally the result of
an Analog-to-Digital Converter (ADC) that generates values of a given number of bits
(resolution) at a sample rate set by a sample clock.

In the upper plot of Figure 1, an analog waveform is applied to the ADC. The input
signal should remain within the specified input voltage swing of the ADC (in this case,
±1 volt). The ADC samples this waveform at a frequency (fs) that is relatively fast in
comparison to the frequency content of the signal. (Nyquist theory requires the
waveform to be sampled at a rate at least twice that of the highest frequency present.)

In the lower plot of Figure 1, the actual digital samples provided by the ADC are
shown as red dots. In this plot, the most important part of DSP has occurred. In this
case, the samples are represented by 8-bit numbers. A two’s complement format is
used to represent both positive and negative quantities. The first values of the plot are
+104, +80, +31, –19, –48, and –44. These can be represented in hexadecimal as 68, 50,

X-Ref Target - Figure 1

Figure 1: Test Signal Formed of 800 Hz and 960 Hz Components with a DC Offset

0
t

+1V

–1V

ADC
8-Bit SamplesfS = 8 KHz

WP279_01_061108

0
t

+127

–128

http://www.xilinx.com

Creating the Circuit

WP279 (v1.0) July 18, 2008 www.xilinx.com 3

R

1F, ED, D0, and D4. Thus, DSP essentially involves working with a stream of numerical
data and manipulating it in some way.

Although the only information available to work with are the values represented by
the red dots, the shape of the waveform can be made more apparent by joining the
dots with lines. Although an analog waveform then becomes more apparent, it would
be less pure than it originally was (this forms the essence of quantization noise).

The waveform plots in Figure 2 contain high frequency components of some kind
(800 Hz and 960 Hz in this test case). The waveform spends a greater percentage of
time above the zero axis than it does below it, indicating some kind of positive DC
bias. This is clearly seen in the digital plot because there are many more positive red
dots than negative.

Generally speaking, a DC offset such as this is undesirable because it means that the
positive peaks of the waveform are more likely to exceed the maximum level that can
be represented. In the ideal world, the DC offset would be removed before the
analog-to-digital (A/D) conversion; however, this can be difficult to achieve. Indeed,
the analog components could have unintentionally inserted the DC bias as part of the
signal amplification and conditioning.

Removing the DC Offset
Given that a DC offset has a frequency of zero, the DC offset can, theoretically, be
removed by the use of a high-pass filter. This can lead to full-scale DSP and
investigation of such things as Finite Impulse Response (FIR) filters. However, this
white paper takes a more empirical approach to solving the problem of DC offsets by
avoiding as much math as possible and finding a much easier and cost-effective
implementation.

If the DC offset level is known, it is possible to remove it with a simple subtraction. In
the example discussed here, the DC offset of the digital samples is determined to be
+19. Thus, each input sample from the ADC must have a value of +19 subtracted from
it. The output from the subtracter is the waveform without any DC offset (Figure 3).
This is an example of DSP, because a stream of digital samples has been manipulated
to form new samples. The value of the first sample is +104 – 19 = +85.

X-Ref Target - Figure 2

Figure 2: Digital Samples Joined Together to Form an Analog Signal

0
t

+127

–128 WP279_02_061108

http://www.xilinx.com

4 www.xilinx.com WP279 (v1.0) July 18, 2008

Creating the Circuit
R

Thus, it is seen that a subtracter can be an important DSP function. (The subtracter is
also very well-supported by Virtex and Spartan devices.) As with the basic adder
function, each slice of the configurable logic block (CLB) can implement a 2-bit
subtracter. Therefore, a simple 8-bit subtracter requires four slices. Because this is such
a basic function, it is supported well in many design flows, including HDL and System
Generator.

Finding the DC Level
Although the DC offset was removed with the subtracter, the process relied on an
arbitrary DC value. Therefore, a method of automatically deriving the DC offset value
needs to be determined. Although this is a little more complicated, an empirical
approach can again be taken to finding a solution with another very common
function, and thereby avoid a lot of DSP theory.

In the analog world, the simplest way to find the average DC level of a signal is to
smooth it with a capacitor (Figure 4). The larger the value of the smoothing capacitor,
the steadier the DC level, especially if there is a load current.

In theory, a differential equation must be used to solve this simple circuit. However, if
only an instant in time is considered, then simple linear equations can be used.

The voltage across the resistor R is given by vi – vo. Equation 1 defines the current ic
flowing into the capacitor.

Equation 1

If the input voltage is higher than the average value vo, the capacitor charges.
Likewise, if the input voltage is lower than the average value, the current is negative
(flowing out of the capacitor), and the capacitor discharges.

Equation 2 provides the linear equation for the charge Q on a capacitor.

Equation 2

X-Ref Target - Figure 3

Figure 3: Digital Samples Input into a Subtracter to Remove DC Offset

0

WP279_03_061108

0
8

+19 (DC Offset Value)

8
+

–

X-Ref Target - Figure 4

Figure 4: RC Circuit Used to Determine the DC Level of a Digital Signal

WP279_04_061108

vi iC

R
ILOAD = 0

vo

ic
vi vo–

R
---------------=

Q C V× I T×= =

http://www.xilinx.com

Creating the Circuit

WP279 (v1.0) July 18, 2008 www.xilinx.com 5

R

So, for a constant current I for a period of time T, the voltage V on the capacitor rises by
an amount indicated by Equation 3.

Equation 3

The larger the value of C, the smaller the change in voltage for a given current and
time. (∇ means “change in.”) This means that a final formula can be derived that
describes this simple RC circuit (Equation 4).

Equation 4

Equation 4 is actually a simple linear equation. During a period of time ∇T, the voltage
across the capacitor changes by an amount proportional to the difference between the
input and output voltages. This equation is only valid if the duration of time ∇T is so
small that the voltage change ∇Vo does not significantly change the value of vi – vo.

By using a constant value k, which is set by the combination of R, C, and the period of
time ∇T over which each calculation is made, Equation 4 can be simplified to
Equation 5.

Equation 5

At the end of each period, the output voltage becomes the previous value of vo plus the
incremental value ∇Vo (Equation 6).

Equation 6

Where k =∇T/(R × C).

A simple experiment can be tried to prove this formula. If R = 50Ω, C = 100 μF (a time
constant of R × C = 5 ms), and ∇T = 1 ms, then k = 0.2. By applying a simple 10V step
input, the calculated output for each step of time generates the exponential charge
curve expected for such an RC circuit, as shown in Figure 5.

Of interest is that a set of values has been calculated at regular intervals using a simple
linear equation to describe a complex differential function. Because the points are

X-Ref Target - Figure 5

Figure 5: Exponential Charge Curve for RC Circuit

V I T×
C

------------=

∇ Vo
∇ T

R C×
--------------- vi vo–()×=

∇ Vo k vi vo–()×=

Vo' Vo k vi vo–()×+=

10

9

8

7

6

5

4

3

2

1

0
0 1 2 3 4 5 6 7 8

Time (ms)

9 10 11 12

WP279_05_061108

vi

vi – vo

vo

0.2 (vi – vo)

vo = vi (1 – e –t/CR)

http://www.xilinx.com

6 www.xilinx.com WP279 (v1.0) July 18, 2008

Creating the Circuit
R

calculated at regular intervals, digital signal processing has been performed to
emulate an analog function.

Representing a smoothing capacitor RC circuit, Equation 6 is now easy to realize as a
digital circuit. The clock sets the sample rate to a register that holds the current charge
voltage value, with the clock frequency determining the period ∇T for each step. The
rest of the equation is then formed by a subtracter, an adder, and a multiplier, as
shown in Figure 6.

The major part of this circuit consists of a multiplier feeding an accumulator. This
forms the most common building block in DSP, which is often called a
multiply-and-accumulate (MAC) block. The value of the coefficient k sets the behavior
of the circuit. Given that k = ∇T/(R × C), and that ∇T has been fixed by setting the
clock rate, the value of k is inversely proportional to the RC time constant being
modeled.

The circuit is now connected to the original waveforms that contain DC offsets. The
sample rate is 8 KHz (∇T = 125 μs). The resulting exponential charge curves are
shown for k = 1/32 (Figure 7) and k = 1/256 (Figure 8). Thus, these figures show that
using a smaller k value (the equivalent of a larger RC time constant) results in a longer
charging period but a smoother output. As expected, there is a trade-off between the
time taken to reach the DC offset level and the smoothness of the final value derived.

X-Ref Target - Figure 6

Figure 6: Digital RC Circuit

X-Ref Target - Figure 7

Figure 7: Exponential Charge Curve for k = 0.031

Multiply Accumulate&

D+

+

Q

k

–

+
vi – vo

vo

vi

WP279_06_061108

0

19 ±5

20 ms

k = 1/32 = 0.031

RC = T/k = 125 μs/0.031 = 4 ms

WP279_07_060508

Δ

http://www.xilinx.com

Creating the Circuit

WP279 (v1.0) July 18, 2008 www.xilinx.com 7

R

Implementing the Fractional Coefficient Multiplier
Although the addition and subtraction blocks are simple to implement, the multiplier
block can be more challenging. Synthesis tools can automatically create multipliers
from logic or target the dedicated multipliers within the devices; however, the
function still needs to be described appropriately and creation of unnecessary logic
must be prevented. The requirement in this circuit is to take an integer value (vi – vo)
and multiply it by a value k that is less than one, as is common in DSP designs.

Fixed-point arithmetic is the solution; however, it involves interpreting the bits of
integer arithmetic in a different manner. Consider the effect of multiplying an 8-bit
integer by the binary pattern 0101.

In this case, the 0101 pattern is the integer value +510, and the multiplication is
straightforward. The multiplication of an 8-bit number and a 4-bit number forms a
potential 12-bit product.

Now the same binary pattern (0101) has been divided by 4 because a binary point was
inserted two bits from the right-hand side of the number, forming the value 1.2510.
However, the binary pattern of the product is exactly the same as in the previous
integer case.

Hence, the multiplier works exactly the same way with fractional numbers as it does
with integers. To interpret the product result correctly, a binary point is inserted the
same number of bits from the right-hand side as in the input value. The bits to the left
of the point (1100000) represent the integer part of the result (9610), and the bits to the
right of the point (01) represent the fractional part of the result (0.2510).

X-Ref Target - Figure 8

Figure 8: Exponential Charge Curve for k = 0.0039

±1

0

19

100 ms

k = 1/256 = 0.0039
RC = T/k = 125 μs/0.0039 = 32 ms

WP279_08_060508

Δ

7 7 0 1 0 0 1 1 0 1

× 5 × 0 1 0 1

3 8 5 0 0 0 1 1 0 0 0 0 0 0 0 1

7 7 0 1 0 0 1 1 0 1

× 1 . 2 5 × 0 1 . 0 1

9 6 . 2 5 0 0 0 1 1 0 0 0 0 0 . 0 1

7 7 0 1 0 0 1 1 0 1

× 0 . 0 7 8 1 2 5 × 0 . 0 0 0 1 0 1

6 . 0 1 5 6 2 5 0 0 0 1 1 0 . 0 0 0 0 0 1

http://www.xilinx.com

8 www.xilinx.com WP279 (v1.0) July 18, 2008

Creating the Circuit
R

In this last case, the binary point is located 6 bits away from the right-hand side of the
original 0101 pattern. This divides the value by 26 = 64. It appears that the value must
increase by 3 bits just to position the binary point. However, the binary pattern of the
product is exactly the same as it was before and simply needs to be interpreted
correctly. The binary point is located 6 bits from the right-hand side; hence, the integer
part to the left of the point is 610, and the fractional part to the right of the point is
0.01562510 (1/64).

The options available for implementing the multiplier in Virtex and Spartan devices
are:

• All current Virtex and Spartan devices have dedicated multipliers, with some
having full DSP blocks. These features should be used unless there are more
pressing uses for them in the rest of the system design. Given the full variable
nature of these multipliers, the value of k can be changed during the acquisition
process. By starting with a large value for k, the circuit rapidly locates the
approximate DC level. If smaller values of k are used, a very stable and smooth
DC value is achieved. This is like having a variable resistor in the analog RC
circuit.

• A synthesis tool can be used to create a multiplier. With this option, it is worth
looking at what resources have been used, particularly if the products are
cost-sensitive.

• Efficient variable multipliers can be generated in the CORE Generator™ software,
but a constant coefficient multiplier can also be specified that is formed of fewer
slices. In this case, the value k is generally a constant.

The Digital RC Circuit
The fractional multiplier techniques discussed earlier can be used to create a
bit-accurate model of an RC circuit and, hence, digitally detect the DC level of the
input signal (Figure 9).

The input samples are 8 bits; therefore, the DC content must also lie within the same
range (the DC offset should not be near the system limits). Because the DC detection
circuit starts at zero, and the DC offset is likely to be a very slow-moving level, an 8-bit
subtracter can be used to form the difference signal (vi – vo).

For the multiplier stage, an 8-bit × 8-bit multiplier is selected, which produces a 16-bit
product. The k value is less than unity because all bits have been specified to the right
of the binary point. The difference signal is signed (± values), but the coefficient k is
always positive.

X-Ref Target - Figure 9

Figure 9: Digital RC Circuit

D
+

+
Q

k

8

–

+

vi – vo
vo

vi

WP279_09_0619088

16

0.xxxxxxxx

16

8
8

Integer

Fraction

8

http://www.xilinx.com

Optimizing the Circuit

WP279 (v1.0) July 18, 2008 www.xilinx.com 9

R

Hence, the range of available k values is from 0.003910 (1/256) to 0.996110 (255/256).
Because values of 0.03 and higher would have a large ripple (as seen in Figure 7,
page 6 and Figure 8, page 7), it is better to use fewer bits for the value of k, but retain
the same binary bit position. However, the larger values of k can be used to rapidly
reach the DC level and can then be reduced.

The 16-bit product must be considered as consisting of an 8-bit integer (left of the
binary point) and an 8-bit fraction (right of the binary point). Therefore, the
accumulator must work with a full 16 bits. The accumulation of the fractional values
and the integer parts of the products is required to ensure that the DC level is able to
adjust even when very small k values are used and very small products are being
generated. Furthermore, only the integer portion of the accumulated value
represented by the eight most significant bits is used to identify the DC level that is to
be used by the signal-correcting subtracter described in “Removing the DC Offset,”
page 3.

Optimizing the Circuit
The second half of this white paper discusses methods of optimizing the
high-performance circuit created in the first section. The size of the parallel circuit is
first reduced. Then the SRL16E is used to efficiently create a serial version of the circuit
that is suitable for low sample-rate applications. This section considers an audio
communications rate of 8 KHz.

Removing the Multiplier Logic
Potentially, the largest part of the circuit so far is the multiplier. Although dedicated
multipliers are available in Xilinx® devices, minimizing the use of these key resources
is highly desirable for lower power consumption and cost-sensitive designs,
especially when using Spartan-3 generation devices.

The multiplier can easily be removed from the example circuit using the coefficient
values of k = 1/32 and k = 1/256 from the two response plots in Figure 7, page 6 and
Figure 8, page 7. In both cases, the coefficient values are represented by numbers in
which only one bit is active. The second coefficient value is adopted because low
ripple is much more desirable than the response time, especially because even 100 ms
is relatively short.

Because the multiplication process only requires that the variable input be multiplied
by 1, the output product is the same as the input. Thus, there is no need for a real
multiplier; the output product is the same value, and the bit width is the same as the
variable input. All that is required is to apply the variable input value with the binary
point reassigned to the correct position. The complete DC offset removal circuit is then
reduced to the circuit shown in Figure 10.

7 7 0 1 0 0 1 1 0 1

× 0 . 0 0 3 9 × 0 . 0 0 0 0 0 0 0 1

0 . 3 0 0 3 0 . 0 1 0 0 1 1 0 1

http://www.xilinx.com

10 www.xilinx.com WP279 (v1.0) July 18, 2008

Optimizing the Circuit
R

The circuit now consists only of an accumulator and two subtracters. Care is required
when connecting the variable difference signal (vi – vo) to the accumulator input. The
eight bits are applied to the least significant byte of the 16-bit input to represent that
the eight bits are all fractional (to the right of the binary point). However, the upper
byte must also be defined. This must be achieved using sign extension by replicating
the MSB of the 8-bit value another eight times to form either hexadecimal 00 or FF.
This is done so that the two’s complement logic of the accumulator correctly adds both
positive and negative values. With this very small k value, it is apparent why the
accumulation of the fractional (and integer) parts must be performed.

Removing a Subtracter
Seeing the DC level detector and the DC-removing subtracter together for the first
time (Figure 10), it is apparent that one of the subtracters is redundant. The corrected
signal is the original signal with the DC level subtracted from it. This means that the
output is the value vi – vo, which is the same as the difference signal being created by
the subtracter within the DC detection circuit. This further means that the complete
DC offset removal circuit can be reduced to just one accumulator and one subtracter
(Figure 11).

Using the simple but accurate rule that a 2-bit add or subtract function fits into a slice
in a Spartan-3 generation device, this circuit now requires only 12 slices. For each
additional bit of sample width, the subtracter and accumulator each increase by one
bit and, accordingly, increase the total size by one slice. Therefore, with 16-bit input
samples, the size increases to 20 slices. As a parallel circuit, this can also support a
sample rate well in excess of 100 MHz.

X-Ref Target - Figure 10

Figure 10: Digital RC Circuit without Multiplier

D
+

+
Q

8

+

–

–

+

vi – vo
vo

vi

WP279_10_062308

8

Must sign-extend
8 bits to 16 bits

16

8
8

Fraction

Corrected
Signal

8

8

DC Level
MSB x 8

X-Ref Target - Figure 11

Figure 11: Digital RC Circuit Comprising One Accumulator and One Subtracter

D
+

+
Q–

+

vi – vo
vo

vi

WP279_11_062308

16

8

Corrected Signal

8
DC Level

8
8

MSB x 8

http://www.xilinx.com

Optimizing the Circuit

WP279 (v1.0) July 18, 2008 www.xilinx.com 11

R

Low Sample-Rate Applications
Although 12 to 20 slices can seem like a small quantity, they still constitute 2–3% of the
smallest XC3S50A device, and this DC offset removal can easily be seen as just a
preliminary process to the main function. In a typical application, this DC offset
removal can be required in a telephone conferencing facility. Each of the input lines
(represented by digital samples) is ultimately summed together within the system,
and the contribution of multiple small DC offsets can have an adverse effect on the
overall dynamics. The requirement for a DC offset removal circuit on each line input
could cause the 2–3% contribution of all devices to add up to something significant.

Also typical of audio telecommunications, data samples are transmitted serially
between units as packets within data frames or even directly from the ADC. The Texas
Instruments TLC320AC01C analog interface circuit (AIC) device [Ref 1] uses a serial
communications protocol with 14-bit A/D samples being transmitted with the most
significant bit first as part of each 16-bit transfer (Figure 12).

To use the parallel implementation of the DC offset removal circuit, such serial data
samples need to be applied to a 14-bit shift register to read the sample in parallel. This
requires an additional seven slices.

Staying Serial
Instead of converting to parallel, it is better to process the data serially. Although this
can take many clock cycles to achieve, with sample rates as low as 8 KHz, even a
10 MHz clock provides 1,250 clock cycles in which to implement the task.

The functions of an accumulator and a subtracter are to be achieved in the example
circuit. In the serial processing form, these only have to resolve one bit of the result in
each clock cycle and take on the form of a 1-bit full adder or 1-bit full subtracter. The
functionality can be derived from a truth table (see Table 1). The only special
observation to be made is that the process starts with the least significant bit first, and
then generates the result bit and a CARRY/BORROW flag for use in the calculation of
the next most significant bit of the process. During the processing of the first bit (LSB),
any previous carry/borrow status must be ignored. This can be achieved by a masking
signal.

X-Ref Target - Figure 12

Figure 12: TLC320AC01C Serial Communications Protocol

WP279_12_060508

SClk

FS

Data

MSB

14-Bit Sample 2 Control
Bits

LSB

http://www.xilinx.com

12 www.xilinx.com WP279 (v1.0) July 18, 2008

Optimizing the Circuit
R

An advantage of these serial arithmetic functions is that however complex the truth
table might be, the functions fit perfectly into the 4-input look-up tables of Spartan-3
generation devices. Hence, an adder or subtracter requires just one slice each. The
serial adder and serial subtracter are shown in Figure 13 and Figure 14, respectively.

Table 1: Truth Table for Serial Processing

MASK Cin A B SUM CARRY SUB BORROW

0 0 0 0 0 0 0 0

0 0 0 1 1 0 1 1

0 0 1 0 1 0 1 0

0 0 1 1 0 1 0 0

0 1 0 0 1 0 1 1

0 1 0 1 0 1 0 1

0 1 1 0 0 1 0 0

0 1 1 1 1 1 1 1

1 0 0 0 0 0 0 0

1 0 0 1 1 0 1 1

1 0 1 0 1 0 1 0

1 0 1 1 0 1 0 0

1 1 0 0 0 0 0 0

1 1 0 1 1 0 1 1

1 1 1 0 1 0 1 0

1 1 1 1 0 1 0 0

Notes:
1. The BORROW flag has been specified as active-High and is seen as a High Cin during the next bit processing

of A-B-Cin.
2. The shaded cells indicate that Cin is masked.

X-Ref Target - Figure 13

Figure 13: Serial Adder

D Q

Mask

Cin

A

B

Mask

Cin

A

B

A

B

WP279_13_062508

INIT = 88E8 (hex)

CARRY

Mask

INIT = 6696 (hex)

SUM

http://www.xilinx.com

Optimizing the Circuit

WP279 (v1.0) July 18, 2008 www.xilinx.com 13

R

To convert the adder into an accumulator, storage must be added for the accumulated
value. In this case, the storage can be formed serially; therefore, the SRL16E becomes
the obvious selection. If a 16-bit accumulator is not adequate, two SRL16E components
can be used to form a complete 32-bit accumulator in only two slices (Figure 15). The
clock enable can be used to freeze the contents between bursts of sample processing
activity.

Back-to-Front Data
The serial adder and subtracter functions work with the LSB first; however, as shown
by the communications with the TLC320AC01C, serial samples can be derived with
the MSB first (see Figure 16). The order of the data must be changed, and this again is
ideally suited to the SRL16E primitive.

X-Ref Target - Figure 14

Figure 14: Serial Subtracter

D Q

Mask

A

B

Mask

A

B

A

B

WP279_14_062508

INIT = 22B2 (hex)

BORROW
Mask

INIT = 6696 (hex)

SUB

Cin

Cin

X-Ref Target - Figure 15

Figure 15: 32-Bit Accumulator Comprising Two Slices

WP279_15_062508

A

B

SUM

SRL16E SRL16E

CE CE

1 Slice1 Slice

X-Ref Target - Figure 16

Figure 16: Bit Reversal Using SRL16E

WP279_16_062008

SRL16E

CE

Data (LSB First)

MSB

Counter

Scan 2–15
Processing

Clock

SClk

Data (MSB First)

FS

http://www.xilinx.com

14 www.xilinx.com WP279 (v1.0) July 18, 2008

Optimizing the Circuit
R

The SRL16E also performs a conversion between clock rates. The serial data clock can
be applied to the SRL16E directly with no requirements for a clock buffer. This is
because all the flip-flops of the shift register are contained in the same look-up table
and share a common local clock with zero skew. When the frame strobe is active
(Low), data is enabled to shift into the SRL16E with the MSB first. After the 16-bit
transfer is completed, the data remains static and can then be read via the embedded
multiplexer, which is a combinational process. A counter can select the required
sample bits and, of course, read them LSB first.

The key to serial processing is to ensure that each adder and subtracter uses the correct
bits during each clock cycle. In this implementation, the accumulator addition process
starts with the least significant bit of the fraction part of the DC offset, but the
subtraction must start with the least significant bit of the integer part of the DC offset.
This is easily solved by splitting the accumulator storage into two shift register delays
such that a tapping point is achieved at the LSB of the integer storage point.

In this implementation, the input samples are assumed to be 14 bits long. This means
that the serial subtraction process takes 14 clock cycles. However, the accumulation
process must be 22 bits, because it includes the 8-bit fraction, and therefore requires
22 clock cycles. To apply the 14-bit result of subtraction to the 22-bit accumulation
process, sign extension must be performed again. In the serial domain, the sign
extension is easily achieved by holding the MSB generated by the subtracter static in a
flip-flop by deasserting a clock enable at the end of the 14th clock cycle (see Figure 17).

State Machine Made Easy
The state machine used to control each event is also simplified by the use of SRL16E
delays. This can be a form of a one-hot state machine that is allowed to become cold
between the bursts of activity required to process each new data sample. The hot state
is injected in the form of a single clock cycle pulse that is applied coincident with the
LSB of the serialized 14-bit data sample.

Simple flip-flops delay this initial start pulse and ensure that the serial subtracter and
serial adder have the carry mask applied coincident with processing the LSB in each
case. The SRL16E components are used to delay the initial pulse for 14 and 22 clock
cycles to control the duration of the serial subtract and serial accumulation processes.
In each case, a flip-flop is set by the initial start pulse and enables the process to begin.
When the pulse emerges from the SRL16E, it is used to reset the flip-flop and, hence,
stop the serial processing (see Figure 18).

X-Ref Target - Figure 17

Figure 17: Serial Implementation of DC Offset Removal
WP279_17_062008

A

Serial
Data Out

Sign Extension
Register

B

A

B

SUM

Sum
Mask

Sub
Mask

Serial
Data In

SRL16E SRL16E

CE CE
CE

14 Stages 8 Stages

(Integer) (Fraction)

SUB

http://www.xilinx.com

Conclusion

WP279 (v1.0) July 18, 2008 www.xilinx.com 15

R

Conclusion
The first half of this white paper discusses how DSP can be used in a practical manner.
A simple analog circuit can be represented in the digital domain to create a very
efficient and practical function. The accumulator, subtracters, and multiplier are all
able to operate in excess of 100 MHz in all devices. Therefore, it is also possible to
create a high-performance circuit that is able to take samples directly from the
majority of high-performance ADCs.

The second half of this white paper shows how a careful consideration of coefficient
values can help to remove real multiplier logic and thereby significantly reduce the
size of a function. Serial processing can further reduce the size of an implementation
for lower sample-rate applications. In this type of application, the data samples are
most likely provided in a serial format, and thus the requirement to convert to a
parallel format for processing is eliminated.

The SRL16E is used in dynamic addressing mode to act as a very efficient bit
reordering circuit as well as to provide pure delay. Serial processing can be quite
difficult to implement. However, the SRL16E’s ability to provide a complementary
state machine with direct control over the scheduling of events has made serial
processing much easier and smaller than it has been in the past using counters. The
serial implementation requires only six slices to implement the 14-bit serial DC offset
removal circuit and even the smallest FPGA can support 32 or more channels.

For an 8 KHz sample rate, this serial process only requires a minimum clock rate of
176 KHz. Given that any Xilinx FPGA can easily support 100 MHz clock rates, just one
serial processing circuit could actually support 568 channels using time division
multiplexing (TDM) techniques. In this situation, the amount of memory required to
store the DC levels (accumulator values) would be better supported by block RAMs
acting as cyclic buffers.

References
The following reference provides additional information useful to this document:
1. Texas Instruments TLC320AC01C Data Manual

http://focus.ti.com/lit/ds/symlink/tlc320ac01.pdf.

X-Ref Target - Figure 18

Figure 18: Control Signals for Serial Implementation of DC Offset Removal

WP279_18_06190814 Stages

Start Pulse
(Coincident with LSB)

8 Stages

Enable
Shift

Enable
Data Out

Subtracter Mask

SRL16E SRL16E

http://www.xilinx.com
http://focus.ti.com/lit/ds/symlink/tlc320ac01.pdf

16 www.xilinx.com WP279 (v1.0) July 18, 2008

Revision History
R

Revision History
The following table shows the revision history for this document:

Notice of Disclaimer
The information disclosed to you hereunder (the “Information”) is provided “AS-IS” with no warranty of
any kind, express or implied. Xilinx does not assume any liability arising from your use of the
Information. You are responsible for obtaining any rights you may require for your use of this
Information. Xilinx reserves the right to make changes, at any time, to the Information without notice and
at its sole discretion. Xilinx assumes no obligation to correct any errors contained in the Information or to
advise you of any corrections or updates. Xilinx expressly disclaims any liability in connection with
technical support or assistance that may be provided to you in connection with the Information. XILINX
MAKES NO OTHER WARRANTIES, WHETHER EXPRESS, IMPLIED, OR STATUTORY, REGARDING
THE INFORMATION, INCLUDING ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NONINFRINGEMENT OF THIRD-PARTY RIGHTS.

Date Version Description of Revisions

07/18/08 1.0 Initial Xilinx release. Based on two previously published
TechXclusives articles by the same author.

http://www.xilinx.com

	Digitally Removing a DC Offset: DSP Without Mathematics
	Creating the Circuit
	Sampled Waveforms
	Removing the DC Offset
	Finding the DC Level
	Implementing the Fractional Coefficient Multiplier
	The Digital RC Circuit

	Optimizing the Circuit
	Removing the Multiplier Logic
	Removing a Subtracter
	Low Sample-Rate Applications
	Staying Serial
	Back-to-Front Data
	State Machine Made Easy

	Conclusion
	References
	Revision History
	Notice of Disclaimer

