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Many designers feel uncomfortable at the mention of
digital signal processing (DSP). The approach to DSP
adopted in this white paper is intended to instill
confidence in designers who are implementing DSP
algorithms in their designs, resulting in more
efficient hardware implementations. Rather than
beginning with mathematical descriptions of a
system, designers can learn how simple functions in
the analog world can be modeled and then can
convert those functions into digital representations.

This white paper examines how to remove the DC
content from a digitally sampled waveform using
DSP without complicated mathematics. The first half
of the white paper examines DSP in a qualitative
manner and illustrates how to create a circuit capable
of performing the required signal processing. The
second half describes how to optimize the derived
function for use in audio telecommunications
applications using SRL16Es.
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Creating the Circuit
This section of the white paper presents a brief discussion of digital signal processing 
and describes a method of creating a circuit that can perform DSP. The circuit is 
implemented using a Spartan®-3 generation device, although Virtex® devices can be 
used as well.

Sampled Waveforms
DSP utilizes digital samples, which are numbers that represent the amplitude of a 
waveform and are taken at regular intervals. These samples are normally the result of 
an Analog-to-Digital Converter (ADC) that generates values of a given number of bits 
(resolution) at a sample rate set by a sample clock.

In the upper plot of Figure 1, an analog waveform is applied to the ADC. The input 
signal should remain within the specified input voltage swing of the ADC (in this case, 
±1 volt). The ADC samples this waveform at a frequency (fs) that is relatively fast in 
comparison to the frequency content of the signal. (Nyquist theory requires the 
waveform to be sampled at a rate at least twice that of the highest frequency present.)

In the lower plot of Figure 1, the actual digital samples provided by the ADC are 
shown as red dots. In this plot, the most important part of DSP has occurred. In this 
case, the samples are represented by 8-bit numbers. A two’s complement format is 
used to represent both positive and negative quantities. The first values of the plot are 
+104, +80, +31, –19, –48, and –44. These can be represented in hexadecimal as 68, 50, 
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Figure 1: Test Signal Formed of 800 Hz and 960 Hz Components with a DC Offset
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1F, ED, D0, and D4. Thus, DSP essentially involves working with a stream of numerical 
data and manipulating it in some way.

Although the only information available to work with are the values represented by 
the red dots, the shape of the waveform can be made more apparent by joining the 
dots with lines. Although an analog waveform then becomes more apparent, it would 
be less pure than it originally was (this forms the essence of quantization noise).

The waveform plots in Figure 2 contain high frequency components of some kind 
(800 Hz and 960 Hz in this test case). The waveform spends a greater percentage of 
time above the zero axis than it does below it, indicating some kind of positive DC 
bias. This is clearly seen in the digital plot because there are many more positive red 
dots than negative.

Generally speaking, a DC offset such as this is undesirable because it means that the 
positive peaks of the waveform are more likely to exceed the maximum level that can 
be represented. In the ideal world, the DC offset would be removed before the 
analog-to-digital (A/D) conversion; however, this can be difficult to achieve. Indeed, 
the analog components could have unintentionally inserted the DC bias as part of the 
signal amplification and conditioning.

Removing the DC Offset
Given that a DC offset has a frequency of zero, the DC offset can, theoretically, be 
removed by the use of a high-pass filter. This can lead to full-scale DSP and 
investigation of such things as Finite Impulse Response (FIR) filters. However, this 
white paper takes a more empirical approach to solving the problem of DC offsets by 
avoiding as much math as possible and finding a much easier and cost-effective 
implementation.

If the DC offset level is known, it is possible to remove it with a simple subtraction. In 
the example discussed here, the DC offset of the digital samples is determined to be 
+19. Thus, each input sample from the ADC must have a value of +19 subtracted from 
it. The output from the subtracter is the waveform without any DC offset (Figure 3). 
This is an example of DSP, because a stream of digital samples has been manipulated 
to form new samples. The value of the first sample is +104 – 19 = +85.

X-Ref Target - Figure 2

Figure 2: Digital Samples Joined Together to Form an Analog Signal
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Thus, it is seen that a subtracter can be an important DSP function. (The subtracter is 
also very well-supported by Virtex and Spartan devices.) As with the basic adder 
function, each slice of the configurable logic block (CLB) can implement a 2-bit 
subtracter. Therefore, a simple 8-bit subtracter requires four slices. Because this is such 
a basic function, it is supported well in many design flows, including HDL and System 
Generator.

Finding the DC Level
Although the DC offset was removed with the subtracter, the process relied on an 
arbitrary DC value. Therefore, a method of automatically deriving the DC offset value 
needs to be determined. Although this is a little more complicated, an empirical 
approach can again be taken to finding a solution with another very common 
function, and thereby avoid a lot of DSP theory.

In the analog world, the simplest way to find the average DC level of a signal is to 
smooth it with a capacitor (Figure 4). The larger the value of the smoothing capacitor, 
the steadier the DC level, especially if there is a load current.

In theory, a differential equation must be used to solve this simple circuit. However, if 
only an instant in time is considered, then simple linear equations can be used.

The voltage across the resistor R is given by vi – vo. Equation 1 defines the current ic 
flowing into the capacitor.

Equation 1

If the input voltage is higher than the average value vo, the capacitor charges. 
Likewise, if the input voltage is lower than the average value, the current is negative 
(flowing out of the capacitor), and the capacitor discharges.

Equation 2 provides the linear equation for the charge Q on a capacitor.

Equation 2

X-Ref Target - Figure 3

Figure 3: Digital Samples Input into a Subtracter to Remove DC Offset
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Figure 4: RC Circuit Used to Determine the DC Level of a Digital Signal
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So, for a constant current I for a period of time T, the voltage V on the capacitor rises by 
an amount indicated by Equation 3.

Equation 3

The larger the value of C, the smaller the change in voltage for a given current and 
time. (∇ means “change in.”) This means that a final formula can be derived that 
describes this simple RC circuit (Equation 4).

Equation 4

Equation 4 is actually a simple linear equation. During a period of time ∇T, the voltage 
across the capacitor changes by an amount proportional to the difference between the 
input and output voltages. This equation is only valid if the duration of time ∇T is so 
small that the voltage change ∇Vo does not significantly change the value of vi – vo.

By using a constant value k, which is set by the combination of R, C, and the period of 
time ∇T over which each calculation is made, Equation 4 can be simplified to 
Equation 5.

Equation 5

At the end of each period, the output voltage becomes the previous value of vo plus the 
incremental value ∇Vo (Equation 6).

Equation 6

Where k =∇T/(R × C).

A simple experiment can be tried to prove this formula. If R = 50Ω, C = 100 μF (a time 
constant of R × C = 5 ms), and ∇T = 1 ms, then k = 0.2. By applying a simple 10V step 
input, the calculated output for each step of time generates the exponential charge 
curve expected for such an RC circuit, as shown in Figure 5.

Of interest is that a set of values has been calculated at regular intervals using a simple 
linear equation to describe a complex differential function. Because the points are 
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Figure 5: Exponential Charge Curve for RC Circuit
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calculated at regular intervals, digital signal processing has been performed to 
emulate an analog function.

Representing a smoothing capacitor RC circuit, Equation 6 is now easy to realize as a 
digital circuit. The clock sets the sample rate to a register that holds the current charge 
voltage value, with the clock frequency determining the period ∇T for each step. The 
rest of the equation is then formed by a subtracter, an adder, and a multiplier, as 
shown in Figure 6.

The major part of this circuit consists of a multiplier feeding an accumulator. This 
forms the most common building block in DSP, which is often called a 
multiply-and-accumulate (MAC) block. The value of the coefficient k sets the behavior 
of the circuit. Given that k = ∇T/(R × C), and that ∇T has been fixed by setting the 
clock rate, the value of k is inversely proportional to the RC time constant being 
modeled.

The circuit is now connected to the original waveforms that contain DC offsets. The 
sample rate is 8 KHz (∇T = 125 μs). The resulting exponential charge curves are 
shown for k = 1/32 (Figure 7) and k = 1/256 (Figure 8). Thus, these figures show that 
using a smaller k value (the equivalent of a larger RC time constant) results in a longer 
charging period but a smoother output. As expected, there is a trade-off between the 
time taken to reach the DC offset level and the smoothness of the final value derived.

X-Ref Target - Figure 6

Figure 6: Digital RC Circuit

X-Ref Target - Figure 7

Figure 7: Exponential Charge Curve for k = 0.031

Multiply Accumulate&

D+

+

Q

k

–

+
vi – vo 

vo

vi 

WP279_06_061108

0

19 ±5

20 ms

k = 1/32 = 0.031

RC =   T/k = 125 μs/0.031 = 4 ms

WP279_07_060508

Δ

http://www.xilinx.com


Creating the Circuit

WP279 (v1.0) July 18, 2008 www.xilinx.com  7

R

Implementing the Fractional Coefficient Multiplier
Although the addition and subtraction blocks are simple to implement, the multiplier 
block can be more challenging. Synthesis tools can automatically create multipliers 
from logic or target the dedicated multipliers within the devices; however, the 
function still needs to be described appropriately and creation of unnecessary logic 
must be prevented. The requirement in this circuit is to take an integer value (vi – vo) 
and multiply it by a value k that is less than one, as is common in DSP designs.

Fixed-point arithmetic is the solution; however, it involves interpreting the bits of 
integer arithmetic in a different manner. Consider the effect of multiplying an 8-bit 
integer by the binary pattern 0101.

In this case, the 0101 pattern is the integer value +510, and the multiplication is 
straightforward. The multiplication of an 8-bit number and a 4-bit number forms a 
potential 12-bit product.

Now the same binary pattern (0101) has been divided by 4 because a binary point was 
inserted two bits from the right-hand side of the number, forming the value 1.2510. 
However, the binary pattern of the product is exactly the same as in the previous 
integer case.

Hence, the multiplier works exactly the same way with fractional numbers as it does 
with integers. To interpret the product result correctly, a binary point is inserted the 
same number of bits from the right-hand side as in the input value. The bits to the left 
of the point (1100000) represent the integer part of the result (9610), and the bits to the 
right of the point (01) represent the fractional part of the result (0.2510).

X-Ref Target - Figure 8

Figure 8: Exponential Charge Curve for k = 0.0039
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In this last case, the binary point is located 6 bits away from the right-hand side of the 
original 0101 pattern. This divides the value by 26 = 64. It appears that the value must 
increase by 3 bits just to position the binary point. However, the binary pattern of the 
product is exactly the same as it was before and simply needs to be interpreted 
correctly. The binary point is located 6 bits from the right-hand side; hence, the integer 
part to the left of the point is 610, and the fractional part to the right of the point is 
0.01562510 (1/64).

The options available for implementing the multiplier in Virtex and Spartan devices 
are:

• All current Virtex and Spartan devices have dedicated multipliers, with some 
having full DSP blocks. These features should be used unless there are more 
pressing uses for them in the rest of the system design. Given the full variable 
nature of these multipliers, the value of k can be changed during the acquisition 
process. By starting with a large value for k, the circuit rapidly locates the 
approximate DC level. If smaller values of k are used, a very stable and smooth 
DC value is achieved. This is like having a variable resistor in the analog RC 
circuit.

• A synthesis tool can be used to create a multiplier. With this option, it is worth 
looking at what resources have been used, particularly if the products are 
cost-sensitive.

• Efficient variable multipliers can be generated in the CORE Generator™ software, 
but a constant coefficient multiplier can also be specified that is formed of fewer 
slices. In this case, the value k is generally a constant.

The Digital RC Circuit
The fractional multiplier techniques discussed earlier can be used to create a 
bit-accurate model of an RC circuit and, hence, digitally detect the DC level of the 
input signal (Figure 9).

The input samples are 8 bits; therefore, the DC content must also lie within the same 
range (the DC offset should not be near the system limits). Because the DC detection 
circuit starts at zero, and the DC offset is likely to be a very slow-moving level, an 8-bit 
subtracter can be used to form the difference signal (vi – vo).

For the multiplier stage, an 8-bit × 8-bit multiplier is selected, which produces a 16-bit 
product. The k value is less than unity because all bits have been specified to the right 
of the binary point. The difference signal is signed (± values), but the coefficient k is 
always positive.

X-Ref Target - Figure 9

Figure 9: Digital RC Circuit
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Hence, the range of available k values is from 0.003910 (1/256) to 0.996110 (255/256). 
Because values of 0.03 and higher would have a large ripple (as seen in Figure 7, 
page 6 and Figure 8, page 7), it is better to use fewer bits for the value of k, but retain 
the same binary bit position. However, the larger values of k can be used to rapidly 
reach the DC level and can then be reduced.

The 16-bit product must be considered as consisting of an 8-bit integer (left of the 
binary point) and an 8-bit fraction (right of the binary point). Therefore, the 
accumulator must work with a full 16 bits. The accumulation of the fractional values 
and the integer parts of the products is required to ensure that the DC level is able to 
adjust even when very small k values are used and very small products are being 
generated. Furthermore, only the integer portion of the accumulated value 
represented by the eight most significant bits is used to identify the DC level that is to 
be used by the signal-correcting subtracter described in “Removing the DC Offset,” 
page 3.

Optimizing the Circuit
The second half of this white paper discusses methods of optimizing the 
high-performance circuit created in the first section. The size of the parallel circuit is 
first reduced. Then the SRL16E is used to efficiently create a serial version of the circuit 
that is suitable for low sample-rate applications. This section considers an audio 
communications rate of 8 KHz.

Removing the Multiplier Logic
Potentially, the largest part of the circuit so far is the multiplier. Although dedicated 
multipliers are available in Xilinx® devices, minimizing the use of these key resources 
is highly desirable for lower power consumption and cost-sensitive designs, 
especially when using Spartan-3 generation devices.

The multiplier can easily be removed from the example circuit using the coefficient 
values of k = 1/32 and k = 1/256 from the two response plots in Figure 7, page 6 and 
Figure 8, page 7. In both cases, the coefficient values are represented by numbers in 
which only one bit is active. The second coefficient value is adopted because low 
ripple is much more desirable than the response time, especially because even 100 ms 
is relatively short.

Because the multiplication process only requires that the variable input be multiplied 
by 1, the output product is the same as the input. Thus, there is no need for a real 
multiplier; the output product is the same value, and the bit width is the same as the 
variable input. All that is required is to apply the variable input value with the binary 
point reassigned to the correct position. The complete DC offset removal circuit is then 
reduced to the circuit shown in Figure 10.
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The circuit now consists only of an accumulator and two subtracters. Care is required 
when connecting the variable difference signal (vi – vo) to the accumulator input. The 
eight bits are applied to the least significant byte of the 16-bit input to represent that 
the eight bits are all fractional (to the right of the binary point). However, the upper 
byte must also be defined. This must be achieved using sign extension by replicating 
the MSB of the 8-bit value another eight times to form either hexadecimal 00 or FF. 
This is done so that the two’s complement logic of the accumulator correctly adds both 
positive and negative values. With this very small k value, it is apparent why the 
accumulation of the fractional (and integer) parts must be performed.

Removing a Subtracter
Seeing the DC level detector and the DC-removing subtracter together for the first 
time (Figure 10), it is apparent that one of the subtracters is redundant. The corrected 
signal is the original signal with the DC level subtracted from it. This means that the 
output is the value vi – vo, which is the same as the difference signal being created by 
the subtracter within the DC detection circuit. This further means that the complete 
DC offset removal circuit can be reduced to just one accumulator and one subtracter 
(Figure 11).

Using the simple but accurate rule that a 2-bit add or subtract function fits into a slice 
in a Spartan-3 generation device, this circuit now requires only 12 slices. For each 
additional bit of sample width, the subtracter and accumulator each increase by one 
bit and, accordingly, increase the total size by one slice. Therefore, with 16-bit input 
samples, the size increases to 20 slices. As a parallel circuit, this can also support a 
sample rate well in excess of 100 MHz.

X-Ref Target - Figure 10

Figure 10: Digital RC Circuit without Multiplier
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Figure 11: Digital RC Circuit Comprising One Accumulator and One Subtracter
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Low Sample-Rate Applications
Although 12 to 20 slices can seem like a small quantity, they still constitute 2–3% of the 
smallest XC3S50A device, and this DC offset removal can easily be seen as just a 
preliminary process to the main function. In a typical application, this DC offset 
removal can be required in a telephone conferencing facility. Each of the input lines 
(represented by digital samples) is ultimately summed together within the system, 
and the contribution of multiple small DC offsets can have an adverse effect on the 
overall dynamics. The requirement for a DC offset removal circuit on each line input 
could cause the 2–3% contribution of all devices to add up to something significant.

Also typical of audio telecommunications, data samples are transmitted serially 
between units as packets within data frames or even directly from the ADC. The Texas 
Instruments TLC320AC01C analog interface circuit (AIC) device [Ref 1] uses a serial 
communications protocol with 14-bit A/D samples being transmitted with the most 
significant bit first as part of each 16-bit transfer (Figure 12).

To use the parallel implementation of the DC offset removal circuit, such serial data 
samples need to be applied to a 14-bit shift register to read the sample in parallel. This 
requires an additional seven slices.

Staying Serial
Instead of converting to parallel, it is better to process the data serially. Although this 
can take many clock cycles to achieve, with sample rates as low as 8 KHz, even a 
10 MHz clock provides 1,250 clock cycles in which to implement the task.

The functions of an accumulator and a subtracter are to be achieved in the example 
circuit. In the serial processing form, these only have to resolve one bit of the result in 
each clock cycle and take on the form of a 1-bit full adder or 1-bit full subtracter. The 
functionality can be derived from a truth table (see Table 1). The only special 
observation to be made is that the process starts with the least significant bit first, and 
then generates the result bit and a CARRY/BORROW flag for use in the calculation of 
the next most significant bit of the process. During the processing of the first bit (LSB), 
any previous carry/borrow status must be ignored. This can be achieved by a masking 
signal.

X-Ref Target - Figure 12

Figure 12: TLC320AC01C Serial Communications Protocol
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An advantage of these serial arithmetic functions is that however complex the truth 
table might be, the functions fit perfectly into the 4-input look-up tables of Spartan-3 
generation devices. Hence, an adder or subtracter requires just one slice each. The 
serial adder and serial subtracter are shown in Figure 13 and Figure 14, respectively.

Table  1:  Truth Table for Serial Processing

MASK Cin A B SUM CARRY SUB BORROW

0 0 0 0 0 0 0 0

0 0 0 1 1 0 1 1

0 0 1 0 1 0 1 0

0 0 1 1 0 1 0 0

0 1 0 0 1 0 1 1

0 1 0 1 0 1 0 1

0 1 1 0 0 1 0 0

0 1 1 1 1 1 1 1

1 0 0 0 0 0 0 0

1 0 0 1 1 0 1 1

1 0 1 0 1 0 1 0

1 0 1 1 0 1 0 0

1 1 0 0 0 0 0 0

1 1 0 1 1 0 1 1

1 1 1 0 1 0 1 0

1 1 1 1 0 1 0 0

Notes: 
1. The BORROW flag has been specified as active-High and is seen as a High Cin during the next bit processing 

of A-B-Cin.
2. The shaded cells indicate that Cin is masked.

X-Ref Target - Figure 13

Figure 13: Serial Adder
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To convert the adder into an accumulator, storage must be added for the accumulated 
value. In this case, the storage can be formed serially; therefore, the SRL16E becomes 
the obvious selection. If a 16-bit accumulator is not adequate, two SRL16E components 
can be used to form a complete 32-bit accumulator in only two slices (Figure 15). The 
clock enable can be used to freeze the contents between bursts of sample processing 
activity.

Back-to-Front Data
The serial adder and subtracter functions work with the LSB first; however, as shown 
by the communications with the TLC320AC01C, serial samples can be derived with 
the MSB first (see Figure 16). The order of the data must be changed, and this again is 
ideally suited to the SRL16E primitive.

X-Ref Target - Figure 14

Figure 14: Serial Subtracter
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Figure 15: 32-Bit Accumulator Comprising Two Slices
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Figure 16: Bit Reversal Using SRL16E
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The SRL16E also performs a conversion between clock rates. The serial data clock can 
be applied to the SRL16E directly with no requirements for a clock buffer. This is 
because all the flip-flops of the shift register are contained in the same look-up table 
and share a common local clock with zero skew. When the frame strobe is active 
(Low), data is enabled to shift into the SRL16E with the MSB first. After the 16-bit 
transfer is completed, the data remains static and can then be read via the embedded 
multiplexer, which is a combinational process. A counter can select the required 
sample bits and, of course, read them LSB first.

The key to serial processing is to ensure that each adder and subtracter uses the correct 
bits during each clock cycle. In this implementation, the accumulator addition process 
starts with the least significant bit of the fraction part of the DC offset, but the 
subtraction must start with the least significant bit of the integer part of the DC offset. 
This is easily solved by splitting the accumulator storage into two shift register delays 
such that a tapping point is achieved at the LSB of the integer storage point.

In this implementation, the input samples are assumed to be 14 bits long. This means 
that the serial subtraction process takes 14 clock cycles. However, the accumulation 
process must be 22 bits, because it includes the 8-bit fraction, and therefore requires 
22 clock cycles. To apply the 14-bit result of subtraction to the 22-bit accumulation 
process, sign extension must be performed again. In the serial domain, the sign 
extension is easily achieved by holding the MSB generated by the subtracter static in a 
flip-flop by deasserting a clock enable at the end of the 14th clock cycle (see Figure 17).

State Machine Made Easy
The state machine used to control each event is also simplified by the use of SRL16E 
delays. This can be a form of a one-hot state machine that is allowed to become cold 
between the bursts of activity required to process each new data sample. The hot state 
is injected in the form of a single clock cycle pulse that is applied coincident with the 
LSB of the serialized 14-bit data sample.

Simple flip-flops delay this initial start pulse and ensure that the serial subtracter and 
serial adder have the carry mask applied coincident with processing the LSB in each 
case. The SRL16E components are used to delay the initial pulse for 14 and 22 clock 
cycles to control the duration of the serial subtract and serial accumulation processes. 
In each case, a flip-flop is set by the initial start pulse and enables the process to begin. 
When the pulse emerges from the SRL16E, it is used to reset the flip-flop and, hence, 
stop the serial processing (see Figure 18).
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Figure 17: Serial Implementation of DC Offset Removal
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Conclusion
The first half of this white paper discusses how DSP can be used in a practical manner. 
A simple analog circuit can be represented in the digital domain to create a very 
efficient and practical function. The accumulator, subtracters, and multiplier are all 
able to operate in excess of 100 MHz in all devices. Therefore, it is also possible to 
create a high-performance circuit that is able to take samples directly from the 
majority of high-performance ADCs.

The second half of this white paper shows how a careful consideration of coefficient 
values can help to remove real multiplier logic and thereby significantly reduce the 
size of a function. Serial processing can further reduce the size of an implementation 
for lower sample-rate applications. In this type of application, the data samples are 
most likely provided in a serial format, and thus the requirement to convert to a 
parallel format for processing is eliminated.

The SRL16E is used in dynamic addressing mode to act as a very efficient bit 
reordering circuit as well as to provide pure delay. Serial processing can be quite 
difficult to implement. However, the SRL16E’s ability to provide a complementary 
state machine with direct control over the scheduling of events has made serial 
processing much easier and smaller than it has been in the past using counters. The 
serial implementation requires only six slices to implement the 14-bit serial DC offset 
removal circuit and even the smallest FPGA can support 32 or more channels.

For an 8 KHz sample rate, this serial process only requires a minimum clock rate of 
176 KHz. Given that any Xilinx FPGA can easily support 100 MHz clock rates, just one 
serial processing circuit could actually support 568 channels using time division 
multiplexing (TDM) techniques. In this situation, the amount of memory required to 
store the DC levels (accumulator values) would be better supported by block RAMs 
acting as cyclic buffers.
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Figure 18: Control Signals for Serial Implementation of DC Offset Removal
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