
WP262 (v2.0) November 21, 2007 www.xilinx.com 1

© 2007 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature,
application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may
require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties
or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

Embedded processing requirements are growing at a
rapid pace and system architects are turning towards
multiprocessor designs to solve the problems of
burgeoning complexity and inadequateness found in a
uniprocessor system. The advent of FPGAs with high
logic density and high performance hard blocks, have
made powerful chip multiprocessing (CMP) solutions
a reality. The real challenge now lies in the rapid
exploration and creation of designs in this solution
space. The Xilinx Platform Studio (XPS) and
Embedded Development Kit (EDK) is a
comprehensive solution for designing embedded
programmable systems. Platform Studio tools and IP
make it very easy to design powerful CMP systems.
They provide the flexibility to create uniquely crafted,
customized solutions on FPGA logic real estate that
can meet both price and performance targets. This
white paper describes various multiprocessing
hardware and software concepts in Platform Studio, as
they apply to Xilinx solutions based on the PowerPC™
and MicroBlaze™ embedded processors.

White Paper: Xilinx Platform Studio (XPS)

WP262 (v2.0) November 21, 2007

Designing Multiprocessor
Systems in Platform Studio

By: Vasanth Asokan.

R

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

Introduction

WP262 (v2.0) November 21, 2007 www.xilinx.com 2

R

Introduction
There are various factors which can require a system to be designed using more than
one processor. In most cases, it is very simply performance. In others, it is
functionality, modularity, and such concerns. Following is a broad summary of the
typical scenarios.

Multiple Independent Functions

The design may have multiple, independent set of processing tasks to be performed.
An attractive way to solve the problem could just mean creating various processing
modules that are completely independent, each dedicated to its own processing task.
Each processing module is assigned a unique processor and peripheral set.

Control Plane Offload

A common scenario in a system is the presence of a clearly distinct set of real-time and
non real-time tasks, such that a solution based on a single processor to handle both
may cease to be responsive. In these cases, a slave processor is dedicated to perform
the real-time control task in a timely fashion. Other regular and non-special tasks are
left to be performed by a master processor which also usually serves as an interface to
the host system. The master processor monitors the slave and occasionally sends
control commands and may also send or receive data.

Data Plane Offload

Another common design scenario is the presence of intensive number crunching or
protocol processing tasks in conjunction with more regular end applications. In these
cases, a slave processor is used to offload the data intensive or number crunching
tasks, while the master processor performs overall co-ordination, setting up of
computations and host interface. The slave processor may contain specialized
functions or interfaces to allow it to meet computation performance requirements.
Some examples of this scenario include, network offload, streaming media processing,
security algorithm, etc.

Interface Processing

On a system which acts as a bridge or switch between multiple interfaces, a slave
processor can be dedicated to the processing of data at each interface, while one or
more master processors perform the higher level bridging and switching tasks. This is
a typical network processing design.

Stream processing

For handling stream-oriented computation, processors may be arranged to act upon
the data stream in a pipeline fashion. Each stage in the multiprocessor pipeline, acts
upon one portion of the computation before passing it on to the next processor. All the
processors act as peers. This solution is typically used to increase the throughput of a
solution.

Symmetric Processing

In certain cases, a single processor may just not provide enough performance and it
may be hard to find clean boundaries at which the solution can be partitioned across
multiple processors. Traditional Symmetric Multiprocessing (SMP) is a useful solution
in which the performance of an application is scaled up by adding more processors.

http://www.xilinx.com

Design Flow

WP262 (v2.0) November 21, 2007 www.xilinx.com 3

R

An OS layer manages parallel tasks and automatically schedules them across multiple
processors. Linux is an example of an OS that supports SMP.

Reliability and redundancy

A processing system may be replicated multiple times to provide for reliability and
redundancy. Triple Mode Redundancy (TMR) is a related concept. TMR is outside the
scope of this paper. Please refer to
http://www.xilinx.com/ise/optional_prod/tmrtool.htm

Apart from the SMP scenario (due to lack of cache coherency support), all the other
scenarios are feasible on Xilinx FPGAs with Platform Studio tools. The unique
capability of Xilinx processing solutions is the flexibility to customize each of the
processing subsystems to the application needs. For example, not all processors may
need a cache, or a floating point unit. By assigning specific functions to specific
processors, a tailored solution that meets all design goals can be created.

Design Flow
The topology and use model of a multiprocessor system is dictated and constrained by
the various requirements of the end application. The constraints could arise equally
from either hardware considerations or software considerations. For e.g., running
Linux might be a necessary software requirement, while responding to a controller in
a real-time fashion or running the system at a frequency higher than 66 MHz might be
hardware requirements. Exploring the huge design space offered by FPGA logic, tools
and IP, provides the required flexibility to the system designer. In most cases, the
architecture of the system follows very logically from the constraints placed. In a few
cases, there may be more than one way to architect the solution.

A typical design flow is shown in Figure 1. The designer(s) takes the application
requirements, applies various constraints and trade-offs and designs a solution with
some hardware and software architecture. He then creates a prototype and takes it to
the FPGA using Platform Studio tools. Qualifying and refining of the solution then
follows, through multiple iterations of profiling and verification. Trade-offs and
redesign are applied during this stage. The power of the FPGA and Platform Studio
tools, make this iterative process very fast. Designing the original design requires a
few hours, but making refinements can be done in a matter of minutes – all the while
having working hardware generated for the reconfigurable platform. Adding or
removing a processor to the system is as easy as clicking a few buttons on a GUI. The
powerful simulation, debug, and profiling infrastructure, offered by Platform Studio
help guide design space exploration.

http://www.xilinx.com
http://www.xilinx.com/ise/optional_prod/tmrtool.htm

Background

WP262 (v2.0) November 21, 2007 www.xilinx.com 4

R

Background
The Xilinx Embedded Development Kit (EDK) bundle is an integrated software
solution for designing embedded processing systems. This pre-configured kit includes
the award winning Platform Studio tool suite as well as all the IP and documentation
required for designing Xilinx Platform FPGAs with embedded PowerPC hard
processor cores and/or MicroBlaze soft processor cores.

Virtex-II Pro™ and Virtex-4 FX FPGA devices provide embedded PowerPC 405
(PPC405) hard core based on the IBM PowerPC processor family. The PowerPC
processor is capable of achieving 400 MHz and 600+ DMIPS performance. It is a RISC
core (32-bit Harvard architecture) with a 5-stage pipeline. It contains large, 16 KB, 2-
way set-associative instruction and data caches. It also provides a Memory
Management Unit (MMU) that enables robust RTOS implementations. It supports
enhanced instruction and data On-Chip Memory (OCM) controllers that interface
directly to embedded Block RAM memory.

The MicroBlaze processor core is a 32-bit Harvard RISC architecture with a rich
instruction set optimized for embedded applications. The processor is a soft core,
meaning that it is implemented using general logic primitives rather than a hard,
dedicated block in the FPGA. The MicroBlaze solution gives the user control of a
number of features such as the cache sizes, interfaces, and execution units such as a
hardware floating point unit. The configurability allows the user to trade-off features
for size, in order to achieve the necessary performance for the target application at the
lowest possible cost point. MicroBlaze also features an optional MMU and thus
supports a variety of RTOS implementations.

Figure 1: System Design Flow

Application
Requirements

Debug and profile
infrastructure

Final
processing solution

Design system using
Platform Studio tools

Debug, profile and tune
hardware and software

WP262_01_102407

Design Space

SW Design
(Tasks, roles, OS,

communication,synchronization,
external interfaces)

HW Design
(Interconnects, processor features,

memory and synchronization
elements, IOs)

Constraints

Tradeoffs

http://www.xilinx.com

Hardware Design

WP262 (v2.0) November 21, 2007 www.xilinx.com 5

R

Hardware Design
This section describes the hardware design considerations in multiprocessor systems.

Overall Architecture
The number of topologies that are possible with multiple processors in them is large.
Not only can the number of processors be different, but there are a lot of possibilities
with regards to their arrangement and function. The presence or absence of various
elements such as external memory and peripherals can also open up various options
for the system architecture.

The busing paradigm used by each processing subsystem forms the core of any system
architecture. Xilinx processors primarily adhere to the PLBv4.6 CoreConnect
specification from IBM. PLBv46 is a powerful shared bus interconnect with many
advanced features. PLBv46 is described in detail in the Xilinx CoreConnect technology
pages. All peripherals of a particular processor are connected to this primary PLBv46
system bus. Apart from the PLBv46 bus, each processor is capable of connecting to on-
chip local memory (BRAMs) via local memory bus interfaces. In the PPC405 case, the
local memory bus is called the On-chip Memory Bus (OCM), whereas in the
MicroBlaze case, it is the Local Memory Bus (LMB).

Figure 2 shows a very basic, completely independent dual processor system
architecture with each individual processing subsystem following the bussing
paradigms just described.

There are no hardware components linking the individual subsystems and hence there
is no way for the processors to communicate at run-time. In the generic architecture
above, a user can equivalently instantiate a PPC405 or a MicroBlaze in the place of
each of the processors. Such completely independent processing systems are just a
trivial enumeration of multiple single processor systems put together in the same

Figure 2: Independent Dual Processor Architecture

Processor 1

Processor 2

XPS BRAM

Private boot memory

XPS BRAM

Private boot memory

Peripheral 1

Local BRAM Local BRAM

Peripheral N

Peripheral 1

Peripheral N

WP262_02_102407

http://www.xilinx.com

Hardware Design

WP262 (v2.0) November 21, 2007 www.xilinx.com 6

R

FPGA, but can still be useful to partition a large function set across multiple
processors.

Figure 3 shows a more generic dual processor architecture where the two processors
can communicate with each other and co-ordinate to accomplish a certain function.

The key concepts in this architecture are as follows:

• The architecture is an extension of the completely independent processing
architecture by connecting shared components between the two processors. The
shared components allow the two processors to communicate with each other in
various ways.

• The example intentionally shows a PPC405 as the first processor and a MicroBlaze
as the second processor to illustrate certain specific characteristics of each
processor. However, any one processor can be equivalently be replaced by the
other with very minimal adaption, thus providing great flexibility in processor
choice.

• Shared components are multi or dual ported in nature. The multi-ported nature of
these components allows each PLBv46 system bus to be independent of the other
both in terms of static as well as dynamic load. By isolating each processing
subsystem, it is ensured that the system bus is not locked out for a processor or
peripheral due to a currently executing transaction for another processor. All the
multiported peripherals arbitrate access on the various ports internally.

• The key shared peripheral is the external memory controller - MPMC. MPMC is a
unique memory controller supported by Platform Studio that offers many
different interfaces (via ports) to the same external memory. Apart from PLBv46,
MPMC port types include the high performance MicroBlaze Xilinx CacheLink
(XCL) interfaces (Instruction XCL and Data XCL) as well as the point to point

Figure 3: Generic Dual Processor Architecture

PPC405

Receive FIFO

XPS_INTC

PLBv46

PLBv46
Port A

XPS_INTC

PLBv46
Port B

XPS_Mailbox Core

PLBv46

DPLB
1

IPLB1

MPMC
(External Memory)

LL
PLB
PLB

PLB
XCL
XCL

IPLB0
DPLB0

MicroBlaze
IXCL
DXCL DPLB

IPLB

Send FIFO

PLBv46
Port A

XPS_Mutex Core

Mutex array

Trimode Ethernet
Mac

Free

PCI Express

LL

XPS BRAM

Private boot memory

XPS BRAM

Private boot memory

PLBv46
Port A

PLBv46
Port B

XPS BRAM

Shared external
memory

Shared BRAM memory

PLBv46
Port A

PLBv46
Port B

PLB_v46 BRIDGE

Peripherals for
processor 2

Peripherals for
Processor 1

PLBv46
Port B

WP262_03_102407

http://www.xilinx.com

Hardware Design

WP262 (v2.0) November 21, 2007 www.xilinx.com 7

R

cache link interfaces of PowerPC405 (IPLB0/DPLB0). This topology allows both
the MicroBlaze and PowerPC processors to access external memory with minimal
latency and high bandwidth at the same time. MPMC currently provides a
maximum of eight ports, thus allowing three to four processors to connect to a
single external memory.

• It is also possible to share internal BRAM memory between processors. Sharing
on-chip BRAM can provide an extremely fast way to pass kilobyte sized data
between the processors. In some cases, deterministic access to BRAM is an
important required. This can be achieved by connecting the BRAM memory to the
local memory interfaces of each processor (instead of the PLBv46 interface shown
in Figure 2).

• Apart from shared memory, there are two other cores - the XPS Mailbox and XPS
Mutex which provide other simple forms of communication. These cores are
further explained in the Communication and Synchronization Setup section.

• Figure 3 also shows a PLBv46 to PLBv46 bridge connecting the second processor
to the first processor's system bus. This might be required to share a peripheral
that is not multi-ported in nature. For instance, some systems might wish to share
a UART or SPI or I2C peripherals. Such a situation requires connecting the
peripheral to a particular processor's system bus and providing the PLBv46
bridge from the other processors' system bus.

While, Figure 3 illustrates the recommended overall architecture for a system with
multiple processors, there are however, a few other options available to architect the
system. For instance, in a system in which logic area and resource usage is a key
concern, all the processors could be located on the same system bus. While this makes
the system less deterministic and increases run-time load on the bus, it offers area
savings by eliminating a new system bus as well as removing the need for multiple
ports on IPs. There are other derivative architectures possible, such as having the high
performance processor on a separate system bus and multiple low performance
processors on a shared system bus. Hierarchical topologies can also be created by
connecting processing sub-systems to each other via multiple levels of bridges. An
exhaustive listing of all such topologies is beyond the scope of this document.
However, most of the concepts discussed in the rest of the document apply broadly
across all the architectures.

Memory Map
Both the MicroBlaze and PowerPC processors use memory mapped I/O to interface
with peripherals. The memory map of a processor is determined by the address ranges
that are assigned to each peripheral and to the peripherals that are connected
directly/indirectly to the processor.

As long as each processor uses a separate system bus, all memory and peripheral
elements are cleanly isolated with the shared elements being clearly defined. Software
on one processor will not see the peripheral subsystem of another processor. Within
each processing subsystem, there are some requirements of the memory map of a
processor to be able to run executables. The primary constraint is that there must be
private memories mapped to the fixed reset and interrupt locations for each processor.
Such private memories can be connected via either the local memory interfaces of the
processor or the PLBv46 interface. Once such private memories are connected,
Platform Studio address generation tools automatically take care of generating a clean
memory map for each processor with the right address ranges assigned for each
peripheral and memory.

http://www.xilinx.com

Hardware Design

WP262 (v2.0) November 21, 2007 www.xilinx.com 8

R

Apart from the private memory sections, each processor can use any memory segment
to run the rest of its software. Memory segments that are shared must be done so in a
non- conflicting manner. The various sections of an executable and their sharing
implications are discussed in greater detail in the Software Design section.

In derivative topologies with more than one processor on a shared system bus, all
memory and peripheral elements on the bus are equally accessible by all processors
sharing the bus. Although a peripheral might be accessed ever by one processor only,
the peripheral is physically visible to the other processor. Though Platform Studio
address generation tools automatically assign distinct address spaces to each
peripheral, it is the responsibility of software to ensure non-conflicting access by each
processor at run-time.

Interprocessor Communication and Synchronization
After multiple processors are connected to the interconnect infrastructure, the system
designer begins designing the primary modes of communication and synchronization
between the processors. On Xilinx processors, the most common communication
schemes are Shared Memory and Mailbox based message passing. These
communication schemes are described in the subsequent sub-sections.

Shared Memory
Shared memory is the most common and intuitive way of passing information
between processing subsystems. A shared memory system has the following
properties:

• Any processor can reference any shared memory location directly.
• Communication occurs via processor load and store instructions.
• Location of data in memory is transparent to the programmer. Data could be

distributed across multiple processors, the details of which would then be
abstracted away by some software API.

• Access to the shared memory segment must be synchronized by some
hardware/software protocol between the two processors.

Shared memory is typically the fastest asynchronous mode of communication,
especially when the information to be shared is large (> 1000 bytes). Shared memory
also allows possible zero-copy or in-place message processing schemes. Shared
memory can be built out of on-chip local memory or on external memory.

Sharing external memory is done using the MPMC memory controller as shown in
Figure 3. Each port of the memory controller is mapped to the same address range and
though each port, all the processors automatically share the entire external memory. It
is the responsibility of the software designer to define the distinct shared and non-
shared memory regions, based on some partitioning, and write the software protocol
that uses the memory regions to pass information between the processing subsystems.

On-chip memory can be shared using PLBv46 based memory controllers as shown in
Figure 3. Apart from PLBv46, local memory interfaces such as OCM and LMB can also
be used to create high-performance, guaranteed latency, shared memory segments.
This scheme works by connecting memory controllers via local memory interfaces to
the on-chip BRAM blocks. Because on-chip memory BRAM blocks on Xilinx FPGAs
are dual ported in nature, this scheme has the limitation that the memory can be
shared between a maximum of two processors. The interfaces connected on either side
can be LMB and/or OCM. This mode of sharing can be used between any pair of

http://www.xilinx.com

Hardware Design

WP262 (v2.0) November 21, 2007 www.xilinx.com 9

R

processors - two PowerPC processors, two MicroBlaze processors, or a PowerPC
processor and a MicroBlaze processor as shown in Figure 4.

When using shared memory in conjunction with caches on the processors, the user
must be aware of coherency considerations. Neither the MicroBlaze processors nor the
PowerPC processors provide cache coherency support and the software must enforce
coherency. This is described further the Software Design section. Note that using local
memory interfaces to on-chip BRAM has the same performance as a cache hit,
therefore such regions of memory are typically not marked as cacheable. Thus by
using local memory for sharing, a multiprocessor system garners all the benefits -
guaranteed latency, performance, and memory coherency.

Mailboxes
Mailboxes are a method to pass messages between one or more senders and a receiver.
The mailbox forms a channel through which messages are queued in a FIFO fashion
from one end by senders, then dequed at the other by the receiver. The mailbox can be
considered a simplified, TCP/IP-like message channel between the processors. The
reception of the message at the end of the receiver may be done in a synchronous or
asynchronous fashion. In the synchronous method, the receiver actively keeps polling
the mailbox for new data. In the asynchronous method, the mailbox sends an interrupt
to the receiver upon the presence of data in the mailbox. Typical usage of a mailbox is
to pass pointers (to data) between the processors or to send actual data.

Xilinx provides the XPS Mailbox inter-processor communication core which provides
the features described above. Each mailbox core has a pair of mailbox FIFOs, one for
transmit and one for receive from a particular processor. The depth of the FIFOs is
configurable by the user. The FIFOs are implemented either using distributed RAM or
BRAM resources. Each mailbox has a pair of interfaces to connect to processors
communicating via the mailbox. Though, it is possible to connect multiple processors
to each interface, the recommended usage is to use a single mailbox between a pair for
processors. Figure 5 shows the Xilinx XPS mailbox communication scheme between
two processors.

The Xilinx XPS Mailbox hardware core is usually suited for small to medium sized
messages, usually less than a few 100 bytes. The sender processor needs to copy the
entire message from local or external memories and write it onto the FIFO. Hence it
may not be suited for large messages. Similarly the receiver processor needs to copy
the entire message back into its own memory. Involving the processor in this copying
of messages wastes valuable processor cycles. Xilinx Mailboxes may be augmented in
the future with DMA capabilities which will prevent the processor from having to do
the message copies and thus be able to accommodate larger sized messages.

The arrival of a message on a mailbox FIFO is indicated to the receiver by sending an
interrupt on the IRQ line coming out of the mailbox. The interrupt is deactivated when
the mailbox has no more messages. The interrupts can be disabled at the interrupt

Figure 4: Shared Dual Ported Local Memory

PPC405
DOCM

MicroBlaze
DLMB

Port A Port B
BRAM

WP262_04_102407

http://www.xilinx.com

Hardware Design

WP262 (v2.0) November 21, 2007 www.xilinx.com 10

R

controller. Thus, the communication between sender and receiver can either be
synchronous or asynchronous.

The arrival of a message on a mailbox FIFO is indicated to the receiver by sending an
interrupt on the IRQ line coming out of the mailbox. The interrupt is deactivated when
the mailbox has no more messages. The generation of interrupts is optional and can be
turned off. Thus, the communication between sender and receiver can either be
synchronous or asynchronous.

Interprocessor interrupts (IPI) is a well known concept in desktop based processor
architectures. It is defined as the ability of a processor to interrupt another processor in
the system, thus delivering an event. The asynchronous messaging capability of the
XPS Mailbox scheme may be used to generate interrupts between the processors.
Sending an interrupt from one processor to the other requires only writing a single
message on the mailbox. The mailbox core generates an interrupt for the receiver. In
the interrupt handler, the receiver dequeues the message to simultaneously
acknowledge the interrupt and dequeue the message.

The MicroBlaze and PowerPC processors also offer such FIFO style communication
capabilities through the FSL interface. FSL is a unidirectional point to point FIFO link.
The FSL capability of the PowerPC processor works through the Auxiliary Processing
Unit (APU) interface connected to an FSL bridge core. Setting up a link from a master
processor to a slave allows the master to send configurable width message words in a
FIFO fashion. The MicroBlaze and PowerPC processors have special instructions that
allow a program to write to a given FSL channel with optional non-blocking and/or
control semantics. The point to point nature and the very minimal hardware
requirements are the greatest advantages of FSL. In addition, the latency of sending a
message through this interface is very low. When hardware or bandwidth constraints
rule out the XPS mailbox scheme, the alternative FSL based scheme may be used for
the same purpose. The XPS Mailbox also features an option to use FSL protocol at
either of its two interfaces.

Figure 5: XPS Mailbox for Message Passing

Processor
1

FIFO 2

XPS_INTC

PLBv46

PLBv46
Port A

XPS_INTC

PLBv46
Port B

XPS_Mailbox Core

PLBv46

DPLB
IPLB

Processor
2

DPLB
IPLB

FIFO 1

Interrupt 2 Interrupt 1

WP262_05_102407

http://www.xilinx.com

Hardware Design

WP262 (v2.0) November 21, 2007 www.xilinx.com 11

R

Synchronization
Processing nodes often need to synchronize with each other when accessing shared
resources (peripherals, memory, etc). There are well known software semaphore and
mutex lock techniques for providing synchronization between multiple threads on a
uniprocessor system. These primitives are provided by an operating system running
on the uniprocessor. The same software techniques cannot be used on an asymmetric
multiprocessing system, because there is no common OS for all the processors.

Although there are some software protocols for achieving simple synchronization
constructs, they may either be limited in features or require atomic read-modify-write
support from the processor.

The MicroBlaze processor does not provide support for atomic read-modify-write
instructions. Hence, Platform Studio provides a hardware synchronization module
called the XPS Mutex to provide the ability to create mutual exclusion regions among
multiple processors.

The XPS Mutex module provides a configurable number of memory mapped mutex
registers which have a value component and a processor ID component. The mutex
works on the test and set principle. Upon reset, the mutex value becomes zero,
representing an unlocked mutex with an unassigned processor ID. To acquire the
mutex, processors perform a write of the software-assigned ID of the processor to the
corresponding mutex register and a value of zero. The mutex arbitrates simultaneous
access to the mutex and stores the ID value written by the winning processor in the
mutex value register. If the mutex is already locked, the mutex value remains
unchanged. Each processor tests the successful acquisition of the mutex by reading
back the mutex value and comparing it to its own processor ID. The processor that
originally acquired the mutex is free to release it at any time by performing a write
operation to the mutex register with its own processor ID and a value of one. Figure 6
shows how the XPS mutex must be hooked up to all the processors that use it.

Figure 6: XPS Mutex for Synchronization

Processor
1

PLBv46

PLBv46
Port 1

PLBv46
Port 2

XPS_Mutex Core

PLBv46

DPLB
IPLB

Processor
2

DPLB
IPLB

Mutex array

WP262_06_102407

http://www.xilinx.com

Hardware Design

WP262 (v2.0) November 21, 2007 www.xilinx.com 12

R

Software usage of the mutex module is described in further detail in the Software
Design section.

Debugger Hookup
It is essential to be able to debug every processor in the design in an independent and
system-aware manner. Both the MicroBlaze and PowerPC processors can be
connected to Platform Studio debugger utilities via the JTAG interface.

The PowerPC processor is connected via an on-chip module called the JTAGPPC
Controller. Each JTAGPPC Controller provides an interface with up to a maximum of
two PowerPC processors. Debugger tools such as the Xilinx Microprocessor Debugger
(XMD) can target either of the PowerPC processors in a JTAG chain and perform
common debugging tasks such as stopping the processor, inserting instructions, and
reading registers.

The MicroBlaze processors use a similar on-chip debug module called the
Microprocessor Debug Module (MDM). The MDM module contains a configurable
number of debug interfaces and has the ability to control a maximum of eight
MicroBlaze processors at any one-time. It can select any one of the connected
MicroBlaze processors at any particular instant and perform the common debugging
tasks. Therefore, the debug interface can be used in a time-multiplexed manner across
the different targets.

MDM also offers a JTAG based UART interface to the processors in the system. This
UART is accessible via the PLBv46 bus interface.

In a system with both the PowerPC and MicroBlaze processors, a combination of
JTAGPPC controller and MDM can be used.

The debug tools do not provide automatic support for debug target groups, i.e
processor sets, on which debug tasks can be performed in a lock step manner. The user
is required to perform individual operations on each processor manually. There is also
no cross-triggering style feature - i.e., the ability to stop or start one processor when a

Figure 7: Debug Interface to Multiple PowerPC Processors

Figure 8: Debug Interface to Multiple MicroBlaze Processors

JTAGPPC
Controller

JTAG

PowerPC
Processor 1

Debug Signals

PowerPC
Processor 2

Debug Signals

Debugger

WP262_07_102407

OPB
MDM

OPB

JTAG

MicroBlaze
Processor 1

Debug Signals

MicroBlaze
Processor 2

Debug Signals

Debugger

WP262_08_102407

http://www.xilinx.com

Hardware Design

WP262 (v2.0) November 21, 2007 www.xilinx.com 13

R

breakpoint is reached on the other. These features will be supported by Platform
Studio in the upcoming releases

Clocking and Reset
Each processor defines a sub-system within the overall multiprocessing system. Each
sub-system can potentially define its own clock and reset domains.

The MicroBlaze processor must run at the same frequency as the PLBv46 bus that it
connects to. However, the PPC processor can be clocked at even multiples of the
PLBv46 frequency. Other peripherals need to be synchronous with the bus frequency.
Usually, this bus frequency becomes the system frequency or Fmax.

By using multi-ported IPs to communicate with each other, each processing sub-
system can run the communication interfaces at their own frequencies, thus creating
multiple clock domains. Similarly, FSLs can create asynchronous FIFOs between the
two connected nodes. This method helps in making the most of a natural advantage of
configurable processing systems; namely, that processor subsystems are typically
heterogeneous in nature and due to various constraints it may not be possible to
ensure a uniform Fmax without lowering it. Therefore, the ability to partition the
clocking domains allows each node to be clocked at the best rate possible.

In multiprocessor systems, multiple reset domains can also be envisioned. Also from a
system perspective, there are two different types of resets that can be desirable:

• Processor Reset

Resets only a particular processor or a defined set of processors. The processor's
peripherals are not reset. This may be desirable to selectively clear the state of a
subset of processors.

• System Reset

Resets the system including processors and peripherals.

The proc_sys_reset IP module is provided by Platform Studio that provides consistent
sequencing of resets for the processor, bus and peripherals as well as providing
independent processor reset signals. By connecting the various reset signals of the
proc_sys_reset in a consistent manner, the two resets that are defined above can be
achieved. While debugging, the debugger tools provide an option to perform the type
of reset that is desired.

Runtime Processor Identification
A common requirement in multiprocessor systems is the ability of software to identify
uniquely the processor on which it is executing at run-time. This feature is extremely
useful in systems where code is portable across the various processors, and hence the
ability to identify the executing processor can help customize the behavior of software.

The PowerPC processors on the Virtex-4 FX devices provide a PVR register that can be
accessed by software. The PVR register is shown in Figure 7.

Figure 9: Processor-Version Register (PVR)

16151211 262522210 31

OWN PCF CAS PCL AID

WP262_09_102407

http://www.xilinx.com

Software Design

WP262 (v2.0) November 21, 2007 www.xilinx.com 14

R

The least significant nibbles of the OWN and AID fields are available as configurable
bits to the user.

The MicroBlaze v5.00a (and later) processors also offer configurable software-
accessible PVR registers. The PVR features can be configured to be BASIC or FULL. In
the BASIC version, an 8-bit USER1 field is available for configuration by the user. In
the FULL version, there is an additional 32-bit USER2 field that can be used for custom
purposes. Hence, the USER1 and USER2 fields can be used to identify processors in a
multiprocessor system.

Software Design
This section describes software considerations in the multiprocessor design. The two
most important considerations are:
1. How to assign the memory maps of the software programs that run on each processor

2. How software APIs are used to communicate between multiple processors.

Memory Map
Any memory that is shared in a multiprocessor design must be mapped and used in a
non-conflicting manner by the software that executes on each processor.

Figure 8 for the MicroBlaze processors and Figure 9 for the PowerPC processors, show
example memory maps for how two separate ELF files map into the local memories
and the shared external memory that is available in the system.

In both the cases, the user has the flexibility to partition the external memory between
the two executables as best suits the case. However, since the boot memory can
typically not be shared, boot sections of the ELF files (.vectors.* on the MicroBlaze
processor and .boot* on the PowerPC processor) are mapped to private local
memories to ensure proper reset behavior. The memory map of each executable built
by the compiler is controlled by special files that can be passed to the linker, known as
Linker Scripts. Platform Studio abstracts away the details of linker scripts from the
user. Assigning memories to the executable is greatly simplified by the Linker Script
Generation utility. In a click-to-assign fashion, it allows the user to specify where in

Figure 10: Dual MicroBlaze Processor Memory Map
WP262_10_102407

IOPB
DOPB

ILMB

DLMB
IXCL

DXCL

MicroBlaze1
LMB BRAM

0x800000

0x8

0x0

0x20

0x50

0x10

0x18

0x800100

0x810100

0x810000

IOPB
DOPB

ILMB

DLMB
IXCL

DXCL

MicroBlaze 2

.text
.data

.rodata

.stack
.unused

<other sections>
.heap

.vectors.reset

.vectors.interrupt
. .

.vectors.reserved

.vectors.breakpoint
.vectors.hw.exception

.text
.data

.rodata

.heap

.stack

<other sections>

LMB BRAM

0x8

0x0

0x20

0x50

0x10

0x18

.vectors.reset

.vectors.interrupt
. .

.vectors.reserved

.vectors.breakpoint
.vectors.hw.exception

Shared External

http://www.xilinx.com

Software Design

WP262 (v2.0) November 21, 2007 www.xilinx.com 15

R

memory the various sections of an executable file reside. The user can assign
memories to each executable running in the multi-processor design and can also make
sure that there are no conflicts.

It is possible to share code across multiple processors by using shared memory for
holding the code. This scenario is useful when both processor are executing essentially
the same software. Data sections (including heap and stack) still need to be kept
private. Also, it is unlikely that the software will perform the same dynamic steps on
both processors – some processor aware behavior is required. The PVR registers
available on the MicroBlaze and PowerPC processors help software identify at run-
time the processor instance that is executing the software at any given time. This
technique can be used to share boot code as well, which may be useful when there is
no private boot memory available.

Software applications interface with the devices in the system through Platform
Studio device drivers. The device driver APIs abstract the details of the physical
memory map from the user software. This is because these driver APIs access all
peripherals with specific instance names rather than hard-coded addresses. The
generated system software library maps these instance names to assigned addresses
on the shared bus. In this way, user errors are minimized and software becomes very
explicit on the regions of memory that it accesses.

Communication and Synchronization

Shared memory communication
Shared memory communication is the most common and obvious way of passing
information between processors. Having a shared global variable or data structure in
memory, software on a processor can easily update the value of the variable and have
it be visible to other processors. All that is required is the address of the variable or a
pointer into the shared region.

The region of code in which the shared data is modified is known as a Critical Region
in OS terminology. Unless there is some sort of well-defined non-conflicting way in
which each processor accesses the shared data, a synchronization protocol or construct
is usually required to serialize accesses to the shared resource.

Figure 11: Dual PowerPC Processor Memory Map
WP262_11_102407

IPLB
DPLB

ISOCM

DSOCM

PowerPC1

Shared External
OCM BRAM

0x800000
0xXXXXXXXX

0x0

0xfffffffc 0x800100

0x810100

0x810000

IPlB
DPLB

ISOCM

DSOCM

PowerPC2

.text
.data

.rodata

.stack
.unused

<other sections>
.heap

.boot

.text
.data

.rodata

.heap

.stack

<other sections>

OCM BRAM

0xXXXXXXXX

0x0

0xfffffffc

.boot

http://www.xilinx.com

Software Design

WP262 (v2.0) November 21, 2007 www.xilinx.com 16

R

The XPS Mutex sychronization primitive described in the Hardware Design section,
can be used for this purpose. As shown in the pseudo code in Figure 10, the semantics
are similar to the well-known lock before use and unlock after use methodology used
in uni-processor mutexes.

For more information on the software API for the mutex, refer to the mutex driver
documentation in Platform Studio. The reference designs provided with XAPP996
Dual Processor Reference Design Suite illustrate software usage of the Mutex core

.

Another important consideration when using shared memory is cache coherency. If
the shared memory region is cacheable by the processors in the system, the user has to
consider those situations which could leave the cache in an incoherent state. Neither
the MicroBlaze nor the PowerPC processor provide cache coherency in hardware.
When both processors access the same physical memory, updates by one processor to
the memory are not directly seen by the cache subsystem of the other. If required, it is
up to the software to ensure coherency. A simple way of ensuring coherency is to
invalidate those cachelines which correspond to the shared memory prior to access by
the program. This causes the processor to refill the cache with any (potentially)
modified data from main memory when accessing those cachelines. Another option is
to dedicate non-cached regions of the main memory for shared memory purposes.
Using shared on-chip memory via processor local interfaces is another approach to
solving the coherency problem. This is because the local memory interfaces either do
not enter the cache subsystems or offer a memory latency close or equal to a cache hit
and hence such memories are typically not marked cacheable.

Each of these options has some advantages and disadvantages in flexibility,
performance, and functionality. The scheme that works best for the application must
be carefully selected.

Some types of shared data access do not require any synchronization nor memory
coherency. For example, if the shared data model is similar to the simple form of
multiple readers, single writer problem, the readers do not need to access the shared data
in a mutually exclusive manner from each other. It is sufficient that the writer get to

Figure 12: Shared Memory Communication

/* shared tasks */

XMutex_Lock ();

/* Critical Region - Perform shared memory access */

XMutex_Unlock ();

Program on Processor 1

/* shared tasks */

XMutex_Lock ();

/* Critical Region - Perform shared memory access */

XMutex_Unlock ();

Program on Processor 2

WP262_12_102407

http://www.xilinx.com

Software Design

WP262 (v2.0) November 21, 2007 www.xilinx.com 17

R

access the data in an exclusive fashion. Such common synchronization, coherency, and
consistency paradigms are described in popular publications on Operating Systems
concepts. The shared memory should be modeled based on the paradigm the
application finds as best fits.

Message Passing
The XPS Mailbox hardware primitive described in the Hardware Design section and
its software drivers can help provide message passing features between processors.
The software API is oriented in the fashion of the read() and write() calls, therefore the
software can treat the mailbox as a serially accessed file for sending and receiving
data. The software library provides blocking and non-blocking versions of the API.
The asynchronous message passing feature allows the software on a processor to
make progress without having to waste cycles in a spin-loop for data to arrive on a
mailbox, thereby isolating slow senders from fast receivers that have other time critical
tasks to perform. The asynchronous message passing feature can also be used as a
form of inter-processor interrupts.

For more information on the software API for the mailbox, refer to the mbox driver
documentation in Platform Studio. The reference designs provided with XAPP996
Dual Processor Reference Design Suite illustrate software usage of the Mailbox core.

Rendezvous and Barriers
One common requirement of multiprocessing systems is that they come out of reset
and perform some sort of synchronization step with each other before proceeding
onto individual dedicated functions. For example, in multiprocessing systems with
master slave relationships, the master processor is in charge of initializing the
operating environment for all slaves after which it kicks off the slaves. This sort of
synchronization is typically formulated as rendezvous or barrier type problems.
Software is free to define its own rendezvous protocol by using any of the inter-
processor communication schemes described in the previous sections. For example, a
rendezvous maybe implemented by using a single variable or a set of variables in
shared memory. Alternatively, slave processors may be sent a startup message via an
XPS mailbox by the master. A third possibility is to use the interrupt generation
capability of the mailbox for interrupting processor(s), thereby signalling a barrier or
rendezvous type of event.

Debugging
Platform Studio debugger and profiling tools can allow the user to debug processors
in a completely independent fashion. Debuggers may perform reset actions on a
processor before downloading code to debug. Unless resets are clearly isolated
between processor sub-systems, debugging on a particular processor may cause
unwanted side-effects on other processors. The debugger tools provide an option to
debug each processor in an isolated and non-intrusive fashion.

Platform Studio debugger tools do not provide co-operative debug and cross-
triggering capabilities between software on the different processors. Future releases of
Platform Studio will support these features.

http://www.xilinx.com

Conclusion

WP262 (v2.0) November 21, 2007 www.xilinx.com 18

R

Operating Systems
Software running on each processor can include not only bare-metal libraries, but also
operating systems. SMP is a common requirement for multiprocessor support by
some of the popular operating systems such as Linux. However, there are several OS
vendors who support Asymmetric multiprocessing with a heterogeneous mix of
processor cores. As explained before, the heterogeneous model is more suited for
embedded systems on FPGAs. Third party vendor operating systems layer on top of
the Xilinx hardware and software IP infrastructure described above to provide many
useful multiprocessing solutions in software. For a list of third party vendors and their
support for multiprocessor systems, see
http://www.xilinx.com/ise/embedded/epartners/listing.htm#RTOS

Conclusion
This white paper gives a high level overview of various typical scenarios in which
multiprocessors are used. Generic concepts are described in detail as they relate to the
designing of multiprocessor systems in Platform Studio. Various useful
methodologies, capabilities, and common issues are discussed. The reference designs
provided in XAPP996 Dual Processor Reference Design Suite are a useful starting point
for building a custom multiprocessor design with Platform Studio.

Reference Documents
XAPP996 Dual Processor Reference Design Suite

Revision History
The following table shows the revision history for this document.

Date Version Revision

4/23/07 1.0 Initial Xilinx release.

4/27/07 1.1 Added Ref Documents section; made other minor edits.

11/21/07 2.0 Rewritten for EDK 9.2.

http://www.xilinx.com
http://www.xilinx.com/ise/embedded/epartners/listing.htm#RTOS

	Designing Multiprocessor Systems in Platform Studio
	Introduction
	Design Flow
	Background
	Hardware Design
	Overall Architecture
	Memory Map
	Interprocessor Communication and Synchronization
	Runtime Processor Identification

	Software Design
	Memory Map
	Communication and Synchronization

	Conclusion
	Reference Documents
	Revision History

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

