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ABSTRACT
A weighted-average method for determining uniaxial,
true tensile stress vs. strain relation after necking is
presented for strip shaped samples. The method re-
quires identification of a lower and an upper bound for
the true stress-strain function after necking and ex-
presses the true stress-strain relation as the weighted
average of these two bounds. The weight factor is de-
termined iteratively by a finite element model until best
agreement between calculated and experimental load-
extension curves is achieved. The method was applied
to various alloys.

INTRODUCTION
The finite element method (FEM) has become a common engi-
neering tool. If applied to solve mechanical engineering
problems it deals mostly with linear elastic problems where the
elastic modulus E and Poisson’s ration are the only material
constants considered. In recent years the demand for nonlinear,
plastic analyses has increased noticeably. Crimping results by
its very nature in large plastic deformation. It was analyzed
recently using FEM by S. Kugener1. Another example where
plastic behavior of materials must be considered are large de-
formations of small contacts in high density connectors.

For plastic analysis the FEM requires besides E andn also
input of a uniaxial true stress-strain function. This function is
usually determined by the applicable ASTM method2. It is well
known that in tensile testing, the uniform extension ceases
when the tensile load reaches a material specific maximum. At
this point the test sample begins to neck. The state of stress
changes gradually from the simple uniaxial tension to a compli-
cated condition of triaxial stress for a round bar or of biaxial
stress for a thin strip. Because the onset of necking destroys the
uniaxial state of stress it is impossible to determine a uniaxial
true stress-strain relation by the standard tensile test once neck-
ing has started. Thus, for applications in which strain exceeds

its value at the onset of necking, the standard tensile test cannot
provide data sufficient for modeling. This can seriously limit
the use of FEM for large strain applications such as contact
forming. For this reason some method has to be found to obtain
the true stress-strain relation after necking.

For rods Bridgman’s correction method3 is most commonly
used to obtain uniaxial true stress-strain relations after necking.
Because electrical contacts are almost exclusively in form of
flat bars applicability of the Bridgman correction is rather lim-
ited. This extends also to laboratory tests, where samples are
required that approach in geometry and dimensions those of the
corresponding contacts. To the author’s best knowledge, there
is no effective way to obtain for strip samples true stress-strain
curves after necking. This is a great obstacle for developing a
true stress-strain data base for contact spring materials.

The study presented here is an attempt to fill that gap. For rea-
sons of clarity some fundamental definitions and concepts are
reviewed and discussed.

FUNDAMENTAL DEFINITION
Strain describes quantitatively the degree of deformation of a
body. It is measured most commonly with extensometers and
strain gauges. For uniaxial deformation strain can be expressed
as

e5
Lf 2 L0
L0

, (1)

where

L0 5 original length of the undeformed specimen,

Lf 5 length of the deformed specimen.

This strain is theengineering strain, or conventional strain.

rCopyright 2004 Tyco Electronics Corporation. All rights reserved.

AMP Journal of Technology Vol. 5 June, 1996 Y. Ling 37



Based on this definition, if a sample were stretched such that
Lf 5 2L0, the tensile engineering strain would be 100%. On the
other hand, if a sample were compressed to the limit such that
Lf 5 0, the compressive engineering strain would again be
100%. These extreme examples show that for large strain the
definition of equation (1) is not meaningful.

For purely elastic deformation stresses are uniquely defined by
the final configuration of a material, regardless of how this final
state is reached. Because of the presence of irreversible ele-
ments in the deformation a plastic analysis has to follow the
path along which the final configuration is reached. To achieve
this, the total deformation is generally divided into small incre-
ments. Considering the uniaxial case, let dL be the incremental
change in gauge length and L the gauge length at the beginning
of that increment. Then, the corresponding strain increment
becomes

de 5
dL

L
(2)

and the total strain for a change of the gauge length from L0 to
Lf

e 5 e
o

e

de 5 e
L0

Lf dL

L
5 ln

Lf
L0

. (3)

The strain defined by equation (3) is thetrue strainor natural
strain. It is a more suitable definition of strain and is particu-
larly useful for large strain analyses. In the case of a sample
being compressed to zero thickness, equation (3) would yield

eLf = 0 5 lim
Lf = 0 1ln

Lf
L02 5 2`

which is a more reasonable value than the compressive strain of
100% predicted by definition of equation (1).

True strain and engineering strain are related by

e 5 ln (11 e). (4)

A body deforms under an applied load. Expressed as force per
unit area of cross section the load becomes a stress, s. For uni-
form deformation it may be defined as

s5
F

Ao
(5)

where

F5 force acting perpendicular to the cross section,

A0 5 original cross sectional area.

This stress, defined with reference to the undeformed configu-

ration, is calledengineering stress. If the reduction of the cross
sectional area is large, the engineering stress definition be-
comes inappropriate. For instance it fails to predict strain
hardening simply because of the use of a constant initial area,
A0. Amore realistic stress definition should use the instanta-
neous cross sectional area A:

s 5
F

A
. (6)

The definition of the stresss is based on the instantaneous
material configuration. It is called thetrue stress. If during a
deformation the volume of the sample is conserved, i.e., if

AL 5 A0F0 5 AfFf

one may relate true stress and engineering stress by

s 5 s(11 e). (7)

Engineering stress-strain curves are useful only for small defor-
mations. In such cases true stress-strain and engineering stress-
strain curves coincide within reasonable limits. For large strain,
say greater than 1%, the true stress-strain should always be
used. It is important to note that equation (6) holds only for
uniform deformation, i.e., where stresses in every point at the
cross-section are the same. For the nonuniform case, stress is
defined as

s 5 lim
DA = 0 1

DF

DA2 . (8)

Because of the difficulties in measuring independentlyDF and
DA equation (8), considered solely as a definition, has mostly
theoretical value. This implies that the stresss can be directly
obtained only when the deformation is uniform by measuring
the force and the corresponding cross sectional area. Once
deformation ceases to be uniform, only average stress can be
measured and the stress distribution cannot be determined
experimentally. This is the main reason for the problems en-
countered in the attempts to obtain true stress after necking.

UNIAXIAL STATE
In the previous section, stress and strain are defined for the
simple uniaxial state of stress. This simplified the introduction
of the basic concept of stress and strain without using tensors.
More importantly, the uniaxial state of stress is one of the few
simple cases in which the stress-strain relation may be verified
experimentally.

A general theory of plasticity must deal with states of stress
comprising six stress componentssx, sy, sz, txy, tyz, tzx and six
strain componentsex, ey, ez, gxy, gyz, gzx. Note that here the
conventional notations for stresses and strains are used.4 The
uniaxial state of stress is a special case where there is only one
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nonzero normal stress

sx 5 s,

sy 5 sz 5 txy 5 tyz 5 tzx 5 0. (9)

If the material is isotropic, which shall be assumed throughout
this paper, the strains in the uniaxial state are:

ex 5 e,

ey 5 ez 5 2e/2,

gxy 5 gyz 5 gzx 5 0. (10)

Note that here, and in the rest of this section, the plastic strains
are assumed to be large enough so that the elastic ones can be
neglected.

Generally only the stress-strain relation in the uniaxial state is
known. Therefore, one needs to relate stresses and strains in a
general state to uniaxial observations. For this purpose it is
assumed that for any given stress state, there exists an equiva-
lent uniaxial stress state. The equivalent uniaxial stress, or the
von Mises, stress is defined as5

se 5
1

Œ2 3
(sx 2 sy)

2 1 (sy 2 sz)
2 1 (sz 2 sx)

2 1

1 6(txy
2 1 tyz

2 1 tzx
2 ) 4 1/2 .

(11)

The corresponding equivalent strain can be found through

ee 5 e dee, (12)

where dee is the strain increment

dee

5
Œ2
3 3

(dex 2 dey)
2 1 (dey 2 dez)

2 1 (dez 2 dex)
2 1

1 6dgxy
2 1 6dgyz

2 1 6dgzx
2 4 1/2 . (13)

Note that here strain increments are used to account for the
possible path-dependent nature of the deformation. The rela-
tionship between the equivalent stressse and the equivalent
strainee follows the measured uniaxial flow curve, i.e.,

se(ee) 5 s(e).

This can be verified by substituting the uniaxial conditions (9)
and (10) into equations (11) and (12), respectively:

se 5 s, ee 5 e de 5 e. (14)

The general stress-strain relation for plastic deformation may
be expressed as

dex 5
dee

s(ee) 3sx 2
(sy 1 sz)

2 4 , etc.,

dgxy 5
3

2

dee

s(ee)
txy, etc., (15)

wheres(ee), often called thestrain hardening function, is
evaluated from the uniaxial true stress-strain curve.

A special situation occurs when the ratios of the principal
stresses remain constant during loading. In this case, the total
strains may be related to stresses5 by

ex 5
ee

s(ee) 3sx 2
(sy 1 sz)

2 4 , etc.,

gxy 5
3

2

ee

s(ee)
txy, etc., (16)

The above discussions show why the uniaxial true stress-strain
relation is very important. It defines the strain hardening of a
material and determines the general stress-strain relation when
plastic deformation is taking place. Thus, measuring the uni-
axial true stress/strain relation is the most fundamental task
before any plastic analysis can be made. Unfortunately, experi-
mental determination of uniaxial true stress/strain relations by
uniaxial tensile test is greatly complicated by the necking phe-
nomenon.

CORRECTION METHOD
In developing a method for finding the true stress/strain relation
beyond necking for a round bar, Bridgman assumed3

(1) that the strain distribution in the minimum section was
uniform with

er 5 et 5 2
ea

2
(17)

where

er 5 radial stress,

et 5 hoop stress,

ea 5 axial stress;

(2) that a longitudinal grid line is deformed into a curve at
the neck so that, with the quantities identified in Figure
1, its curvature 1/r is

1

r
5

r

aR
(18)
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where

r 5 radius of curvature of the grid line,

r 5 radius of actual cross section,

a5 radius of the smallest cross section,

R5 radius of curvature of the neck;

(3) the ratios of the principal stresses remain constant during
loading such that the total strain-stress relations (16)
may be used.

Based on assumption (1), the equivalent uniaxial strain,ee, at
the minimum section is the average axial strain at the minimum
section. Introducing in equation (3) the volume conservation
condition and replacing the final cross sectional area, Af, by the
instantaneous minimum cross sectional area, A, it is

ee 5 e
L0

La
dea 5 ea 5 ln

A0

A
, (19)

which means that to obtain the equivalent strain at the neck,
one only has to measure the instantaneous dimension of the
minimum section.

The average axial or nominal stress, (sa)av, at the smallest cross
section is

(sa)av 5
F

A
. (20)

Because radial and hoop stresses,sr andst, are not zero the
nominal stress is not the equivalent uniaxial stress. Using the

stress equilibrium equations at the minimum section and the
assumptions (2) and (3), Bridgman3 gives the stress distribution
at the smallest cross section as

sr 5 st 5
(sa)av

111
2R

a 2 5
ln 1a

2 1 2aR2 r2

2aR 2
ln 111

a

2
R2 6 ,

sa 5
(sa)av

111
2R

a 2 5
11 ln 1a

2 1 2aR2 r2

2aR 2
ln 111

a

2R2 6 .
(21)

Because the shear stresses disappear at the smallest part of the
cross section the equivalent uniaxial stress calculated from
equation (11) becomes

se 5
(sa)av

111
2R

a 2 ln 111
a

2R2
5 k(sa)av, (22)

with

k 5 3111
2R

a 2 ln 111
a

2R24
21

,

which may be considered as the nominal stress (sa)av corrected
by a factor k.

Verification of this correction method is difficult because true
stresses after necking cannot be measured directly but the as-
sumptions on which the correction theory is deserve closer
examination. Measurement of strain distributions has shown
that they are essentially uniform across the minimum section.
Therefore assumption (1) can be considered to be a good ap-
proximation.6 The curvature assumption (2) was verified
experimentally by Davidenkov and Spiridonova.7Assumption
(3) is not fully justified but according to Aronofsky6 represents
a first approximation. Moreover, many finite element analyses,
e.g., those by Zhang and Li8 have shown that stress distribution
at the minimum cross section approximately follows equations
(21). Therefore, it is generally accepted that if a and R are
accurately measured, Bridgman’s correction method can predict
the true stress-strain relation beyond necking fairly well in a
rod. It must be pointed out that for several reasons Bridgman’s
correction method is not simple to use in practice. It requires a
series of tests with different loadings to determine the radius of
curvature R and the minimum radius a, which are both difficult
to measure with sufficient accuracy.

Based on the same three assumptions Bridgman extended his
correction method to flat bars. However, necking for flat
samples proved to be much more complicated than for rods
with their circular cross section. For thin strips two types of

Figure 1. Illustration of necking of a rod and introduction of
parameters used in the text.
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necking or flow instability must be considered. The first of
them isdiffuse necking, so called because its extent is much
greater than the sample thickness. It is illustrated in Figure 2.
This form of instability is analogous to necking of rods. Diffuse
necking starts when the tensile load reaches its maximum. It
may terminate in fracture but is often followed by a second
instability process calledlocalized neckingof thin strips. In this
mode the neck is a narrow band inclined at an angle to the
specimen axis, as shown in Figure 2. Once localized necking
started, the width of the sample contracts little, but the thick-
ness along the necking band shrinks rapidly. Fracture occurs
soon after.

Bridgman’s correction method for flat samples does not con-
sider localized necking. Therefore, it is not surprising that the
method apparently has not been applied successfully. The rea-
son for the failure is that all three assumptions were found to be
incorrect for flat strips:

x The strain distribution at the minimum cross-section be-
comes highly non-uniform when localized necking begins.
The average axial strain

(ex)av 5 ln 1A0

A 2 , (23)

can be considerably smaller than the maximum axial strain
at the minimum cross section.6 Thus, even if the instanta-
neous dimension of the minimum section is known, the
equivalent strain is still not defined. More complicated
techniques such as the grid method have to be used to
measure strain across the minimum cross section.

x To obtain the equivalent uniaxial stress, one has to solve
for the distribution of stressessx andsy across the mini-
mum section. To do this analytically, one needs to find the
curvatures of the longitudinal grid lines during necking.
Aronofsky’s experimental work6 suggests that Bridgman’s
curvature assumption does not apply to flat samples. One
would have to measure the curvature not only for the outer
profile but also for many other longitudinal grid lines
across the minimum section. This would make the testing
difficult and time consuming.

x The ratios of the principal stresses do not remain constant
during loading and the incremental theory of plasticity may

have to be used, which makes the analytical solution for
the stress distribution at the minimum section very diffi-
cult, if not impossible.

Although theoretically development of a correction method for
obtaining the true stress/train relation after necking for flat
samples is still possible, it would be very difficult and costly to
apply it.

WEIGHTED AVERAGE METHOD
Correction methods were developed before the powerful FEMs
were available. FEM was shown to permit simulation of the
necking phenomenon very well. There have been numerous
studies on this subject.9 Most of them focused on the problem
of how necking develops for a given stress-strain relation. The
opposite, practically more important problem, of finding for a
given load-extension curve the corresponding true stress-strain
function attracted little attention.

The only such work the present author is aware of is by Zhang
and Li.8 There, the experimental tensile load-extension curve is
considered as target and the true stress-true strain relation is
searched for iteratively by finite element analysis (FEA) until
the target is reached within a certain tolerance. The method
worked well for a round sample of a middle-carbon steel: the
obtained true stress-strain relation was in good agreement with
that determined by Bridgman’s correction method. Though
Zhang and Li studied only round samples, the concept applies
also to flat samples. The main advantage of their method is that
the true stress-true strain data can be extracted from results of
standard tensile tests which does not have to be interrupted at
different loads to determine profiles and dimensions at the
neck, as required by the correction method. The main short-
coming is that the entire stress-strain relation beyond necking is
treated as unknown and iterations are required for a series of
strain intervals making the computation extremely extensive
and time-consuming. Another drawback is that the method
requires a specially written FEA program to do the numerical
searching. For most engineers, developing a robust FEA pro-
gram for nonlinear plastic analysis is not a trivial task.
Therefore, availability of a method similar in principle to
Zhang and Li’s approach but much simpler is highly desirable.

A power law is often used to represent the whole flow curve10,
for instance

s 5 Ken, (24)

where K and n are empirical constants determined from known
true stress-strain data before necking. Modern FEA programs
do not require input of the uniaxial true stress-strain function in
analytical form. It is entered numerically as ordered pairs taken
from experimental data and the power law or any other func-
tion in analytical form are not necessary for curve fitting the
measured true stress-strain data before necking. The power law
may be useful for extrapolation of the true stress-strain curve
beyond necking.

Let eu be the true strain at which necking starts andsu the

Figure 2. Illustration of the difference between localized and
diffused neck during necking of a thin strip.
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corresponding true stress. They can be calculated from the
ultimate tensile strength su and the corresponding uniform
engineering strain eu:

eu 5 ln (11 eu),

su 5 su(11 eu). (25)

At the onset of necking it is

s 0 e5eu
5 su,

and

ds

de 0 e5eu
5 su. (26)

Note that the second equation in (26) is the well known condi-
tion for initial necking. If the power law is used to extrapolate
the true stress-strain relation beyond necking, the onset of
necking should be reserved, i.e., the constants K and n are
determined by equations (26) as

K 5
su

eu
eu

and

n5 eu

and the extrapolation equation becomes

s 5 1
su

eu
eu2 eeu. (27)

In a log-log plot the power-law is represented by a straight line.
However, from observation it is known that in a log-log dia-
gram of the true stress vs. true strain curve the slope tends to
increase slightly beyond necking. This behavior is illustrated in
Figure 3 for a phosphor bronze alloy. It was observed for all
copper alloys examined, which included phosphor bronze,
brass, pure copper, and beryllium copper. Thus, the power-law
extrapolation appears to underestimate true stresses and it is
reasonable to assume that for copper alloys the power law
extrapolation gives a lower bound for the true stress.

For many copper alloys, a straight line was found to represent
the true stress-strain relation better than the power law. Thus,
one may also assume a linear relationship between the true
stress and true strain after necking

s 5 a0 1 a1e, (28)

where a0 and a1 are two constants, determined from equations
(26) as a0 5 su(1-eu) and a1 5 su, which yields

s 5 su(11 e 2 eu). (29)

The linear extrapolation suggests that after necking the slope
ds/de of the true stress-true strain curve remains constant, or
the strain hardening rate does not change as the strain becomes
large. Observation shows that this is usually not the case: strain
hardening rate generally decreases with increasing true strain.
Therefore, the linear extrapolation will generally lead to over-
estimate true stresses and give an upper bound.

Since the lower and upper bounds for true stresses after neck-
ing have been identified, a better approximation of the true
stress is to use the weighted average of the lower and upper
bounds defined by equations (27) and (29), respectively:

s 5 su 3w(11 e 2 eu) 1 (12 w) 1e
eu

eu
eu24 , (30)

where w, with 0# w # 1 is an unknown weight constant. The
upper boundary of this closed interval, i.e., w5 1 represents
the linear extrapolation, the lower bound, w5 0, the power
law. The central point, w5 1/2, is the average of both.

To determine the weight constant w Zhang and Li’s approach8

is followed. The measured tensile load-extension relation, F(e),
i.e., the engineering curve is considered the target and the
weight constant w is varied in a finite element model until the
calculated load-extension relation F*(e,w) agrees with F(e)
within pre-defined limits. This optimization problem can be
formulated as

min
0#w#1

(d), (31)

whered is an error measuring the difference between F*(e,w)

Figure 3. True stress-strain plot. The log-log presentation
shows that the power law extrapolation tends to underesti-
mate the true stress.—Sample: C511-Hard-Longitudinal. For
additional data see Table 1.
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and F(e), for instance

d 5 e
eu

ef
[F*(e, w) 2 F(e)]2 de (32)

with ef 5 relative elongation, or engineering strain, immedi-
ately prior to fracture. Note that the error is evaluated from the
onset of necking to fracture, since the true stress-strain relation
before necking has been well defined and the load-extension
relation can be measured precisely before necking.

The weighted average method presented in this paper uses only
one variable w, while in Zhang and Li’s method the searching
has to be done for a series of stresses and strains. It is thus a far
simpler method. Moreover, it was found experimentally that the
largest error always occurs immediately before fracture, i.e., at
e5 ef. When F*(ef,w) < F(ef), the calculated load-extension
curve matches the experimental one very well. Thus, instead of
performing the rigorous optimization process, one may simply
determine w such that

F*(ef, w)

F(ef)
2 1< 0. (33)

Usually a satisfactory value of w can be obtained by a few
trials. Examples are given below.

RESULTS
The finite element programABAQUS11was used to simulate
the tensile test. One fourth of the sample was modeled, as
shown in Figure 4, using the eight-node-plane-stress element
with reduced integration (CPS8R). Necking is induced by the
end condition and generally no imperfection in width is needed
to initiate it. Fine meshing is located near the center of the
sample where the strain gradient is expected to be large. Mod-
els with meshes of 20 by 8 and 25 by 10 within the gauge
length are analyzed to check numerical convergence. The load-
extension curves obtained for the two different meshes were
found to be almost identical. Thus, the mesh of 20 by 8 was
considered adequate.

The materials of the examples are listed in Table 1. They in-
clude various copper alloys of various tempers ranging from
very soft pure copper (C10200-1/8Hd) to high temper phosphor
bronze (C52100-10M). For phosphor bronze C51100, a weight-
ing constant w5 0.50 was tried first. The corresponding load-
extension, i.e., the engineering stress-strain curve is shown in

Figure 5a. The calculated curve is slightly below the measured
one, indicating that using w5 0.50 slightly underestimates
actual strain hardening. Thus, a slightly larger value w5 0.55
was tried with the result that calculated and experimental load-
extension curves agreed well. Further refinement led to a value
of w 5 0.54, which yielded almost perfect agreement. The
resulting true stress-strain relation is shown in Figure 5b. For
other materials listed in Table 1 experimental load-extension
curves and the resulting true stress-strain relations are shown in
Figures 6 to 9.

All examples show that the target load-extension curve can be
reproduced by simulation with great accuracy provided the true
stress-strain relation after necking is adjusted by choosing a
proper weight constant w. The question if the true stress-strain
relation found by this method is the correct one in an absolute
sense remains open. A rigorous proof would have to consider
the issue of the uniqueness of the solution. Instead of attempt-
ing such proof an engineering argument is offered here. When
true stresses are underestimated, a material possesses less strain
hardening than it should have. This insufficient strain hardening
is directly reflected in the calculated load-extension curve,
which would fall below the experimentally determined target
curve. Consequently, it will predict that necking develops too
fast or too early after its initiation. On the other hand, if true
stresses are overestimated, the material will have excessive
strain hardening, and the calculated load-extension curve will
be above the target curve, which means that necking would
develop too slowly or too late. Therefore, a true stress-strain
relation that reproduces the experimentally determined load-
extension curve should correctly represent the strain hardening
function of a material.

To further verify the weighted-average method, a rod of a mild
carbon steel is considered. Tensile test data for this material
have been reported by Zhang and Li.8 They also measured the
nominal stress and applied Bridgman’s correction method to
obtain the uniaxial true stress-strain function up to fracture. The

Figure 4. Finite element mesh.

Table 1. Mechanical properties of alloys studied. L 5 longitudinal, T 5 transverse.

Alloy Temper Orientation Modulus E, Mpsi Tensile Strength su, kpsi Uniform Strain eu, % Elongation ef, % Sample Thickness t, mils

C51100 Hd L 16.5 80.6 7.60 11.0 15.5
C52100 10M L 15.6 120.7 1.87 7.20 13.9
C26000 Extra Hd L 15.5 84.4 4.38 9.60 12.6
C10200 1/8 Hd T 16 35 30.5 42.0 45.5
C17510 TM04 T 18 124.1 11.0 14.4 8
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purpose here is to check whether the true stress-strain relation
determined by the weighted-average method agrees with that
obtained by Bridgman’s correction method. By simulating the
tensile test of the rod with different weight constants w, it was
found that with a weight constant of about 0.45 the calculated
load-extension curve agrees well with the experimental one.
The results are shown in Figure 10. In Figure 11 are compared
the true stress-strain relation after necking calculated by equa-
tion (30) with w5 0.45, the true stress-strain data determined
by Bridgman’s correction method and those found by the
Zhang and Li procedure. The results from the three methods are

quite close. It is concluded that the weighted-average method
predicts the true stress-strain relation after necking as well as
the two other methods. The results also show that all calculated
weight constants are in the range 0# w # 1. This verifies the
lower and upper bound assumption at least for the materials
studied.

Not yet addressed was the question of how to predict the end of
the true stress-strain curve, i.e. the prediction of the fracture
strain. To solve this problem one needs to follow the strain

Figure 5. Comparison of load vs. engineering strain with true
stress vs. strain for alloy C51100. (a) Load vs. engineering
strain curves. (b) True stress vs. true plastic strain curve.—
Sample: C511-Hard-Longitudinal.

Figure 6. Comparison of load vs. engineering strain with true
stress vs. strain for alloy C521. (a) Load vs. engineering
strain curves; applied weight constants, w, used for FEA are
given in the insert. (b) True stress vs. true plastic strain
curve.—Sample: C521-10 M-Longitudinal.
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evolution during tensile loading. It is known that fracture in a
tensile sample occurs first at the center of the sample because
the maximum strain occurs there. For phosphor bronze C51100
it is shown in Figure 12 the maximum strain evolution with
increasing engineering strain. The strain in the axial direction is
referred to as the major strain, that in the width direction as the
minor strain. The equivalent strain is almost the same as the
major strain. Since the elongation ef is the maximum engineer-
ing strain the sample can withstand without failure, the
equivalent strain corresponding to the elongation should be the

fracture strainef. It can be found from Figure 12 to beef<98%.
The results of calculations of strain values at fracture for vari-
ous alloys are summarized in Table 2.

It should be pointed out that though the weighted-average
method in theory can be used to determine fracture strain, a
close look at Figure 12, however, suggests that it is unlikely to
yield reliable results. As mentioned before, thin flat samples
generally fracture during localized necking. Once this mode has
started, the strain increases very rapidly. This can be seen from

Figure 7. Comparison of load vs. engineering strain with true
stress vs. strain for alloy C26000. (a) Load vs. engineering
strain curves; applied weight constants, w, used for FEA are
given in the insert. (b) True stress vs. true plastic strain
curve.—Sample: C260-Extra Hd-Longitudinal.

Figure 8. Comparison of load vs. engineering strain with true
stress vs. strain for alloy C10200. (a) Load vs. engineering
strain curves; applied weight constants, w, used for FEA are
given in the insert. (b) True stress vs. true plastic strain
curve.—Sample: C102-1/8 Hd-Transverse.
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Figure 12 where it is shown that the maximum strain increases
very steeply near fracture. Calculations involving such large
slopes are usually not reliable. A slight variation in elongation
or even a small numerical disturbance can cause significant
differences in the calculated fracture strain. The large slope of
experimental load-deflection curves near fracture also makes
accurate measurements of fracture strain very difficult. In fact,
fracture strains determined in formability testing generally have
a great deal of scattering.12 Thus, it is unlikely that one can
accurately determine the fracture strain through calculation or

even through conventional or standardized measurement tech-
niques. At best a conservative estimate of the fracture strain can
be given. One way to do this is to measure the cross sectional
area Af at fracture and use the average axial strain in the small-

Figure 9. Comparison of load vs. engineering strain with true
stress vs. strain for alloy C17510. (a) Load vs. engineering
strain curves; applied weight constant, w, used for FEA is
given in the insert. (b) True stress vs. true plastic strain
curve.—Sample: C17510-TM04-Transverse.

Figure 10. Comparison of calculated and measured load vs.
extension curves. Measured data according to Zhang and Li8.

Figure 11. Comparison of true stress vs. strain relationships
obtained by different methods. Measured data according to
Zhang and Li8.

Y. Ling AMP Journal of Technology Vol. 5 June, 199646



est section

ef 5 ln 1A0

Af
2 (34)

as the fracture strain. This method will yield a conservative
estimate because the maximum strain at this section can be
considerably larger. Estimation ofef using this approach is
essentially the same as that for rods and has been applied fre-
quently.13

CONCLUSION
A new method for predicting true stress-strain functions from
engineering stress-strain data was developed and shown to offer
advantages over methods commonly known. The new method
utilizes weighted averages of upper and lower bound of stress-
strain curves and is consequently called theweighted average

method. Bridgman’s correction method is shown to be inappro-
priate for determining true stress-strain functions for strip
samples after necking.

The power law extrapolation of the true stress-strain relation
beyond necking is found, at least for the materials listed in
Table 1, to be the lower bound for the true stress-strain relation,
a linear extrapolation with properly determined constants
serves as the upper bound. Using a weight constant, w, the
actual true stress-strain function after the onset of necking can
be well represented by the weighted average of the two bounds

s 5 su 3w(11 e 2 eu) 1 (12 w) 1e
eu

eu
eu24 , (35)

with 0# w # 1.

This expression is suitable for reproducing experimental tensile
load-extension curves in FEAwith great accuracy by proper
selection of the weight constant w.

The weighted average method is not recommended for predic-
tion of fracture strain. Instead, the conventional method
involving measuring the minimum cross-sectional area at
fracture may be used.
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