Photophysical and Photochemical Property of ATX-S10

Toshiaki Ito1*, Shigetoshi Okazaki1, Kazumi Kageyama1, Toru Hirohata1, Eiji Kohno2 and Toru Hirano2

1Hamamatsu Photonics K.K., Hamakita 434-8601, Japan
2Photon Medical Research Center, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan

Photodynamic therapy (PDT) is a medical treatment using laser and photosensitizing drug taken up to destroy cancer cells. Singlet oxygen (1O_2) generation is strongly related to this treatment. We have built a direct detection system monitoring feeble luminescence, in the near IR region, from 1O_2. We have comparatively studied the photophysical and photochemical properties in solution of a newly developed drug ATX-S10 and Photofrin already investigated clinically. We demonstrated that ATX-S10 was capable of efficiently yielding 1O_2, which may lead to highly efficient PDT treatment. Successive laser excitation photobleached ATX-S10 readily in a dose-dependent manner. This result shows that ATX-S10 is useful in setting up suitable medical treatment conditions to minimize side effects.

Key words : photodynamic therapy (PDT), singlet oxygen, near IR photodetector, photon-counting, photobleaching

INTRODUCTION

Photodynamic Therapy (PDT) is a minimally invasive modality for treating cancer and other conditions [1,2]. After intravenous injection of a PDT drug as a photosensitizer, the drug is selectively retained by the tumor cells. After a certain period of time the tumor becomes more sensitive than the adjacent normal tissues. When such PDT drug is activated by laser, the tumor is more likely to be killed by cytotoxic agents. The main cytotoxic agent in PDT is widely believed to be singlet oxygen (1O_2), a highly reactive oxygen species that oxidizes various biological substrates. 1O_2 is believed to be a major mediator of photodynamic damage in biological systems. In PDT, 1O_2 is produced via the following Type-II photochemical pathway [3]:

\[
\begin{align*}
S_0 + h\nu & \rightarrow S_1 \\
S_1 & \rightarrow T_1 \\
T_1 + 3O_2 & \rightarrow S_0 + 1O_2
\end{align*}
\]

where S\textsubscript{0}, S\textsubscript{1}, T\textsubscript{1} are the photosensitizer ground state, the first excited singlet state and the first excited triplet state, respectively; 3O\textsubscript{2} and 1O\textsubscript{2}, the ground-state triplet and the excited singlet states of oxygen, respectively.

Therefore, 1O\textsubscript{2} is strongly related to PDT, and monitoring 1O\textsubscript{2} generation is important in PDT drug development. Once produced, 1O\textsubscript{2} molecules can either undergo oxidation of surrounding biomolecules or undergo radiative decay at around 1270 nm [3]. However, it is extremely feeble, and since there were no suitable photo-detectors in this wavelength region, satisfying 1O\textsubscript{2} detection was not performed until now.

In recent years, HAMAMATSU succeeded in producing a new type of near IR photomultiplier (NIR-PMT) using a semiconductor photocathode. This NIR-PMT enables to extend the sensitivity region up to 1400 nm or 1700 nm, and has high-speed response as well as photon-counting measurement capability [3-5]. Furthermore, a near IR image intensifier (NIR-II) has also been developed with this photocathode. By using these detectors, we have studied comparatively the photophysical and photochemical properties of newly developed PDT drug ATX-S10 [6,7] and the already investigated Photofrin [1]. ATX-S10, a hydrophilic chlorin photosensitizer is thought to be a candidate for the second-generation PDT photosensitizer. Also we have studied the relation of 1O\textsubscript{2} generation to photobleaching from the viewpoint of a practical application.

MATERIALS AND METHODS

ATX-S10 was provided by Photochemical Company, and Photofrin was purchased from Wyeth Lederle (Japan) Ltd. All experiments were performed...
in phosphate buffer saline (PBS) solution (pH7.4) at room temperature under aerated conditions. Absorption spectra were recorded with a spectrophotometer (U3500 HITACHI).

Fig. 1 shows the experimental setup for observing 1O\textsubscript{2} luminescence. A quartz cuvette (3 x 10 x 40 mm) was used as the irradiation cell. Exciting light source was an optical parametric oscillated laser system (OPO L5996, HAMAMATSU). Time-resolved 1O\textsubscript{2} emissions were detected by a near IR photomultiplier (NIR-PMT R5590-42, HAMAMATSU) and a multi-channel scaler (SR430, Stanford Research Systems). 1O\textsubscript{2} emission spectra were detected by the gated photon-counting with a CCD multi-channel detector combined with a near IR image intensifier (NIR-II, HAMAMATSU).

RESULTS AND DISCUSSION

Absorption spectra. Absorption spectra of the PDT drugs in PBS are shown in Fig.2. The excitation wavelength used in our following experiment for ATX-S10 is 665 nm (right arrow) and that for Photofrin is 630 nm (left arrow), respectively. Fig.2 shows that ATX-S10 has an intense absorption at wavelength greater than 650 nm. The increased absorbance in the red region of the spectrum and the increased molecular absorption coefficients give rise to more excited photosensitizer at deeper tissue sites and hence more suitable for therapeutic purposes.

Time profile of 1O\textsubscript{2} emission. Fig.3 shows decay curves of 1O\textsubscript{2} luminescence observed by NIR-PMT and multi-channel scaler. Both curves have decay time of several micro seconds. Therefore we decided to set a gate time of 0.5 – 5.5 µs in later experiments.

The yield of 1O\textsubscript{2} generation. The yields of 1O\textsubscript{2} generation in ATX-S10 and Photofrin were compared under identical emission intensity of 1O\textsubscript{2}, by providing the same excitation energy and the same absorbance (shown in Fig.2) at each wavelength. Fig.4 shows the emission spectra of 1O\textsubscript{2} from each drug in PBS, which was measured with an NIR multi-channel detector. Under the conditions in Fig.4, an identical amount of excited molecules of those drugs must have been generated. From the amount of those excited drug molecules, it is possible to estimate the amount of 1O\textsubscript{2} generated. In Fig.4, ATX-S10 had emission intensity...
3 – 4 times higher than Photofrin. We can understand that the yield of $^1\text{O}_2$ generation of ATX-S10 is better.

Quantity of $^1\text{O}_2$ generation and photobleaching. We examined the efficiency of $^1\text{O}_2$ generation in the same concentration (10 mg/kg). Also photobleaching effect was observed. Fig.5 shows that temporal variety of the emission intensity of $^1\text{O}_2$ generated from both drugs. The horizontal axis indicates not only the time scale but also the quantity of light that excited them (the upper scale). The initial emission intensity of $^1\text{O}_2$ by ATX-S10 is 20 times higher than that by Photofrin. Along with the successive laser irradiation, the emission intensity of $^1\text{O}_2$ was gradually reduced. When we examined absorption spectra in series of this experiment, the absorption in the visible region became reduced. This indicates that photobleaching occurred through this experiment, especially for ATX-S10. We confirmed that the rate of $^1\text{O}_2$ emission was proportional to the absorption at the excited wavelength. This result is useful in setting up suitable medical treatment conditions for minimizing side effects.

Finally, in *in vivo* measurements, the same results as the case of this solution system were obtained. We believe it will be important in future clinical applications as well as in evaluating PDT drugs, e.g., finding suitable conditions of the PDT medical treatment.

REFERENCES