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Figure 1. MC3PHAC Based Motor Control System

2 MC3PHAC Description
2.1 MC3PHAC Pinout

The MC3PHAC isavailable in a 28-pin PDIP, 28-pin SOIC, and 32-pin QFP, as shown in Figure 2. A

description of each pinisdetailed in Table 1.
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Figure 2. MC3PHAC Pin Connections for PDIP and SOIC
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Figure 3. MC3PHAC Pin Connections for QFP
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MC3PHAC Description

Table 1. MC3PHAC Pin Descriptions (Sheet 1 of 2)

Pin Pin Name Pin Function
Number

1 VRer ADC Vggr High — Reference voltage input for the on board ADC. For best signal to noise
performance, this pin should be tied to Vppa.

2 RESET A logic low on this pin forces the MC3PHAC to its initial startup state. All PWM outputs are
placed in a high impedance mode. RESET is a bidirectional pin, allowing a reset of the entire
system. It is driven low when an internal reset source is asserted (e.g., loss of clock).

3 Vppa Vpp (Analog) — Provides power for the analog portions of the MC3PHAC, which include the
clock generation circuit (PLL), and the ADC.

4 Vssa Vss (Analog) — Return power for the analog portions of the MC3PHAC, which include the clock
generation circuit (PLL), and the ADC.

5 0OSsC2 Osc Out — Oscillator output used as part of a crystal or ceramic resonator clock circuit.
NOTE: Correct timing of the MC3PHAC is based on a 4.00 MHz oscillator.

6 OSC1 Osc In — Oscillator input used as part of a crystal or ceramic resonator clock circuit. Can also
accept a signal from an external canned oscillator.

NOTE: Correct timing of the MC3PHAC is based on a 4.00 MHz oscillator.

7 PLLCAP PLL Damp — A capacitor from this pin to ground affects the stability and reaction time of the
PLL clock circuit. Smaller values result in faster tracking of the reference frequency. Larger
values result in better stability. A value of 0.1 uF is typical.

8 PWMPOL_ PWM Pol/Base Speed — Input which is sampled at specific moments during initialization to

BASEFREQ determine the PWM polarity and the base speed (50 or 60 Hz).

9 PWM_U_TOP |PWM U Top — PWM output signal for the top transistor driving motor phase U.

10 PWM_U_BOT |PWM U Bottom — PWM output signal for the bottom transistor driving motor phase U.

11 PWM_V_TOP |PWM V Top — PWM output signal for the top transistor driving motor phase V.

12 PWM_U_BOT |PWM V Bottom — PWM output signal for the bottom transistor driving motor phase V.

13 PWM_W_TOP |PWM W Top — PWM output signal for the top transistor driving motor phase W.

14 PWM_W_BOT |PWM W Bottom — PWM output signal for the bottom transistor driving motor phase W.

15 FAULTIN Fault In — A logic high on this input will immediately disable the PWM outputs. A retry timeout
interval will be initiated after this pin returns to a logic low state.

16 PWMFREQ_RxD |PWM Freqg/Rx Data — In standalone mode, this pin is an output that drives low to indicate the
MUX_IN pin is reading an analog voltage to specify the desired PWM frequency. In PC master
mode, this pin is an input that receives UART serial data.

The UART module on HCO08 products is called the serial communication interface (SCI
module).

17 RETRY_Tx Retry Time/Tx Data — In standalone mode, this pin is an output that drives low to indicate the
MUX_IN pin is reading an analog voltage to specify the time to wait after a fault before
re-enabling the PWM outputs. In PC master mode, this pin is an output that transmits UART
serial data.

18 RBRAKE R Brake — This pin is an output that is driven to a logic high whenever the voltage on the
DC_BUS pin exceeds a preset level, indicating a high bus voltage. This signal is intended to
connect a resistor across the dc bus capacitor to prevent excess capacitor voltage.

19 DT_FAULTOUT |Dead-Time/Fault Out — In standalone mode, this pin is an output that drives low to indicate the

MUX_IN pin is reading an analog voltage to specify the dead-time between the on states of the
top and bottom PWM signals for a given motor phase. In PC master mode, this pin is an output
that goes low whenever a fault condition occurs.
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Table 1. MC3PHAC Pin Descriptions (Sheet 2 of 2)

Pin Pin Name Pin Function
Number

20 VBOOST_MODE |Vboost/Mode Select — At startup, this pin is an input is sampled to determine whether to enter
standalone mode (logic high), or PC master mode (logic low). In standalone mode, this pin is
also used as an output that drives low to indicate the MUX_IN pin is reading an analog voltage
to specify the amount of voltage boost to apply to the motor.

21 Vbp +5 V power to the MC3PHAC

22 Vss +5 V return for the MC3PHAC

23 FWD Forward/Reverse — This pin is an input that is sampled to determine whether the motor should
rotate in the forward or reverse direction.

24 START Start/Stop — This pin is an input that is sampled to determine whether the motor should be
running or not.

25 MUX_IN Parameter Mux In — In standalone mode, during initialization, this pin is an output that is used
to determine PWM polarity and base speed. Otherwise, it is an analog input used to read
several voltage levels that specify MC3PHAC operating parameters.

26 SPEED Speed In — In standalone mode, during initialization, this pin is an output that is used to
determine PWM polarity and base speed. Otherwise, it is an analog input used to read a
voltage level corresponding to the desired steady-state speed of the motor.

27 ACCEL Acceleration In — In standalone mode, during initialization, this pin is an output that is used to
determine PWM polarity and base speed. Otherwise, it is an analog input used to read a
voltage level corresponding to the desired acceleration of the motor.

28 DC_BUS dc Bus In — In standalone mode, during initialization, this pin is an output that is used to
determine PWM polarity and base speed. Otherwise, it is an analog input used to read a
voltage level proportional to the dc bus voltage.

2.2 MC3PHAC Features

Three Phase Waveform Generation — The MC3PHAC generates six PWM signals that have been
modulated with variable voltage and variable frequency information to control athree-phase ac motor. A
third harmonic signal has been superimposed on top of the fundamental motor frequency to achieve full
bus use. Thisresultsin a 15% increase in maximum output amplitude, compared to pure sinewave
modul ation.

The waveform is updated at a 5.3 kHz rate (except when the PWM frequency is 15.9 kHz), resulting in
“near continuous’ waveform quality. At 15.9 kHz, the waveform is updated at 4.0 kHz.

DSP Filtering— A 24 bit IIR digital filter isused on the SPEED signal in standalone mode, resulting in
enhanced speed stability in noisy environments. The sampling period of thefilter is3 ms(except when the
PWM frequency is 15.9 kHz), and it mimics the response of a single pole analog filter having a pole at
0.4 Hz. At aPWM frequency of 15.9 kHz, the sampling period is 4 ms and the pole is located at 0.3 Hz.

A complete description of the filter can be found in the Software Functionality section later in this
document.

High Precision Calculations— Up to 32-bit variable resolution is employed for precision control and
smooth performance. For example, the motor speed can be controlled with aresolution of 0.004 Hz.

Using the MC3PHAC Motor Controller, Rev. 1.2
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MC3PHAC Description

Smooth Voltage Transitions — When the commanded speed of the motor passes through + 1 Hz, the
voltage is gently applied or removed depending on the direction of the speed change. This eliminates any
pops or surges that may occur, especially under conditions of high voltage boost at low frequencies.

High Side Bootstrapping — Many motor drive topol ogies (especially high voltage drives) use
optocouplers to supply the PWM signal to the high side transistors. Often, the high side transistor drive
circuitry contains a charge pump circuit to create afloating power supply for each high side transistor that
is dependent on low side PWMsto develop power. When the motor has been off for a period of time, the
charge on the high side power supply capacitor is depleted, and must be replenished before proper PWM
operation can resume.

To accommodate such topologies, the MC3PHAC will always provide 100 ms of 50% PWMsto only the
low side transistors each time the motor is turned on. Because the top transistors remain off during this
time, it has the effect of applying zero volts to the motor, and no motion occurs. After this period, motor
waveform modulation begins, with PWMs also being applied to the high side transistors.

Fast Velocity Updating — During periods when the motor speed is changing, the rate at which the
velocity is updated is critical to smooth operation. If these updates occur too infrequently, aratcheting
effect will be exhibited on the motor, which inhibits smooth torque performance. However, velocity
profiling isavery calculation intensive operation to perform, which runs contrary to the above
requirement.

The MC3PHAC usesavelocity pipelining techniquethat allowslinear interpolation of the velocity values,
resulting in anew velocity value every 189 us (252 usfor 15.9 kHz PWMs). The net result is ultrasmooth
velocity transition, where each velocity step is not perceived by the motor.

Dynamic Bus Ripple Cancellation — The dc bus voltage is sensed by the MC3PHAC, and any
deviationsfrom apredetermined norm (3.5V onthe DC_BUS pin) result in correctionsto the PWM values
to counteract the effect of the bus voltage changes on the motor current. The frequency of this calculation
issufficiently high to permit compensation for linefrequency ripple, aswell as slower bus voltage changes
resulting from regeneration or brown out conditions.

Using the MC3PHAC Motor Controller, Rev. 1.2

6 Freescale Semiconductor



MC3PHAC Description
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Figure 4. Dynamic Bus Ripple Cancellation

Selectable Base Speed — ac motors are designed to accept rated voltage at either 50 or 60 Hz. Thevoltage
rate depends on the region where the motors are designed to be used. The MC3PHAC can accommodate
both types of motors by allowing the voltage profile to reach maximum value at either 50 or 60 Hz. This
parameter can be specified at initialization in standalone mode, or can be changed at any timein PC master
mode.

Selectable PWM Polarity — The polarity of the PWM outputs may be specified such that alogic high
on aPWM output can be either the asserted or negated state of the signal. In standalone mode, this
parameter isspecified at initialization, and appliesto al six PWM outputs. In PC master mode, the polarity
of the top PWM signals can be specified separately from the polarity of the bottom PWM signals. This
specification can be made at any time, but after it isdone, the polarities are locked and cannot be changed
until areset occurs. Also, any commands from FreeM ASTER software that would have the effect of
enabling PWMs are prevented by the MC3PHAC until the polarity has been specified.

Using the MC3PHAC Motor Controller, Rev. 1.2
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In standalone mode, the base speed and PWM polarity are specified at the same time during initialization
by connecting pin 25, 26, 27, or 28 exclusively to the PWMPOL_BA SEFREQ input. During initialization,
pins 25, 26, 27, and 28 are pulsed one at atime to determine which one has been connected to the
PWMPOL_BASEFREQ input. Table 2 shows the selected PWM polarity and base speed as a function of
which pin connection ismade. It is not necessary to break this connection after the initialization phase has
been completed. The MC3PHAC will function properly while this connection isin place.

Table 2. PWM Polarity and Base Speed Specification in Standalone Mode

PWM";'B&;:;‘;:%E‘B oin PWM Polarity Base Speed
MUX_IN Logic low = on 50 Hz
SPEED Logic high =on 50 Hz
ACCEL Logic low = on 60 Hz
DC_BUS Logic high = on 60 Hz

Selectable PWM Frequency — The MC3PHAC accommodates four discrete PWM frequencies that can
be changed on the fly while the motor is running. In standalone mode, the PWM frequency is specified by
applying avoltageto the MUX _IN pinwhilethe PWMFREQ_RxD pinisbeingdrivenlow. Table 3 shows
the required voltage levels on the MUX _IN pin, and the associated PWM frequency for each voltage
range. The listed voltage ranges are based on 5 V being applied to the V ggr pin. The PWM frequencies
are based on a 4.00 MHz frequency on the oscillator input.

Table 3. MUX_IN Voltages and Corresponding PWM Frequencies

Voltage Input PWM Frequency
Oto1V 5.291 kHz

1.5t02.25V 10.582 kHz

275t03.5V 15.873 kHz
4t05V 21.164 kHz

Selectable PWM Dead-time — Besides being able to specify the PWM frequency, the blanking time
interval between the*on” states of complementary PWM pairs can also be specified. In standal one mode,
thisis accomplished by supplying avoltage to the MUX_IN pin whilethe DT_FAULTOUT pinisbeing
driven low. In this way, dead-time can be specified with a scaling factor of 2.075 us per volt (assuming
VRee i1s5 V), withaminimum value of 0.5 us. In PC master mode, this value can be selected to be
anywhere between 0 and 32 us.

In both standalone and PC master modes, the dead-time value can be written only once. Further updates
of this parameter are locked out until areset condition occurs.

Speed Contr ol — The synchronous motor frequency can be specified inreal timeto beanywherefrom 1 Hz
to 128 Hz, by the voltage applied to the SPEED pin. The scaling factor is 25.6 Hz per volt (assuming ADC
VRee highis5 V). This parameter can also be controlled directly from FreeMASTER softwarein real
time.

Using the MC3PHAC Motor Controller, Rev. 1.2
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As mentioned earlier, the SPEED pin is processed by a 24-bit digital filter to enhance the speed stability
in noisy environments. Thisfilter is activated only in standalone mode.

Acceleration Control — The motor acceleration can be specified in real time to be anywhere from

0.5 Hz/sec, al the way up to 128 Hz/sec, by the voltage applied to the ACCEL pin. The scaling factor is
25.6 Hz/sec per volt (assuming ADC V gge high is5 V). This parameter can also be controlled directly
from FreeMASTER software in real time.

Voltage Profile Generation — The MC3PHAC controls the motor voltage in proportion to the specified
frequency, asindicated in Figure 5.
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Figure 5. Voltage Profiling, Including Voltage Boost
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Figure 6. ac Motor Single Phase Model Showing Parasitic Stator Impedances

An ac motor is designed to draw a specified amount of magnetizing current when supplied with rated
voltage at the base speed frequency. As the frequency decreases, assuming no stator |osses, the voltage
must decrease in exact proportion to maintain the required magnetizing current. Inreality, asthe frequency
decreases, the voltage drop in the series stator resistance increases in proportion to the voltage across the
magnetizing inductance. This has the effect of further reducing the voltage across the magnetizing
inductor, and consequently, the magnetizing current. A schematic representation of thiseffectisillustrated
in Figure 6. To compensate for this voltage loss, the voltage profile is boosted over the normal voltage
curve shown in Figure 5, so that the magnetizing current remains constant over the speed range.
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The MC3PHAC alowsthe voltage boost to be specified as a percentage of full voltage at 0 Hz, as shown
in Figure 5. In standalone mode, voltage boost is specified during the initialization phase by supplying a
voltagetothe MUX _IN pinwhilethe VBOOST MODE pinisbeing drivenlow. Inthisway, voltage boost
can be specified from 0% to 40%, with a scaling factor of 8% per volt (assuming ADC Vggg highis5 V).
In PC master mode, the voltage boost can be specified from 0% to 100%, and can be changed at anytime.

By using the voltage boost value, and the specified base speed frequency, the MC3PHAC has all the
information required to generate a voltage profile automatically based on the generated waveform
frequency. An additional feature existsin PC master mode where this voltage value can be overridden and
controlled in real time. Specifying a voltage lower than the normal volts-per-Hz profile permits a softer
torque response in certain ergonomic situations. It also allows for load power factor control and higher
operating efficiencies with high inertialoads, or other loads where instantaneous changes in torque
demand are not permitted. Details of this feature are discussed in the FreeMASTER Software Operation
section of this document.

PLL Clock Generation — The OSC1 pin signal is used as areference clock for an internal phase locked
loop clocking circuit, which isused to drive the internal clocks of the MC3PHAC. Thisprovides excellent
protection against noise spikes that may occur on the OSC1 pin. In a clocking circuit that does not
incorporate aPLL, anoise spike on the clock input can create a clock edge that violates the setup times of
the clocking logic, and can cause the device to malfunction. The same noise spike applied to the input of
aPLL clock circuit is perceived by the PLL as achange in its reference frequency, and the PLL output
frequency beginsto changein an attempt to lock on to the new frequency. However, before any appreciable
change can occur, the spike is gone, and the PLL settles back in to the true reference frequency.

Fault Protection — The MC3PHAC supports an elaborate range of fault protection and prevention
features. If afault does occur, the MC3PHAC immediately disables PWMs and waits until the fault
condition is cleared before starting a timer to re-enable the PWMs. In standalone mode, this timeout
interval is specified during the initialization phase by supplying a voltage to the MUX _IN pin while the
RETRY _Tx pinis being driven low. In this way, the retry time can be specified from 1 second to

60 seconds, with ascaling factor of 12 seconds per volt (assuming ADC V ggg highis5 V). In PC master
mode, the retry time can be specified from 0.25 second to over 4.5 hours, and can be changed at anytime.

The fault protection and prevention features are listed below:

* External Fault Monitoring— The FAULTIN pin accepts adigital signal that indicates a fault
has been detected viaexternal monitoring circuitry. A high level on thisinput resultsin the PWMs
being immediately disabled. Typical fault conditions might be a dc bus overvoltage, bus
overcurrent, or over-temperature. After thisinput returnsto alogic low level, the fault retry timer
begins running, and PWMs are re-enabled after the programmed timeout value is reached.

* Lost Clock Protection — If the signal on the OSC1 pinislost altogether, the MC3PHAC will
immediately disable the PWM outputs to protect the motor and power electronics. Thisisa
special fault condition in that it will also cause the MC3PHAC to be reset. Lost clock detection is
an important safety consideration, as many safety regul atory agencies are now requiring a dead
crystal test be performed as part of the certification process.

* Low Vpp Protection — Whenever Vpp falls below 4V, an on-board power supply monitor will
reset the MC3PHAC. Thisalowsthe MC3PHA C to work properly with 5 V supplies of either 5%
or 10% tolerance.

Using the MC3PHAC Motor Controller, Rev. 1.2
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* BusVoltage Integrity Monitoring— The DC_BUS pinis monitored at a 5.3 kHz frequency
(4.0 kHz when the PWM frequency is set to 15.9 kHz), and any voltage reading outside of an
acceptable window constitutes a fault condition. In standalone mode, the window thresholds are
fixed at 4.47 V (128% of nominal), and 1.75 V (50% of nominal), where nominal is defined to be
3.5V (assuming ADC Vg highis 5 V). In PC master mode, both top and bottom window
thresholds can be set independently to any value between 0 volts (0% of nominal), and greater
than 5 volts (143% of nominal), and can be changed at any time. After the DC_BUS signal level
returns to a value within the acceptable window, the fault retry timer begins running and PWMs
are re-enabled after the programmed timeout value is reached.

During power-up, it ispossiblethat Vo could reach operating voltage before the dc bus capacitor
charges up to its nominal value. When the dc bus integrity is checked, an undervoltage would be
detected and treated as a fault, with its associated timeout period. To prevent this, the MC3PHAC
monitors the dc bus voltage during power-up in standalone mode, and waits until it is higher than
the undervoltage threshold before continuing. During thistime, all MC3PHAC functions are
suspended. After thisthreshold isreached, the MC3PHAC will continue normally, with any further
undervoltage conditions treated as a fault.

If dc bus voltage monitoring is not desired, a voltage of 3.5 volts + 5% should be supplied to the
DC_BUS pin through an impedance of between 4.7 kQ2 and 15 kQ.

* Regeneration control — Regeneration is a process by which stored mechanical energy in the
motor and load are transferred back into the drive electronics, usually as aresult of an aggressive
deceleration operation. In specia cases where this process occurs frequently (e.g., elevator motor
control systems), it iseconomical to incorporate special features in the motor drive to allow this
energy to be supplied back to the ac mains. However, for most low-cost ac drives, thisenergy is
stored in the dc bus capacitor by increasing its voltage. If this processis not checked, the dc bus
voltage can rise to dangerous levels, which can destroy the bus capacitor or the transistorsin the
power inverter.

The MC3PHAC incorporates two techniques to deal with regeneration before it becomes a

problem:

— Resistive braking— The DC_BUS pin is monitored at a 5.3 kHz frequency (4.0 kHz when
the PWM frequency is set to 15.9 kHz), and when the voltage reaches a certain threshold, the
RBRAKE pinisdriven high. Thissignal can be used to connect aresistor across the dc bus
capacitor, so that mechanical energy from the motor is dissipated as heat in the resistor, versus
being stored as voltage on the capacitor. In standalone mode, the DC_BUS threshold required
to assert the RBRAKE signal isfixed at 3.85 V (110% of nominal), where nominal is defined
tobe 3.5V (assuming ADC Vgge highis5 V). In PC master mode, this threshold can be set to
any value between 0 V (0% of nominal), and greater than 5V (143% of nominal), and can be
changed at any time.

— Automatic Deceleration Control — When decel erating the motor, the MC3PHAC attempts
to use the specified acceleration value for deceleration aswell. If the voltage on the DC_BUS
pin reaches a certain threshold, the MC3PHA C begins to moderate the deceleration as a
function of this voltage, as shown in Figure 7. The voltage range on the DC_BUS pin from
when the deceleration begins to decrease, to when it reaches 0, is0.62 V (assuming ADC
VRer highis5V). In standalone mode, the DC_BUS voltage where decel eration begins to
decrease isfixed at 3.85 V (110% of nominal), where nominal is defined to be 3.5V
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(assuming ADC V ggg highis5 V). In PC master mode, this threshold can be set to any value
between 0V (0% of nominal), and greater than 5V (143% of nominal), and can be changed at
any time.

ACCELERATION INPUT

DECELERATION

BUS VOLTAGE
BEGIN MODERATING DECEL

(LEVEL IS PROGRAMMABLE
IN FreeMASTER SOFTWARE MODE)

Figure 7. Deceleration as a Function of Bus Voltage

2.3 FreeMASTER Software Operation

2.3.1 Introduction to FreeMASTER Software

The MC3PHAC is compatible with Freescale’'s PC master serial interface protocol (FreeMASTER).
Communication occurs over an on-board UART at 9600 baud to an external master device, which may be
amicrocontroller that also has an integrated UART, or a personal computer viaa COM port. With

FreeM ASTER software, an external controller can monitor and control all aspects of the MC3PHAC
operation.

The most popular master implementation is a PC, where a GUI interface has been layered on top of the
FreeM ASTER command protocol, complete with agraphical datadisplay, and ActiveX control functions,
also available from Freescale. It is beyond the scope of this document to describe the FreeMASTER
protocol, or itsimplementation on a personal computer.

2.3.2 FreeMASTER Software Operation with the MC3PHAC

When power isfirst applied to the MC3PHAC, or if alogic low level is applied to the RESET pin, the
MC3PHAC enters PC master modeif the VBOOST_MODE pinislow during theinitialization phase. The
MC3PHAC recognizes a subset of the FreeMASTER command set, which islisted in Table 4.

Using the MC3PHAC Motor Controller, Rev. 1.2
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Table 4. Recognized FreeMASTER Commands

Command Description
GETINFOBRIEF MC3PHAC responds with brief summary of hardware setup
and link configuration info.
READVARS MC3PHAC reads an 8-bit variable at a specified address, and
responds with its value
READVAR16 MCS3PHAC reads a 16-bit variable at a specified address, and
responds with its value
READVAR32 MC3PHAC reads a 32-bit variable at a specified address, and
responds with its value
WRITEVARS MC3PHAC writes an 8-bit variable at a specified address
WRITEVAR16 MC3PHAC writes a 16-bit variable at a specified address

With the READVARX commands, the addresses are checked for validity, and the command is executed
only if the addressiswithin proper limits. In general, aread command with an address val ue bel ow $0060
or above $FEO03 will not execute properly, but instead will return an “invalid operation” response. The
addresses for the WRITEVARX commands are also checked for validity, and the datafield isaso limited
to avalid range for each variable.

The user interface variables and their associated FreeM A STER addresses within the MC3PHAC arelisted

herein Table 5.
Table 5. User Interface Variables for Use with FreeMASTER Software
. Size . .
Name Address Read/Write B Description Valid Data
ytes
Commanded $1000 w 1 Determines whether the motor should go Forward — $10
direction forward, reverse, or stop. Reverse — $11
Stop — $20
Command reset $1000 w 1 Forces the MC3PHAC to do an immediate reset. $30
Commanded $1000 w 1 Specifies the frequency of the MC3PHAC PWM | 5.3 kHz — $41
PWM frequency’ frequency. 10.6 kHz — $42
15.9 kHz — $44
21.1 kHz — $48
Measured PWM $00A8 R 2 The modulus value supplied to the PWM $00BD - $05E8
period generator used by the MC3PHAC. Value is
multiplied by 250 ns to obtain PWM period.
Commanded $1000 w 1 Specifies the polarity of the MC3PHAC PWM B+ T+ $50
PWM outputs. B+ T - $54
polarity? 3 4 B- T+ $58
B-T-$5C
Dead-time? 3 4 $0036 R/W 1 Specifies the dead-time used by the PWM $00 — $FF
generator. Dead-time = value times 125 ns. This
is a write-once parameter.
Base speed?® $1000 w 1 Specifies the motor frequency at which full 60 Hz — $60
voltage is applied. 50 Hz - $61
Acceleration® $0060 R/W 2 Acceleration in Hz/sec. (8.8 format) $0000 — $FFFF

Using the MC3PHAC Motor Controller, Rev. 1.2
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MC3PHAC Description

Table 5. User Interface Variables for Use with FreeMASTER Software (continued)

Name Address Read/Write Size Description Valid Data
Bytes
Commanded $0062 R/W 2 Commanded frequency in Hz. (8.8 format) $0000 — $FFFF
motor frequency®
Actual frequency $0085 2 Actual frequency in Hz. (8.8 format) $0000 — $FFFF
Status $00C8 1 Status byte. $00 — $FF
Voltage boost $006C R/W 1 0 Hertz voltage. $00 — $FF
Modulation index $0091 R 1 Voltage level (assuming no bus ripple $00 - $FF
compensation).
Maximum $0075 R/W 1 Maximum allowable modulation index value. $00 — $FF
voltage
Bus voltage® $0079 R 2 dc bus voltage reading. $000 — 3FF
Fault timeout $006A R/W 2 Specifies the delay time after a fault condition $0000 — $FFFF
before re-enabling the motor.
Fault timer $006D R 2 Real time display of the fault timer. $0000 — $FFFF
Vpys decel value $00C9 R/W 2 Vgys readings above this value resultin reduced | $0000 — $FFFF
deceleration.
Vgus RBRAKE $0064 R/W 2 Vpys readings above this value result in the $0000 — $FFFF
value RBRAKE pin being asserted.
Vpys brownout $0066 R/W 2 Vpys readings below this value result in an $0000 — $FFFF
value undervoltage fault.
Vpys OVvervoltage $0068 R/W 2 Vpys readings above this value result in an $0000 — $FFFF
value overvoltage fault.
Speed in ADC $0095 R 2 Left justified 10 bit ADC reading of the SPEED | $0000 — $FFCO
value® pin.
Setup $00AE R 1 Bit field indicating which setup parameters have $EO0 — $FF
been initialized before motion is permitted.
Switch in $0001 R 1 Bit field indicating the current state of the $00 — $FF
Start/Stop and Forward/Reverse switches.
Reset status® $FEO1 1 Indicates Cause of the last reset $00 — $FF
Version $EE00 4 MC3PHAC version ASCII Field
E\IOTES:

The commanded PWM frequency cannot be written until the PWM outputs exit the high impedance state. The default PWM
frequency is 15.873 kHz.

The PWM output pins remain in a high impedance state until this parameter is specified.
This parameter must be specified before motor motion can be initiated by the MC3PHAC.
This is a write-once parameter. The first write to this address will execute normally. Further attempts at writing this parameter

will result in an illegal operation response from the MC3PHAC.

The value of this parameter is not valid until the PWM outputs exit the high impedance state.
The data in this field is only valid for one read. Further reads will return a value of $00.

Using the MC3PHAC Motor Controller, Rev. 1.2

14

Freescale Semiconductor



Each bit variable listed in Table 5 is defined bel ow:

Address: $00C8

MC3PHAC Description

7 6 5 4 3 2 1 0
R SPEED FORWARD MOTOR RESISTIVE | EXTERNAL V(())IYI',E\EE VL(J)IT_'II:')AI\EGRE
CHANGING | MOTION |[ENERGIZED| BRAKE FAULT TRIP
TRIP TRIP
W
Reset u 0 1 0 0 u 0 0
I:l: Unimplemented or Reserved U = Unaffected
Figure 1. Status Register
Address: $00AE
7 6 5 4 3 2 1 0
R FRE%AL‘JSEENCY SPEED |ACCELERATION| POLARITY | DEAD TIME
SET SET SET SET
SET
W
Reset 1 1 1 0 0 0 0 0
I:l: Unimplemented or Reserved
Figure 2. Setup Register
Address: $0001
7 6 5 4 3 2 1 0
R START/ FWD/ FAULT RESISTOR
STOP REVERSE ouT BRAKE
W
Reset u u u u u 0 u u
I:l: Unimplemented or Reserved U = Unaffected
Figure 3. Switch In Register
Address: $FEO1
7 6 5 4 3 2 1 0
R PC MASTER
POWER RESET MCSPHAC MCSPHAC SOFTWARE LOW Vpp
FUNCTIONAL [FUNCTIONAL
up PIN FAULT FAULT RESET VOLTAGE
COMMAND
W
Reset 1 0 0 0 0 0 0 0

|:|= Unimplemented or Reserved

Figure 4. Reset Status Register

Using the MC3PHAC Motor Controller, Rev. 1.2

Freescale Semiconductor

15



MC3PHAC Description

2.4 Stand-Alone Operation

If the VBOOST_MODE pin is high when the MC3PHAC is powered up, or after areset, the MC3PHAC
enters standalone mode. In this mode of operation, the functionality of many of the MC3PHAC pins
change so that the device can control amotor without requiring setup information from an external master.
By contrast, the MC3PHAC will drive certain pins corresponding to parameters that must be specified,
while simultaneously monitoring the response on other pins.

In many cases, the parameter to be specified isrepresented as an anal og voltage presented to the MUX _IN
pin while certain other pins are driven low. In so doing, the MC3PHAC can accommodate an external
analog mux that will switch various signals at the MUX _IN pinwhen the signal select line goes low. All
signals must bein arange between 0V and ADC V gge high. As an economical aternative, an external
passive network can be connected to each of the parameter select output pins and to the MUX _IN pin, as
shown in Figure 8.

The equivaent impedance of this passive network as seen by the MUX _IN pin is very important, and
should beintherange of 5 kQ to 10 k<. If theresistanceistoo high, leakage current from the 1/O pinswill
cause an offset voltage that will affect the accuracy of thereading. If the resistanceistoo low, the parameter
select pinswill not be ableto sink the required current for an accurate reading. Assuming a pull-up resistor
value of 6.8 kQ (asindicated in Figure 8), the resulting value for each parameter as a function of the
corresponding pull-down resistor value is shown in Figure 9, Figure 10, and Figure 11.

Using the MC3PHAC Motor Controller, Rev. 1.2

16 Freescale Semiconductor



+5V

MC3PHAC Description

%6.8 kQ

NOTE 6
JP1 [o]_50 Hz - PWM POLARITY
JP2 [ 50Hz + PWM POLARITY
JP3 [~ 60 Hz - PWM POLARITY
5V JP4 [] 60 Hz + PWM POLARITY  FROM DVIDED 6G BUS
%o kQ oh
[a
NOTE 7 g
° 5 A MC3PHAC 47KQ 5
1 5 ke
RESET ——0 1 4F 1 . <
T VRer DC_BUS i .
- - (@] —
) - 2| T 27 8 _
RESET ACCEL g 5
47kQ 5kQS =+
S 2 : :
Vopa SPEED AN -8
o 2 5
rTyG T T T T q | Sp| Voo MUX_IN .
| 0sC2 SART |24 ;
| _ |23 ] 2
I 0SCt FWD ’E
<C
2 3
| PLLCAP veg 21 . l . =
o1 NOTE7 Qo 1
L PWMPOL BASEFREQ  Vpp|2lo+5 = L
- RBOOST
— Ypwm u Tor  vBOOST MoDE |2 NOTE 1 1
RDEADTIME =
! 1
O owm u BoT DT FAULTOUT M2 NOTE 2
es 1 "
2 — | PWMLV_TOP RBRAKE >$5TO RESISTIVE BRAKE DRIVER
z e RRETRY
ey 12} pyym_v_BoT RETRY/TxD F.Z NOTE 3
©R RPWMFREQ
= _BlowmwTor  PWMFREQRKD FE NOTE 4
e 15 NOTE5 . FROM SYSTEM FAULT
i o < DETECTION GIRGUIT

Notes:

. See Figure 11.
. See Figure 9.

. See Figure 10.
. See Table 3.

ONOO O, WN =

. If no external fault circuit is provided, connect to Vgg.
. Connect only one jumper.
. Use bypass capacitors placed close to the MC3PHAC.
. Consult crystal/resonator manufacturer for component values.

Figure 8. Standalone MC3PHAC Configuration

The START input pin is debounced internally so that a switch can be directly accommodated on this pin.
Theinput islevel sensitive, but alogic 1 level must exist on the pin beforealogic O level will be processed
asastart signal. Thiswill prevent an accidental motor startup in the event of the MC3PHAC being

powered up while the switch remains in the start position.

The FWD input pinis also debounced internally, and can also directly accommodate a switch connection.
Theinput isalso level sensitive.
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MC3PHAC Description

Figure 8 also shows the jJumper arrangement connected to the PWMPOL _BASEFREQ input pin. For
proper operation, one and only one jumper connection can be made at any given time. Table 2 shows the
polarity and base speed selections as a function of the jumper connection made.

DEAD TIME (us)
6.0

55 ]

5.0
45
4.0

35 4
3.0 —

25 4
20 /
15—

10 —A

0.5 /

%1 2 3 4 5 6 7 8 9 10
RESISTANCE (kQ)

Figure 9. Dead-Time as a Function of the Pull-Down Resistor

RETRY TIME (SECONDS)
60

55

50 —T |

45
40
35

30 /
25
20

/
o/

5
0

0 5 10 15 20 25 30 35 40 45 50
RESISTANCE (k%)

Figure 10. Retry Time as a Function of the Pull-Down Resistor

VBOOST (%)
40

35

30

25 -

ot/

0 5 10 15 20 25 30 3 40 45 50
RESISTANCE (k)

Figure 11. Voltage Boost as a Function of the Pull-Down Resistor
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Software Functionality

3  Software Functionality

3.1 Software Overview

The software for the MC3PHAC can be partitioned into routines comprising the background tasks and
interrupt service routines. The functional interaction between the background tasksis shown in Figure 12.
The interrupt service routines are listed in Figure 13.

—ilp
T

Figure 12. Background Tasks

i —iy

'/‘E'

Figure 13. Interrupt Service Routines
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3.2 Software Modules

The software is comprised of 18 separate files that must be assembled together to generate an executable
file. Each of these files and its functions are listed below.

Motor.asm — Thisisthetop-level fileresponsiblefor including all the other filesin the application. When
generating an executable version of the code, thisis the file that must be assembled.

Mr 4io.h — Includes the equates that define all register names and addresses in the MC3PHAC.

Zpage.h — Includes all variable declarations not associated with the FreeMASTER code. All variables
reside in zero page of memory.

Pclink.h — Includes variable and label declarations for the FreeMASTER command processing code.
Pcsciisr.h — Includes variable and label declarations for the SCI transmitter and receiver code.

3rd_Harm.asm — Contains one cycle of the motor voltage waveform which consists of 512 entries, each
entry an 8-bit value. The waveform is made up of afundamental sinewave, with a 3" harmonic sinewave
superimposed on top of it.
Init.asm — Thisisthe first executable code out of reset responsible for the following functions:

» Configuring the PLL to drive the busat 8 MHz.

* Clearing al used RAM locationsin zero page.

 Initidizing the stack pointer to $011F (the last RAM location).

* Initializing all used peripherals and variables.

» Determine the operating mode (standalone or PC master). If PC master modeis selected, initialize
the SCI and specific FreeMASTER variables. If standalone mode is selected, using a passive
external network, determine PWM polarity, base speed, dead-time, voltage boost, fault retry time,
and initialize the PWM module.

* The PWM module initialization codeis also part of Init.asm.

Main.asm — Thisisthe top level background loop responsible for invoking other background tasks.
These tasks include:

» Servicing the watchdog

» Checking whether avalid FreeMASTER message has been received, and invoking the
FreeM ASTER decode routine.

» Checking whether the SCI transmitter is empty when sending a FreeM ASTER response, so that
the next character can be sent.

» Cadling the enable routine, which is the next file to be discussed.
» Creating a status byte for use by FreeMASTER software.

Using the MC3PHAC Motor Controller, Rev. 1.2
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Enable.asm — Responsible for determining whether the motor should be on or off, and which direction it
should go. A block diagram of the enableroutineis shownin Figure 14. Ascan be seen, thefollowing tasks
are performed:

» Debouncing of the START and FWD input pins.

* Intheevent of afault, monitor the FAULTIN and DC_BUS pins to determine if normal motor
operation is possible yet. If so, start the fault timer, and re-energize the motor at the end of the
fault timeout period.

* Monitor the DC_BUS pin to turn off the RBRAKE pin if the dc bus voltage is below the
RBRAKE threshold.

» Proper state sequencing to energize the motor.

!

Fault 1 pin

Vbus

oo

Start/Stop
T

Fwd/Rev - Forward/Reverse

Figure 14. Enable.asm Functional Block Diagram

Profiler.asm — Processes the on/off and forward/reverse signals from Enable.asm and generates avel ocity
profile based upon the commanded speed and accel eration inputs. The dc bus voltage is also monitored,
and used to reduce the deceleration rate if the voltage istoo high. After the velocity iscalculated, it isused
to determine the proper voltage to apply to the motor based on the low-frequency voltage boost, the base
speed, and the maximum allowabl e voltage as specified by FreeMASTER software. This voltage
information is output to PWM .asm, along with the velocity information.

Even though the profiler runswith interrupts disabled, it is not considered a background task becauseit is
invoked periodically from PWM.asm, which is an interrupt service routine. Also, the profiler usesa
pipelined velocity calculation technique, which will be discussed later in this document. A block diagram
of the profiler is shown in Figure 15.

Using the MC3PHAC Motor Controller, Rev. 1.2
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Amplitude)‘

Base Speed
Vboost
Vmax

Speed

rate
A
Velocity Velocity step

- +
A

Speed Reference
—>

Commanded
Velocity

On/Off

Forward/Reverse
_—

v
- Last Velocity

Figure 15. Profiler.asm Functional Block Diagram

PWM .asm — A block diagram of PWM.asm is shown in Figure 16. The main function of PWM.asmisto
take the velocity and voltage information from the profiler, and turn this information into PWM values,
which when supplied to the PWM module, result in waveforms of the proper frequency and amplitude on
the motor. The busvoltageisalso monitored, and if it isnot within proper limits, afault isgenerated. Also,
the RBRAKE pin is asserted if the bus voltage exceeds the limit established for turning on the resistive
brake. Finally, the bus voltage signal is used to modul ate the PWM signal amplitude, so that any ripple or
deviation from an established nominal voltage will be compensated.

PWM Modulus
) . Amplitude
Profiler trigger Waveform Table

Velocity ste

Vnorm

Last Velocity ‘. Velocity

120°

Vbus

Figure 16. Functional Block Diagram of PWM.asm
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Another task of PWM.asm is to launch the profiler at appropriate intervals. PWM.asm is are-entrant
interrupt service routine which isinvoked by the PWM module reload interrupt.

Fault.asm — Thisfile contains an interrupt service routine that is invoked by the assertion of the
FAULTIN pin. It resets the fault timeout variable, and if PC master mode has been selected, it drives the
DT_FAULTOUT pin low.

Plicheck.asm — Thisisthe interrupt service routine that isinvoked whenever the PLL loseslock asa
result of losing the crystal referenceinput, or other problemswith the PLL. Unlike other faultsin the motor
control system that may occur as aresult of unanticipated system stresses, aloss of lock on the PLL
indicates a hardware problem. Therefore, PLL check.asm causes areset of the MC3PHAC instead of
simply waiting for afault timeout period to resume normal operation. Thisis accomplished by forcing a
jump to an illegal addressin the memory map.

Timer.asm — Thisinterrupt service routine is executed whenever timer B overflows. Assuming 8 MHz
bus operation, this occurs every 0.262 seconds. The only function of Timer.asmisto increment avariable
counter used for timeouts when afault occurs.

Pclink.asm — This routine interprets and executes the commands sent from an external master viathe
FreeMASTER protocol. Table 4 lists all the FreeMASTER commands which are recognized and
processed by this routine.

Pcsciisr.asm — Thisfile contains two distinct routines related to the SCI. Oneis an interrupt service
routinethat isinvoked whenever acharacter isreceived by the SCI. When acomplete messageisreceived,
thisroutineinspectsthe length of the message and the checksum, and either validatesthe received message
or builds an error response to be sent back to the master. Thisroutine runs with interrupts enabled to allow
the PWM.asm ISR to run when requested.

The other routine isadriver that manages character transmissions viathe SCI back to the master. As each
character is sent, its binary value is accumulated with the other characters in the message to generate a
checksum at the end of the message.

No_int.asm — Thisroutine is responsible for handling all errant interrupts that may occur, which do not
have an interrupt handler associated with them. Thisfile is primarily intended to be a debug tool to be
assembled with the application during software devel opment.

Vector s.asm — All interrupt service routine start addresses are defined in the vector table created by this
file. Thereis no executable code in this module.

3.3 Standalone Initialization

If the MC3PHAC is connected as shown if Figure 8, then the VBOOST _MODE pin will be high out of
reset because all 1/0 pinswill bein ahigh impedance state. The initialization routine will interpret this as
an indication to proceed in standalone mode, and all operational parameters will be determined viathe
following sequence of steps:
1. Port A bits 0 through 3 are configured as outputs, and driven high. The code waits for 200 usto
allow capacitors connected to these pins to charge up.

2. Port A bit O isthen driven low, and the code waits for 200 usto allow a capacitor connected to this
pin to discharge.
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3. ThelRQLI1F flag is checked to determine whether the IRQ1 pin has gone low. If so, the code
interprets this as an indication that the PWM polarity should be negative, and the base speed is 50
Hz.

4. If the IRQ1F flag indicates that the IRQ1 pin hasn’t gone low, port A bit 1 isdriven low, and the
code waits for 200 usto allow a capacitor connected to this pin to discharge.

5. ThelRQLF flag is again checked to determine whether the IRQ1 pin has gone low. If so, the code
interprets this as an indication to use positive PWM polarities, and the base speed should be
50 Hz.

6. If the IRQ1F flag indicates that the IRQ1 pin hasn't yet gone low, port A bit 2 isdriven low, and
the code waits for 200 us to allow a capacitor connected to this pin to discharge.

7. ThelRQ1F flag isagain checked to determine whether the IRQ1 pin has gone low. If so, the code
interprets this as an indication to use negative PWM polarities, and the base speed should be
60 Hz.

8. If the IRQ1F flag indicates that the IRQ1 pin hasn't yet gone low, the code interprets this as an
indication to use positive PWM polarities, and the base speed should be 60 Hz.

9. Interrupts from IRQ1 are disabled henceforth, and all port A pins are reconfigured as inputs.
10. The ADC is configured for right justified, continuous conversion on the ATDO pin.

11. Port B bits 2 and 3 are configured as outputs and are driven low. All other port B bitsremain as
inputs. Port B bit 2 isthe RBRAKE output, and bit 3 is used for the dead-time determination.

12. The code waits for 2 msto allow a capacitor on the ATDO input to settle in to the correct voltage.

13. The ATDO reading is scaled to a value that can be |oaded into the dead-time register. Beforeit is
loaded, the value is compared to $04 (0.5 usfor an 8 MHz bus). If it islessthan thisvalue, $04 is
substituted for the value.

14. Port B bits 2 and 4 are configured as outputs, and driven low. All other port B bits are configured
asinputs. Port B bit 4 is used for the voltage boost determination.

15. The code waits for 2 msto alow a capacitor on the ATDO input to settle in to the correct voltage.
A reading is then taken on the ATDO input, which is scaled to a value that can be used to specify
the 0 Hz voltage boost value.

16. The ADC isreconfigured for left-justified, continuous conversions on the ATDO pin.

17. Port B bits 1 and 2 are configured as outputs, and driven low. All other port B bits are configured
asinputs. Port B bit 1 is used to determine the retry time after afault has occurred.

18. The code waits for 2 msto alow a capacitor on the ATDO input to settle in to the correct voltage.
A reading is then taken on the ATDO input, which is scaled to a value that can be used to specify
theretry time. If the value islessthan $04 (retry time of 1.05 secondsfor an 8 MHz bus), then $04
is substituted for the value.

19. Port B bits 0 and 2 are configured as outputs, and driven low. All other port B bits are configured
asinputs. Port B bit 0 is used to determine the PWM frequency. Because thisisareal time
parameter, port B bit O remains low henceforth.

20. The ADC isreconfigured for right-justified, continuous conversions on the ATDO pin.
21. The code waits for 2 msto allow a capacitor on the ATDO input to settle in to the correct voltage.

22. The PWM module is then initialized and enabled using the specified polarity information.
Interrupts are enabled for the PWM module, aswell asfor the fault 1 input pin.

23. Before exiting the initialization routine, PLL interrupts are enabled, and global interrupts are a'so
turned on.
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3.4 FreeMASTER Message Processing

The process by which the MC3PHAC communicates over FreeMASTER softwareisillustrated in
Figure 17. When amessage is received over the SCI, it is placed in an internal RAM buffer and the
checksum is inspected. Assuming the checksum is valid, the message is decoded to determine whether it
represents avalid operation. If so, the operation is carried out, and aresponse is generated back to the
master indicating this. If it is not avalid operation, or if the checksum of the recelved messageisinvalid,
aresponseis also generated to indicate the problem, but no operation is performed. After the responseis
transmitted, which includes any requested data, the MC3PHAC returnsto the idle state. An operation may
be deemed invalid for any of the following reasons:

» Command is not recognized. All recognized commands are listed in Table 4.

» Thecommand isrecognized, but thereis a problem with the operational parameters. For example,
trying to read or write alocation that is not permitted will result in an invalid operation.

* The command is recognized, and the operation parameters are correct, but command precedent
overrides the operation. For example, sending a command to turn on the motor when certain
parameters have not yet been specified (e.g., PWM polarity) will result in an invalid operation.

Inspect
Message

Valid
checksum
received

Invalid operation

Figure 17. MC3PHAC FreeMASTER Functionality
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3.4.1 SOM Characters

Every message in FreeMASTER software is predicated by a special character called the start of message
(SOM) character, whichisthe ascii “+” character. In acharacter stream, anytime a+ character isfollowed
by adifferent character, it indicates that a new message follows and the receiver should resynchronize its
state machine accordingly. Because the command field immediately follows the SOM field, a
FreeMASTER command can never have avalue of +. However, from time to time, another field in the
message could happen to equate to the SOM character. To prevent a FreeMASTER receiver from
erroneously syncing up its state machine to these fields, it is stipulated that any + character that occurs
whichisnot in the SOM field must be duplicated by the transmitter. When two back-to-back + characters
arereceived, the FreeM A STER receiver must know to discard one of the + charactersand processthe other
one.

Figure 18 and Figure 19 represent flow diagrams of how the MC3PHAC treats SOM characters. Note that
the receiver routine isinterrupt driven, but the transmitter routine is called from a background task. The
transmitter routine should not be interrupt driven because there are very lax timing requirements on a
transmitted message, plus it frees up valuable | SR bandwidth that is needed by the waveform generator.

Received Character

Message In Progress)
ST_STARTED=1
(Last Character = SOM)
ST_ST_CHAR_REC=
Initialize

Receiver State | ST_ST_CHAR_REC=1 | | ST_ST_CHAR_REC=0 |

ST_STARTED=1

>
Ll
\ 4

Process Character

Initialize 4
v Receiver State EXIT

19 ST ST _CHAR REC=1>'=°

(Last Character = SOM)
Figure 18. FreeMASTER Receiver ISR SOM Processing
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associated bit values.
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ST_SENDING=1

lTransmit buffer empty
&
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Y

DO ST ST_SENT=0

A
ST_ST_SENT=0

<« Y |l g

A
ST_SENDING=0

(done sending)

yes

A 4

ST_ST_SENT=1

Figure 19. FreeMASTER Transmitter Routine

3.4.2 MC3PHAC Specific Commands

The MC3PHA C does not support the application command feature of the FreeM ASTER protocol. Instead,
all permissible MC3PHA C-specific commands are specified as the byte written to location $1000, which
isan unused location in the MC3PHA C memory map. Each byte is broken down into an operation (upper
nibble), and associated data (lower nibble). Table 6 shows all MC3PHAC specific commands, with their

Table 6. MC3PHAC Specific Commands

»
»

) 4

EXIT

Command Value Bit Pattern
Forward $10 0001xxx0
Reverse $11 0001 xxx1

Stop $20 0010xxxx

Reset $30 0011xxxx

PWM Freq. = 5.3 kHz $41 01000001
PWM Freq. = 10.6 kHz $42 01000010
PWM Freq. = 15.9 kHz $44 01000100
PWM Freq. = 21.2 kHz $48 01001000
PWM polarity T+, B+ $50 010100xx
PWM polarity T-, B+ $54 010101xx
PWM polarity T+, B— $58 010110xx
PWM polarity T-, B— $5C 010111xx
Base speed = 60 Hz $60 0110xxx0
Base speed = 50 Hz $61 0110xxx1
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3.4.3 Command Precedent

The MC3PHAC incorporates a safety feature called command precedent, which prevents certain events
from occurring until specific commands or parameters have been received. The PWM module will not be
initialized until both PWM polarity and dead-time have been specified. These parameters must also be
specified before the forward or reverse commands will be accepted, which turn on the motor. In addition,
the accel eration, commanded speed, and base speed must be set before motor motion will be enabled. To
accomplishthis, avariable called blastoff isinspected before processing theforward or reverse commands.
Whenever one of these parametersis specified, a corresponding bit in blastoff is set. When all therequired
bits are set, blastoff will equal $FF, which will allow the forward and reverse commands to be processed
normally.

A functional equivalent of the command precedent logic isillustrated in Figure 20.

Base Frequency has been specified

Acceleration has been specified

Speed has been specified

PWM Polarity has been specified
Dead-time has been specified
SR Flip-flop PWM SR Flip-flop Move
S Q »{ module —'S Q —»{ commands
enabled accepted
R — R
Reset command
Hardware Reset > ]

Figure 20. Command Precedent Functional Equivalent Logic

3.4.4 Data Limiting

Many parameters areinspected before being applied, and are limited to positive valuesif necessary. These
parameters are:

Commanded speed

Resistive brake trip point

Bus voltage brownout trip point
Bus voltage over-voltage trip point
Bus voltage deceleration trip point

Further information about these parameters may be found in Table 5.
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3.5 Motor Enable and Disable Sequencing

With the exception of afault condition, which causes the PWM outputs to be disabled immediately, the
process of enabling and disabling the motor is largely the responsibility of the Enable.asm routine. Both
start/stop, and forward/reverse switch inputs are processed by this routine to control the motor.

3.5.1 Switch Debouncing

Both switches are debounced using the same algorithm, as shown in Figure 21. This technique has the
advantage of being level sensitive so that the debounced output can never get out of sync with the input,
and it responds quickly to the changing input, even before the bouncing has stopped.

Enter
timeout

in progress
timex flag set &
100 ms
s L timeout finished
Increment

Difference count v \ 4

| Difference count = 0 | Clear the timex flag
yes Difference Count no v v

l =2

| Difference count = 0 |

Output = Input
Set timex flag | indicate timeout in progress

| nitiate 100 mS timeout | A
y

| > EXIT

Figure 21. Switch Debouncing Algorithm

Output = Input

\4

When the routine is entered, assuming that a debounce timeout period is not in progress, the switch input
signal is compared with the debounced output. If they are different for two consecutive passes through the
algorithm, then the debounced output isimmediately set to the switch input value. Further comparisons
between the output and input are locked out for a period of 100 ms, which is enough time to allow the
switch to stop bouncing.
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3.5.2 Motor Enable and Disable Sequencer

The debounced output of the start/stop switch is supplied to the motor enable/disable sequencer, as
indicated in Figure 14. The block diagram for this routine is shown in Figure 22, and may appear more
involved than expected. It incorporates several important features that are listed below:

o Start position lockout at power-up — It would be dangerous for the MC3PHAC to be able to
accidentally energize the motor if the MC3PHAC were powered up while the start/stop switch
was in the start position. To protect against this dangerous scenario, the MC3PHAC checks that
the start/stop switch has been in the stop position at some point in time since power-up before the
motor can be energized.

» High-side bootstrap — Many IPMs (integrated power modules) require that the high side gate
drivers be bootstrapped off of PWMs applied to the low side transistors for a period of time.
When the MC3PHAC transitions the motor from the off to the on state, it assumes that the high
side gate drivers need to be charged first. It does this by applying 100 ms of 50% PWMsto only
the bottom transistors before enabling the top transistors and beginning the velocity profile.

*  When turning the motor off (commanded speed = 0), the routine waits until the modulation index
is 0 before disabling the PWMs. This allows the profiler to gently remove the motor voltage for
speeds under 1 Hz, so there is no voltage discontinuity seen at the motor. Such a discontinuity
could result in a pop on the motor, especially in high voltage boost scenarios.

Enter

Start/stop
= start

Fault no

Pre-charge
interval
needed

Start2 =1

| Turn bottom PWMs ON |

| Turn all PWMs ON | [ nitiate 100 mS timeout |

v A 4

Figure 22. Motor Enable and Disable Sequencer
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Referring to Figure 22, assuming no fault conditions, if the debounced START signal isin the start state,
theonflagisset. If PC master modeis selected, the debounced START signal isoverridden, and a separate
input is supplied to this routine from the FreeM ASTER software. If the Start1 flag is also set (indicating
that the switch had been in the stop position at some time after power-up), then a cascade sequenceis
initiated, which will eventually lead to the motor being energized. Part of this sequence is controlled by
the Start2 flag. If cleared, thisflag indicatesthat the high side gate drivers must be charged before enabling
the motor. Thefinal output of thisroutineisthe Start flag, which isused by the profiler to set the command
speed to zero or a user specified value.

Before leaving our discussion of the Enable.asm routine, note that the tasks of turning off the RBRAKE

pin and clearing fault conditions also belong to this routine. Turning off the RBRAKE pin quickly is not
nearly ascritical asturning it on quickly when it isneeded. Therefore, the job of sampling the bus voltage
and turning on theresistor brake when needed isrelegated to the PWM | SR, which executes at aworst case
frequency of 4.0 kHz.

3.6 Motor Frequency and Voltage Profiling

3.6.1 Velocity Calculation

The MC3PHAC generatesalinear velocity profile. In other words, it ramps the motor speed by a constant
value of Hz/sec/sec. Because the velocity profile islinear, and acceleration is the derivative of velocity,
thisimplies that the acceleration is either O (when the speed isn’t changing), or constant (when the speed
is changing). If more complex profiling is desired, the acceleration variable must be profiled in real time
external to the MC3PHAC, either through the real time acceleration input (pin 27), or via FreeMASTER
software.

The velocity variables used in the profiler are signed, where negative values of velocity correspond to
reverse rotation. To change speeds, the commanded velocity is set to a new value, and the profiler will
move the motor frequency in the direction of the new speed by adding or subtracting the acceleration
variable with each pass of the profiler routine. If this action resultsin the motor frequency moving farther
away from 0 Hz, then the motor is accel erating. However, if such an action results in the motor frequency
getting nearer to 0 Hz, then the motor is decelerating. This distinction isimportant because in the latter
case, the motor is supplying mechanical energy to the drive, which can do significant damage if not held
in check. The profiler must track deceleration events, and provide corrective action to reduce the
deceleration if necessary.

With each pass of the profiler, the motor frequency is compared against the commanded vel ocity to
determine whether velocity ramping isrequired. If the two are not equal, the profiler will nudge the motor
frequency in the direction of the commanded velocity. Depending on the size of the nudge, this may result
in the motor frequency overshooting the commanded velocity. Therefore, the magnitude of the motor
frequency must immediately be compared to the magnitude of the commanded velocity, and if itisgreater,
the motor frequency be made to equal the commanded velocity. This action resultsin the motor frequency
always serving to the commanded velocity with an adjustable slew rate.
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If the profiler determines that the motor is accelerating, then the acceleration value is ssmply added to or
subtracted from the velocity variable, depending on whether the velocity is positive or negative,
respectively. However, if the profiler determines that the motor is decelerating, a more elaborate scheme
must be implemented, as discussed below.

Vgys IS inspected to determine whether it is above a certain threshold that suggests the deceleration must
be moderated. If it isbelow thisthreshold, the deceleration isinitially equated to the acceleration value.
However, if it is above this value, the deceleration is calculated as a function of acceleration and the Vg g
reading as defined by the following relationship:

deceleration = acceleration- (1_ Vbus——dstart)

$80

Egn. 1

where:
dstart is the Vg s reading above which we want to begin mitigating the deceleration value.
Vs isthe ADC reading of the bus voltage, $000 < Vg s < $3FF

This expression resultsin alinear taper of the deceleration value as afunction of the bus voltage when
Vs IS greater than dstart, asillustrated in Figure 7.

The equation is only applicable for Vg g readings in the range of dstart < V¢ < dstart+$80. For Vg ¢
readings above thisrange, the deceleration is set to 0.5 Hz/sec. In standalone mode, dstart isfixed at $314,
but in PC master mode, dstart is programmable.

The reason for the form of Equation 1 is because it can be implemented very efficiently on the CPUQOS.
Because of the restrictions placed on the Vg s reading, the numerator term Vg, — dstart can never beless
than $01, or larger than $7F, which meansit can fit into an 8-bit value. We will assume thisterm isan
integer, i.e., itisin 8.0 format. To divide this by $80 (128), we realize that thisis the same as multiplying
by 0.0078125. Asit turns out, this can be exactly represented in 0.8 format as $02. So, the evaluation of
the fraction in the brackets of Equation 1 can be accomplished by multiplying two 8-bit values, where the
resultisin 8.8 format. However, theinteger portion of thisexpression isaways guaranteed to be 0 because
of thelimitationson the Vg, s value. Therefore, only theleast significant byte must be retained. To subtract
thisterm from 1, we simply negate the 8-bit value, resulting in avalue in 0.8 format. Therefore, the entire
bracketed expression can be implemented in five assembly language instructions!

This 8-bit word is then multiplied by the 16-bit acceleration value to achieve the deceleration value.

To review, we have three possible values of deceleration depending on the Vg, s reading:

* Theacceleration value, assuming Vg s < dstart

« Equation 1if dstart < Vg s < dstart + $80

* 0.5HzZ/secif Vg s> dstart + $80
The resulting slope of Equation 1, asillustrated in Figure 7, is proportional to the gain of the closed-loop
system that is controlling the deceleration in an effort to regulate Vg ,s. Because this slope will change as
afunction of the acceleration value, as well as other parametersin the system, it isimpossible to select a

value of the slope that will guarantee stability of the loop for al systems. In an attempt to mitigate this
potential problem, atime dependency is also introduced in the calculation of the deceleration value. If
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Equation 1 dictates that the decel eration must be decreased quickly to prevent an overvoltage situation, it
ispermitted to do so. However, after Vg, s beginsto decrease again, the decel eration is gradually increased
at amaximum slew rate of approximately 167 Hz/sec®. More precisely, it is allowed to increase at a
maximum rate of 0.5 Hz/sec per each pass through the profiler routine. A perhapsinaccurate but intuitive
anaogy would be like quickly recoiling from the cold water of a swimming pool, followed by slowly
easing your toe back into the water.

3.6.2 Voltage Calculation

Thevoltage profile as afunction of motor speed is shown in Figure 5. Because this profile must be applied
regardless of the direction of motor rotation, the absolute value of the velocity variable must be used.

The equation governing the voltage profilein Figure 5 is given as:

Eqgn. 2

V(a))= L-I_Vboost ) 1_L
base speed base speed

where;

V(a)) is the scaled motor voltage from 0 to 1, more commonly known as the
modulation index.

base speed is the line frequency at which the motor was designed to work.
@ s the present motor frequency.
Vhoost 1S the desired voltage boost specified at 0 Hz.

The above equation applies only for the conditionof Q< @ < base speed - If the motor frequency is
greater than the base speed, then the modulation index is set to 1.

Aswas the case with the decel eration calculation, we have a fractional expression that would suggest the
need for adivide operation. However, after the base speed has been specified (either 50 or 60 Hz), it may
betreated asaconstant. Thisimpliesthat the inverse of both base speed options can be calculated a priori,
and the selected value multiplied by o in Equation 2. The radix format selected for 1/(base speed) is0.16,
which means that the two values are $0444 and $051E for 60 Hz and 50 Hz, respectively. The motor
voltage is calculated as an 8-hit, unsigned variable.

A time dependency is also associated with the calcul ation of the motor voltage, in an effort to mitigate the
voltage step associated with turn-on and turn-off. Thisis especially noticeable when the voltage boost is
large. Whenever the motor frequency drops below 1 Hz, avalue of 1 is subtracted from the voltage value
for each pass of the profiler routine, which causes the motor voltage to be removed gently. The motor
enable and disable sequencer |ocated in the Enable.asm routine watches when the voltage val ue reaches 0,
and disables the PWMs when this happens.

It is desirable to also apply the voltage gently to the motor when it is turned on. However, ssimply
incrementing the voltage value by 1 for each pass of the profiler routine is not adequate if rapid
acceleration isrequired. If the voltage value failsto increase at a rate commensurate with the motor
frequency, the required V/Hz relationship will not be met, and the motor could stall. Therefore, the rate at
which voltage is applied is related to the specified motor acceleration. This allows the voltage waveform
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amplitude to rapidly catch up to where it must be on the V/Hz curve instead of applying a voltage step at
turn-on. After it catches up, the normal voltage profile as dictated by Equation 2 resumes.

Finally, certain motor control applications require independent control of the voltage waveform with
respect to the motor frequency. An example would be the case of alightly loaded motor at full frequency,
where the voltage can be reduced for better efficiency. Another example would be exercise equipment,
where asofter torque responseis preferred. While thisrequirement cannot be accommodated in standalone
mode, it is possible with PC master mode by setting the voltage boost to maximum, and then controlling
another variable called vmax. As seenin Equation 2, when v, iISmaximum (1), the expression for V()
isalways 1, or full voltage, regardless of frequency. After V(w) is calculated, its value islimited to not
exceed vmax. If the user chooses not to set Vi, to maximum, then the voltage profile will follow
Equation 2 up to the vmax limit, at which point the voltage will be clamped. The time dependencies of
gently applying and removing the voltage still apply for the cases where vmax is used to control the
voltage.

3.6.3 Velocity Scaling

Each time the PWM ISR is executed, new data is fetched from the waveform table and supplied to the
PWM module, asindicated in Figure 16. The frequency of the resulting motor waveform will be directly
related to how much the pointer val ue changes each timethe PWM | SR is executed, with larger increments
corresponding to higher frequencies. So the question becomes, “How can we trangl ate the 16-bit motor
frequency variable in the profiler routine to the correct wavetable pointer increment?” To answer this
guestion correctly, we need knowledge of how frequently the pointer updates occur. For now, we will
assume that PWM ISR interrupts (and consequently, pointer updates) occur every 189 us, or at a5.3 kHz
rate.

To perform this conversion, we will use the following trandlation, being mindful of the unitsinvolved at
each step:

Eqn. 3

w(cycl es] 189.10% S 256 wavetable points
sec pointer update cycle

where:
o isthe 16-bit motor frequency variable in 8.8 format

When the units cancel out, the result is afrequency variable that has units of wavetable points per pointer
update. Thisis exactly what isrequired for avalue to be directly added to the wavetabl e pointer each time
it isupdated. Performing the multiplication in Equation 3 resultsin ascalefactor of 0.048384, which when
trandated into 0.16 format, equals $0C63. However, for best resolution, any scale factor should use as
much of its dynamic range as possible. To accomplish this, we multiply the scale factor by 16, yielding a
new value of 0.774144, or $C62E in 0.16 format.

Multiplying this scale factor by the 16-bit motor frequency variable (in 8.8 format) resultsin a 32-bit result
in 8.24 format. However, we must account for the 16x adjustment to the scale factor by mentally shifting
the radix point four places to the left, resulting in a4.28 format. Next, we will retain only the three most
significant bytes, resulting in a4.20 format. To make the value line up with the format used by the pointer,
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we must shift the whole answer four places to the right. This moves the radix point between the two most
significant bytes, resulting in an 8.16 format word. It can now be added directly to the pointer variable used
to fetch wavetable data each time the PWM ISR is executed.

3.6.4 Acceleration Scaling

Motor acceleration is directly proportional to the amount the motor frequency variable changes each time
itisupdated. So the question becomes, “How can wetrand ate the 16-bit accel eration variableto the correct
increment to add to the motor frequency variable each timeit isupdated in the profiler routine?’ To answer
this question correctly, we need knowledge of how often the profiler routine is executed.

Figure 23 isatiming diagram that shows that the profiler isinvoked every 16" PWM interrupt. From the
previous discussion on velocity scaling, we will assume that the PWM interrupt occurs every 189 us. To
scal e the accel eration properly, we use this information asillustrated in the following transation, being
mindful of the unitsinvolved at each step:

Eqn. 4

. Hz 5 Sec PWM interrupt
acceleration) — |-189-10 _ -16
Sec PWM interrupt motor freq.update

Profiler

Launched w
PWM ISR

‘biniicipipipizipigipipiRiall

Profiler _‘ H H H H H H Data Loaded

Background

LAHR AnEEEEE

High level indicates CPU is servicing this activity.

Figure 23. Timing Relationship Between PWM ISR, Profiler, and Background Tasks
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When the units cancel out, our result is an acceleration variable that has units of Hz per motor frequency
update. Thisis exactly what is required for a value to be added directly to the motor frequency variable
each timeit is updated. Performing the multiplication in Equation 4 resultsin a scale factor of 0.003024,
which when trandated into 0.16 format, equals $00C6. However, for best resolution, any scale factor
should use as much of its dynamic range as possible. To accomplish this, we multiply the scale factor by
256, yielding a new value of 0.774144, or $C62E in 0.16 format.

Multiplying this scale factor by the 16-bit acceleration variable (in 7.9 format) resultsin a 32-bit number
(in7.25format). However, we must account for the 256x adjustment to the scal e factor by mentally shifting
the radix point eight places to the left, resulting in avalue with a 33-bit fractional part, which exceedsthe
32-bit word size of the number. However, thisis not aproblem after we realize that the largest number we
can obtain from a 16x16 multiply is 32 bits, i.e., bit 33 is aways guaranteed to be 0. Next, we discard the
two least significant bytes, leaving a value with a 17-bit fractional part, where the most significant bit is
guaranteed to be 0. To make the value line up with the format used by the motor frequency variable, we
must shift the whole answer one place to the right, with theimplied 0 of bit 17 moving into the bit 16 spot.
Thismovestheradix point to aspot immediately above the most significant byte, resultingin a0.16 format
word. It can now be added directly to the motor frequency variable each time the profiler routine is
executed.

3.6.5 Special Case Scaling

Before leaving the discussion of frequency and acceleration scaling, we need to address the special case
scenario when the PWM interrupt rate is not every 189 us. Thiswill happen whenever the 15.873 kHz
PWM frequency option is selected; the reasons for which are presented later. Under this special case, the
PWM interrupts will occur every 252 usinstead. As a consegquence, different scale factors must be used
in this case, and the profiler must monitor the PWM frequencies to know which scale factors to use. By
using the same technique presented in the previous two sections, we come up with a scale factor for this
PWM frequency of $841F, to be used for both acceleration and frequency scaling.

3.6.6 Velocity Pipelining

Referring back to Figure 23, we see that new profiler dataisrequired by the PWM ISR every 16 interrupt
cycles. Although the choice of numeric nomenclatureisarbitrary, wewill refer to the PWM | SR execution
immediately following the reload of profiler dataas cycle 1. At cycle 7, the PWM ISR will trigger the
profiler routine, which runsin-between the PWM ISR executions as a background task. During thistime,
interrupts are enabled, which allows other | SR tasksto executeif required. The gap between the PWM ISR
executionsistypicaly 20 to 40 us, and it usually takes about four such cycles for the profiler to finish
calculating new data.

Asillustrated in Figure 15, the profiler passes three pieces of information to the PWM ISR each timeitis
executed:

* Thevelocity calculated from the last pass of the profiler
» Thedifferencein velocity from the last pass to this pass of the profiler (acceleration)
» Thevoltage (modulation index) to be applied to the waveforms
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Thisresultsin a pipelined effect, where previous profiler datais used by the PWM ISR, while new datais
being calculated in the background at the same time. This processisillustrated in Figure 24.

w2, Aw, 4 w3, Aw,, w4, Aw, 5

PWMs using w0 and Aw,,

PWMs using w1 and Aw,_, PWMs using w2 and Aw;,

wl > =<
w2 <

Velocity
Velocity

Profiler Data Reload
Profiler Data Reload

Figure 24. Velocity Pipelining.

Each vertical partition represents a PWM interrupt that instigates one pass through the PWVM ISR. In this
particular illustration, the first invocation of the profiler routine calculates a vel ocity we will call w,.
However, as can be seen, the PWMs applied to the motor will not reach this velocity until much later; the
reason for which will be explained momentarily. Also, note that the PWMs require one interrupt cycle to
reflect the new data whenever a profiler datareload occurs. Thisis because the PWM module contains
double-buffered registers for the PWM values. So while the new PWM values are being calculated and
loaded into the buffers, they do not actually get used until the next PWM interrupt, at which point they are
loaded into the PWM compare registers.

Becausethevelocity calculations are performed in an open-loop fashion (with the exception of busvoltage
monitoring during deceleration), the phase lag represented by this pipeline will not adversely affect the
performance of the system. However, phase delay will adversely affect performance in the case of

decel eration modul ation based on bus voltage feedback. To mitigate this effect, we seethat the accel eration
information (Aw) is applied immediately after the reload of profiler data.

3.6.7 Velocity Interpolation

Assuming that the PWM interrupts occur at 189 usintervals, and new velocity iscalculated every timethe
profiler executes (every 16 PWM interrupts), then the velocity will be incremented every 3 ms, or 331
times a second. Depending on the motor and the accel eration specified, this can result in discrete steps that
may be felt by the motor. Smoother motor performance results if the velocity information is updated at a
quicker rate. Unfortunately, to execute the profiler at afaster rate would require more CPU bandwidth than
what is available on the CPUO8. However, there isaway to get around this, asillustrated in Figure 25.

As discussed in the previous section on velocity pipelining, each time the profiler runs, as shown in the
shaded portions of Figure 25, three pieces of information are supplied to the PWM ISR; the old velocity,
the delta velocity, and the modulation index (not shown in Figure 25). Each velocity value calculated by
the profiler is shown as ayellow circle, where the stair-stepped nature of these valuesis clearly evident.
In the implementation of the deltavelocity calculation, the valueis actually right shifted four times before
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being supplied to the PWM ISR, which hasthe effect of dividing it by 16. By now, the reason for updating
the profiler information every 16 PWM ISR cycles may be evident. By adding this increment to the old
velocity value each timethe PWM ISR is executed, we will essentially generate anew velocity curve with
16x more resolution, as shown in Figure 25. This processis called linear interpolation, which will exactly
track the desired velocity profile because the profiler in the MC3PHAC generates alinear profile. Asa
result, the motor will transition from one speed to the next with extremely smooth velocity performance.
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Figure 25. Velocity Interpolation

3.6.8 PWM Frequency Gear-Shifting

The MC3PHAC has the ahility to change the PWM frequency on the fly, while the motor is running.
However, when the PWM frequency is 15.873 kHz, it resultsin a PWM interrupt rate of 252 us, which
requires adifferent scaling factor for the velocity and acceleration data.

Because the profiler calculations are pipelined, this different scaling factor presents a problem. The
profiler must monitor whenever a PWM frequency gearshift to or from 15.873 kHz occurs and respond
appropriately. If the procedure in Figure 24 is followed when such a gearshift occurs, the profiler will
calculate the new velocity (o) and acceleration data using the new scal e factor. However, the old velocity
(0.1, required as part of the reload), was calculated with the old scale factor. Because the velocity
information is calcul ated assuming a specific wavetable pointer update rate, and because the update rate
is now different, application of the old velocity value would result in a step function error in the velocity
waveform. In addition, the delta velocity information (or acceleration) would be wrong as well, because
the old velocity isrequired for this calculation. This perturbation in the velocity and acceleration
waveforms would last for one complete profiler reload cycle.
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So when the profiler detects a gearshift to or from 15.873 kHz, the following special case actions are
performed during the profiler pass associated with the gearshift:

» All calculations associated with velocity ramping are suspended.
» Theold velocity variable isre-scaled so that it will work correctly with the new update rate.
» Thedeltavelocity variableis set to 0.

If the profiler isn’t ramping the speed at the time, then these actions will have no effect on the motor.
However, if the profiler isramping the speed when the gearshift occurs, it will result in the vel ocity profile
stalling (flattening out) for one profiler reload cycle, to allow the pipe to be refilled with good data. After
this occurs, the profiler will resume normally with the ramp in progress. Because thisis a pipeline related
issue, the solution is similar to flushing the pipe, which is common in other pipelined architectures.

3.7 Interrupt Timing

Asillustrated in Figure 13, there are several sources of interrupts in the MC3PHAC code. Aswith any
software with interrupt capability, there are certain checks and balances that must be carefully maintained,
as discussed below.

3.71 PWMISR

The PWM ISR is central to all timing operations in the MC3PHAC that pertain to motor dynamics, such
as PWM frequency, motor acceleration, and motor velocity. During execution of this ISR, interrupts
remain disabled. Referring to Figure 23, we see that the profiler isinvoked at the end of the seventh PWM
ISR cycle, where cycle 1 isarbitrarily chosen to be where the profiler datais loaded. At the end of the
seventh cycle, the PWM [ SR does not exit normally, but instead transfers execution to the profiler viaa
subroutine cal. In the profiler, interrupts are immediately enabled to alow the PWM ISR to respond to
futureinterruptsfrom the PWM module. When the profiler completes, it returns execution back to its point
of originin cycle 7, where an RTI instruction returns execution to the background task in progress when
the cycle 7 interrupt occurred.

The PWM ISR runs at a higher frequency than any other periodic ISR, and for this reason, the dc bus
monitoring function is performed here. The other ADC channel conversionsare also performedinthisISR
during the seventh PWM ISR cycle, so that they will be fresh when the profiler uses them. Because this
ADC datawill not be overwritten until after the profiler has finished, the datawill be coherent throughout
the execution of the profiler code. Thisis not the case, however, with the dc bus reading, which is updated
each timethe PWM ISR isexecuted. Therefore, care must be taken to establish the Vg s variable only once
within a background calculation that uses multiple occurrences of the variable.

3.7.2 SCIRx ISR

Whenever acharacter isreceived in the SCI receive buffer (presumably asaresult of communicationswith
an external master viathe FreeM ASTER protocol), an interrupt will be generated and the SCI Rx ISR will
beinvoked. To prevent starving the PWM ISR, the SCI Rx | SR enablesinterrupts, with the understanding
that if it isinterrupted, execution privilege will be given back before the receive buffer can overflow.
However, referring to Figure 23, what if the next PWM interrupt corresponds to cycle 7? Because
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interrupts were enabled at the time, the SCI Rx ISR would be treated like a background routine, and the
profiler execution would take precedence. The result is that the SCI Rx ISR could be starved instead.

To reciprocate the kindness of the SCI Rx ISR enabling interrupts, the PWM ISR will check at the end of
cycle 7 to determine whether the SCI Rx I SR was running when the PWM interrupt occurred. If so, it will
make a note to launch the profiler on the cycle following the completion of the SCI Rx ISR, and instead
return execution to the SCI Rx ISR. By this action, a priority chain is established which consists of the
PWM ISR, followed by the SCI Rx ISR, followed by the profiler, followed by other background tasks.

3.7.3 Other ISRs

Thethreeremaining ISRsarefairly generic in nature with no specia timing requirements. The PLL Check
ISR isfatal, asit indicatesthat aproblem has occurred with the PLL to causeit tolose phaselock. Variables
shared between the remaining | SRs and background routines must be guarded for coherency, especially
when there are multiple occurrences of the variable in each background cal cul ation.

3.8 Step Invariant Digital Filter

To enhance reference speed stability, the ADC input used for the speed signal is processed with asingle
pole, stepinvariant digital 1R filter, asshown in Figure 26. It getsits namefrom the fact that it is designed
using the Z-transforms of the input and output waveforms of an RC filter when an input step functionis

applied.

Thisfilter topology is actually a sampled approximation of how an analog RC filter really works, and
consequently, its frequency and time domain responses closely resemble those of the analog filter. For
more information, see Appendix A. The piecewise equations governing the operation of an analog
single-pole, low-pass filter have been derived in the appendix and match the difference equation in
Figure 26.
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Figure 26. Step Invariant IR Digital Filter Topology
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As can be seen, each new output of the filter is calculated as the summation of aweighted sample of the
input, and a weighted sample of the previous output. From an intuitive perspective, the operation of the
filter can be understood by asking, “How much filtering isdesired?’ If littlefiltering is needed, we ssimply
turn up the gain on the input term, and lower the gain on the feedback term. Indeed, if theinput gainis 1
and the feedback gain is O, then the output will ssimply track the input, and no filtering will be performed.
On the other hand, if alot of filtering is needed, we turn up the feedback gain, and lower theinput gain. If
the input gain reaches 0, and the feedback gain is 1, thisis analogous to having an infinite size capacitor
on the analog filter counterpart. In all cases, the sum of the feedback gain and the input gain must always
be 1.

Thetrick to implementing thisfilter quickly on amachine other than aDSPisin the judicious selection of
the value of k. If chosen wisely, al the multiplications associated with the filter can be avoided altogether
and the filter can be implemented as a series of shifts and adds. The value chosen for k on the MC3PHAC
150.9921875, which will result in aheavily filtered output. The reason behind the selection of such an odd
number should become apparent in the next few paragraphs.

k=1-1/(128). If we substitute this value into the difference equation presented in Figure 26, we obtain
the following equation:

(M= (1135 YO + 25 x(0
Y(n)=Y(n-1) - Els.v(n_l) ; Els.x(n)

where:

Y (n) = the present filter output

Y (n-1) = the previous filter output

X(n) = the present filter input
Both the previous filter output and the present filter input must be divided by 128. Because all summed
intermediate values are implemented in 24-bit, multi-precision arithmetic, this could result in plenty of
cyclesto perform these operations. However, on a computer, thisis equivalent to shifting right by seven
bits. Unfortunately, even this will take quite awhile to perform on two 24-bit values. The main trick isto

realize that seven shiftsto the right is equivalent to one shift to the I eft, followed by simply changing the
byte boundary by which the variable is accessed by one byte to the left.

Figure 27 shows an excerpt from the MC3PHAC code that actually implements thisfilter. Notice that as
much of avariableaspossibleisloaded into the X and A registersprior to shifting, because shift operations
performed in these registers use only one bus clock cycle.
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Page 1 Page 2
ldx out
lda out+1 ; X:A = last filter output value 1da ADChanl+1
ldx ADChanl ; X:A = filter input
clr ptemp5
clr ADChanl
1sla
rolx 1sla
rol ptemp5 rolx
stx ptemp6  ; ptemp5:ptemp6:A = out/128 rol ADChanl ; ADCHAN1:X:A = filter input / 128
nega add ptemp7
sta ptemp7 txa
adc ptempb
lda out+1 sta out+1
sbc ptempb lda ADChanl
sta ptempb adc ptemp5
sta out ; out = out * (1 - 1/128) +
1lda out ; filter input * (1/128)
sbc ptemp5
sta ptemp5 ; ptemp5:ptemp6:ptemp7 =

; out * (1 - 1/128)

This filter executes in 9.2 uS for an 8 MHz CPU08
Figure 27. Implementation of Digital IIR Filter on the CPU08

When the final output is calculated, the two most significant bytes are saved. They will become the last
filter output values the next time the filter is executed. Asindicated in Figure 27, thisimplementation of
the filter requiresless than 10 us on an 8 MHz HCO8 device.

Because thisfilter consists of asingle pole, it will have a 20 dB/decade frequency attenuation response,
just like its analog counterpart. To achieve further attenuation, several such stages may be cascaded
together, again, just like its analog counterpart.

3.9 Waveform Generation

The algorithm used to calculate the PVALXx PWM register values was created because of aneed to develop
afast PWM update technique for distortion correction on the MC68HC708M P16. To understand how the
technique works, it is appropriate to review the principles of PWM modulation.

Figure 28 shows a half-bridge power configuration driving a PWM signal. If we assume dead-timeisO,
and sinusoidal modulation is employed, the averaged or filtered output for unity power supply voltageis
given as.

Eqgn. 6

V. (t) = t,(1) =1+Msin(a)ot +6)
T 2 2
where:
V,(t)= the averaged output voltage
tn(t) = high time of the PWM signal
T = the PWM period
M = the modulation index (from 0 to 1)
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V+

HIS e
V+
| .

Ji -

Figure 28. PWM Output of a Typical Half-Bridge
Solving for the high time:
Eqn. 7
T T™™ .
t({t)=—+—-9nwt+06
(0)=7+ = sin(@,+6)
We can also establish the following relationships:

T =PMOD -250nS

t, (t)= PVAL(t)- 250nS
where:
PMOD isthe register value that setsthe PWM frequency.

PVAL(t) istheregister value that sets the pulse width.
Substituting, we obtain:

Eqgn. 8
PMOD N PMOD-M

2 2

In defining a waveform table to implement the above equation, the most obvious choiceisto define a
sinewave table that can then be scaled and biased appropriately. However, a pure sinewave table consists
of signed entries, which will require a signed multiply during the scaling process. Because signed
multiplications are not directly supported by the CPUOS, it makes sense to avoid signed values.

PVAL(t)= sin(w,t +6)

Instead of signed values, let’s scale and bias the waveform so that it occupies a range between 0 and 1
instead of —1 and +1. In other words:

Eqn. 9

wave(t) = % . sin(w,t+0)
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If we multiply both sides of the above expression by the product of PMOD and M, we obtain:

Eqgn. 10

PMOD-M_+PMOD-M
2 2

This operation very nearly resultsin the correct expression for PVAL(t) on the right side of the equation.
Unfortunately, the first term on the right side has the modulation index M in it. If we could remove this,
we would have an expression for PVAL(t), which can be directly loaded into the PVALX register. The
question then becomes, “What term Z can be added to the first term on theright sideto result in the correct
value of PMOD/2”? In other words:

wave(t) - PMOD - M = -sin(w,t +0)

PMOD-M PMOD
—+7Z=
2 2 Eqn. 11
Solving for Z, we obtain:
7 PMOD (1_ M )

Eqgn. 12

Soif Z isadded to both sides of Equation 10, the expression on the right side resultsin avalue that equals
PVAL(t). Performing this operation, and substituting PVAL (t) for the right side of the expression,
Equation 10 can be rewritten as:

PMOD

wave(t) - PMOD - M + (1-M)=PVAL(t)

Eqgn. 13

Recall that because the modulation index M can be a value only between 0 and 1, we now have an
expression that requires no signed multiplications. Also, because the PMOD term is not anticipated to
change very frequently, the term PMOD/2 can be calculated ahead of time and is treated as a constant in
Equation 13. Unfortunately, thefirst term in Equation 13 requiresthree termsto be multiplied together. To
get around this, another trick isemployed. Instead of creating awaveform table as defined by Equation 9,
let’s include the PMOD multiplication as part of the table. In other words:

wave(t) = PMOD - (1 + Sm(w—otwj
2 2 Eqgn. 14

The waveform table now consists of values between 0 and PMOD. Equation 13 can then be rewritten as:

Eqgn. 15
PVAL(t) = wave(t) - M + HalfPMOD - (1- M )

To preserve memory, and to simplify the calculation of Equation 15, it isdesired to limit the wave(t) entriesto 8-bit
values. However, for best resolution, the waveform should use as much of the 8-bit range as possible. We a so want
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the waveform table to be fixed, so it can occupy space in program memory instead of RAM. As might be expected,
all these requirements place alimitation on the selected value of PMOD.

Strict interpretation of Equation 15 would suggest that if the waveform table isfixed, then only one value
of PMOD, and thus only one PWM frequency, is possible. For example, if the waveform tableis scaled to
span the full-8 bit range from 0 to 255 (PMOD = 255), thiswould mean that the PWM frequency must be
15.7 kHz. However, if we are willing to live with discrete steps in the PWM frequency options, we can
employ another trick to accommodate this. To illustrate, assume the waveform table contains values from
0to 252, implyingaPMOD value of 252, or 15.9 kHz. However, if PMOD isreally set to 378, or 10.6 kHz,
then thefirst term on theright side of Equation 15 will bewrong. To correct thisterm, it must be multiplied
by 1.5. On adigital compuiter, thisis equivalent to shifting the term right one time and adding it back to
the original value (both operations can be performed very quickly and efficiently). So, by judicious
selection of allowable PMOD values, the resulting error in Equation 15 can be easily corrected.

Table 7 shows the four allowable PMOD values in the MC3PHAC code, the resulting PWM frequencies,
the PWM interrupt rate, and the correction operation which must be performed to thefirst term on theright
side of Equation 15.

Table 7. Allowable PMOD Values

PMOD Value PWM Frequency Correction Operation PWM Interrupt Rate
756 ($2F4) 5.291 kHz Left shift, multiply by 1.5 PWM period (189 uS)
378 ($17A) 10.582 kHz Multiply by 1.5 PWM period x 2 (189 uS)
252 ($FC) 15.873 kHz none PWM period x 4 (252 uS)
189 ($BD) 21.164 kHz Right shift, multiply by 1.5 PWM period x 4 (189 uS)

Thelast entry inthetable (PMOD = 189) requiresthat PM OD be shifted right (126), and then be multiplied
by 1.5. To multiply 126 by 1.5 using the technique described above requires that it be shifted right once
more. Therefore, 126 must be an even number, or the last right shift will result in avalue with afractional
part. Thisiswhy the waveform table assumes PMOD = 252 instead of 254.

Also note that for every PMOD value except $FC, the PWM interrupt period is 189 us. Thisisdueto the
ability of the MC3PHAC PWM moduleto changeitsinterrupt period to beintegral power-of-2 multipliers
of the PWM period. Unfortunately, when PMOD equals $FC, the PWM period is 63 us. To generate a
189 usinterrupt period from thiswould require amultiplier of 3. While this ability has been added to the
PWM module on our DSP devices, it is not possible to achieve with the MC3PHAC. As aresult of this
different interrupt period, the scale factor associated with the frequency and accel eration variables must
also be different.

The waveform table consists of one cycle of data, as shown in Figure 16. The actual waveform used isa
fundamental sinewave with third harmonic injection. Velocity information received from the profiler is
integrated to create an angle variable, and thisangleisused asapointer into thewaveform. If thewaveform
consists of one complete cycle that is expected to repeat end to end, and the number of entriesin the
waveform table is selected appropriately, the modulo nature of binary arithmetic can be used to our
advantage to ssimplify the pointer calculation. For example, if the waveform table has 256 entries, and the
pointer isan 8-bit variable, then whenever the pointer update cal cul ation overflows, it wraps around using
modulo 256 arithmetic, which points to the correct value in the waveform table.
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The MC3PHAC uses a pointer that also incorporates a 16-bit fractional part. This permits very smooth
scrolling of the pointer, allowing for finevel ocity resolution, whichisespecially important at lower speeds.
Because it isimpossible to define afractional entry number in the waveform table, the fractional part of
the pointer is rounded to the nearest integer value to fetch the appropriate table entry.

Figure 16 also shows that because this is a three-phase motor controller, three waveform values must be
fetched each time the pointer is updated. Thisis accomplished by adding the equivalent of 120 degreesto
the pointer angle value for each additional wavetable fetch.

In actuality, the MC3PHAC incorporates a 512-point waveform table, for better angular resolution of the
waveform. However, the modulo principles discussed in the last few paragraphs still apply. To
accommodate a 512-point table, the angle pointer is simply shifted left one bit before being used to fetch
the waveform data. A 256-point table was discussed for tutorial purposes only, to help understand the
concept of modulo arithmetic applied to pointer addressing.

3.10 Bus Ripple Cancellation

In the derivation of the equations related to waveform generation, one of the first assumptions we made
wasthat the power supply voltage (or busvoltage) was unity. Thisisrarely the case. Depending onthesize
of the bus capacitor with respect to the motor load, and also whether the input mains are single phase or
three phase, there may be significant ripple on the dc bus. There may also be much lower-frequency,
higher-amplitude variations in bus voltage under aggressive deceleration or brownout conditions. For
these reasons, it is often necessary to sense the bus voltage and compensate the PWMsto correct for these
perturbations to prevent them from being passed on to the motor.

In Figure 28, if we assume that V+ = Vg (t) instead of unity, we must rewrite Equation 6 to include
Vus(t), as shown in Equation 16.

Eqn. 16
V0=V 0= 3+ snler o) w0
By substituting PVAL(t) and PMOD in Equation 16 for t,(t) and T respectively, we obtain:
Egn. 17

VD)= PVAL(t) v, ()

PMOD

We can now substitute the expression for PVAL (t) from Equation 15 into Equation 17, resulting in:

Eqgn. 18
VD)= wave(t)- M + HalfPMOD - HalfPMOD - M v

PM OD bus (t )

When the bus voltageis at its nominal value, which wewill call Vo, the resulting phase output voltage
will be at its correct value of m , as determined by the PWM modulation. However, when the bus

norm
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voltage is not at its nominal value, we must adjust the PWM modulation to drivevoit ) to Voit jmrm. This
isillustrated in Equation 19, where the correction is placed in square brackets.

Eqgn. 19

(wave(t)-M + HalfPMOD — HalfPMOD - M ){Vm}
Vv

mnorm = Vbus (t ) )

PM OD bus (t )

Asseen in Equation 19, any deviation in Vg 4(t) from V o,y Will be corrected, because the Vg, (t) terms
cancel out, leaving only V porm-

Equation 19 results in perfect correction of bus voltage perturbations, as the output voltage is impervious
to changes in the bus voltage. However, thisis not the optimal situation. To allow for the maximum
modulation index without clipping either the top or bottom of the output waveform, it is required that the
waveform be centered in the middle of the Vg voltage range. Equation 19 will always center the
waveform around ¥2 V o, instead. For low values of Vg, thiswill result in the top portion of the output
waveform being clipped before the bottom portion of the waveform. To center the waveform around %2 of
the Vg s reading, we first must realize that the numerator in Equation 19 consists of three terms; two of
which involve the modulation index (M), and one that is simply a bias term. Therefore, the correction
should be applied only to the terms containing the modulation index, thus correcting the gain of the
waveform while leaving the bias term untouched. The final expression for the PVAL (t) calculation, which
includes bus ripple correction, is presented in Equation 20.

Eqn. 20

A2 V,
PVAL,(t) = wave, (t)- M {—} + HalfPMOD .(1— M {_ D
Vbus (t ) Vbus (t )

Implementation of Equation 20 will result in any noise associated with Vg,4(t) being reflected in the
output waveform. However, because it will show up on all motor phases simultaneously, it will be seen as
a common mode distortion, and thus be rejected by the motor.

The above expression must be calculated for each phase of the motor. Fortunately, the second term in the
expressioniscommon for each phase, so it needsto be calculated only once. Also, the busripple correction
of the modulation index is common to both terms, so it is cal culated once and then applied to each term.

The value selected for Vo, 1S $02CD, which corresponds to an ADC reading of 3.5V, assuming V geen
is5V. A new Vg reading is taken every time the PWM ISR is executed. Because the reading is 10 bits,
and the CPUQ8 can only support an 8-bit divisor, another division technique must be employed. The
algorithm selected for use with the MC3PHA C is called ablock divide technique. For each possible ADC
reading with the exception of two values, the technique completesin four iterations or less. For these two
special cases, the quotient is stipulated ahead of time, and the divide algorithm is bypassed altogether. For
more information on the operation of this divide algorithm, refer to the series of articles by Jack W.
Crenshaw in Embedded Systems between September and December of 1997.
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Appendix A

Referring to Figure 29, the voltage on the capacitor in the analog filter is directly related to the amount of

charge (q) deposited on the capacitor plates, and inversely proportional to the capacitance, as defined by
Equation 21:

Eqn. 21
t
-
C
Single Pole Analog Filter y Step Response
R \
P /\/\/\/ (] IN
IN out
C = ouTt
I N N N | -
- ° T T T T T time
GND GND 1.2 3 4

5
k=
IN » ° ouT
OUT = IN # (1-K) + previous OUT * K

-T

IE""EI where k = e
Previ
4 . ol:.l\{lous

Filter Coefficients
Digital Filter Implementation

Figure 29. Comparison Between a Single Pole Analog and Digital Filter

Assuming that nothing is connected to the output of the analog filter, all of the current flowing through the

resistor R resultsin charge build up on the capacitor. In fact, the capacitor integrates the current over time
to develop the charge, as stated in Equation 22:

t .
0. (t) = _L, I (t) dt Eqn. 22
If we substitute Equation 22 into Equation 21, we obtain:

v.(t) =1f i(t) dt
C™ Egn. 23
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We will now define aregion intime T where thisintegration will be performed, suchthat T =t, —t; . As
aresult, we must now include the previous state of the capacitor by accounting for its voltage prior to the
integration interval:

v(t)==[ i) dt +v.(t)

C Eqn. 24

If we expand the expression for the current, we see that it is the difference between the input voltage and
the output voltage divided by the resistor value, as shown in Equation 25.

ult)= 2N gy )

C Eqn. 25

For our piecewise analysis, we will assume that the current is a constant in the interval betweent; and t, .
Therefore, it doesn’t matter whether we define the current at t,, t,, or anywherein between. So, let’sdefine
the current at t; asindicated in Equation 26.

v.(t,)= 1 v, (t)-v (L) dt + v, (t,)
Cn R Eqn. 26

Because the voltages at t; correspond to specific values, we can now treat them as constants. We solve
Equation 26 by pulling R out of the integral, and performing the integration:

6= T, 6)-T v e) i

This can be further ssimplified to:

v.(t,)

If we compare the topology of this equation with the discrete difference equation of Figure 29, we see that they
have the same form. However, in Figure 29, the correct value of k that is multiplied by the previous output term is
given as.

)1 g w0

=—V
RC " RC

Eqn. 28

k=eFe Eqn. 29
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Thisisclearly different than the result presented in Equation 28. However, as T/RC approachesO (i.e., the
sampling frequency approachesinfinity, or acontinuous system), we can rely on another identity to resolve

this conflict:

er 11

RC Eqn. 30

Finally, it can be seen that unlike the difference equation of Figure 29, Equation 28 usesthe previousvalue
of v;, (defined at t;) instead of the present value (defined at t,). Thisis the mathematically correct way to
implement the filter. However, by using the present value instead of the previous value, thefilter hasa
minimal effect of shifting the output in time by a small advance. It also requires less memory to execute
because the last input sample doesn’t have to be stored in RAM.

In summary, the difference equation defining the digital filter is shown to discretely model the process by
which charge is collected on a capacitor to create afiltering effect.
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