‘? TEXAS
INSTRUMENTS

TMS320C54x DSP Reference Framework & Device Driver

for the TLV320AIC20 HPA Data Converter

Application Report
SLAA166 — January 2003

Randy Wu

ABSTRACT

The TLV320AIC20 is a high performance analog (HPA) data converter geared for voice-
band digital applications (typically 8-kHz sampling rates). The TLV320AIC20EVM is an
evaluation module that connects to a Tl DSP starter kit (DSK) via a standard AIC
motherboard (Part no. AICDEVPLATEVM). The EVM contains two AIC20 dual-codec
devices connected in a cascaded configuration, allowing the user to configure four
separate but simultaneous 1/O channels using a host processor, such as the
TMS320VC5416™ DSP low-power device.

This application note, along with the associated source code (which provides the standard
data pass-through system allowing DSP algorithms to be inserted for digital signal
processing), explains how to use the provided reference platform to evaluate the data
converter, create AlC20-based device drivers, insert sample algorithms to apply digital
signal processing to the data streams, and how to use the provided eXpressDSP™
software framework as the foundation for developing actual AIC20-based applications. A
complete Code Composer Studio™ project with all the source code (completely written in
C for readability, portability, maintainability, and ease of use) is available for download

along with this application note.

Semiconductor Sales & Marketing / Digital Applications

Contents
L INEFOAUCTION e 3
2 Reference Platform Setup and Program EXECUTION...........uuuuiiiiiiiiiiiiiiiiiiieeieeeeee e e e e e e e 3
3 WRAL IS @XPIrESSDSP ™7 ...ttt ettt aeneas 9
4 TMS320 DSP Algorithm Standard (XDAIS) ... e e e e eeenns 10
5 TMS320VCS5416™ DSP SEAIter Kil.....iiiviviiiiiiveriiiieiesiisieteesieietee sttt sa s ssesens 10
6 TLV320AIC20EVM and the DSP-Codec Development Platformccccccvviiiiiiiiiiiiiiiiiie, 11
7 Software Reference FrameWOrK.uuiiiii e e e e e et e e e e e e eeeees 13
7.1 Data Channel Processing TNIEaAUS.ccccoiuiiiiiiiiiiiiiiiii ittt e e e 14
7.1.1 Sample-by-Sample ProCeSSING..........cuuuiiiiiiie e 15
7.1.2 Frame-Based PrOoCESSINGuuuiiiiiiiiiiiiiiiie ettt e e e e e e e e e e e e e e e e 16
7.2 Data Channel State ODJECES........uuuuiiiiiiiiiiiiiiiie ettt 17
7.3 Data Channel AlGOrithm CrE@tioN...............euuuuereeiiiiiieiie ittt e e e e e e e e aaa s 18
7.4 System-SpecCific INItIAlZAtIONcoii i e e 20
7.5 Algorithm Benchmarking ... 20
8 DSK5416 AIC20EVM DEVICE DIIVEL ...ouiiiiii i et s e e e ettt s e e e e e e e et e s e e e e e e eeeens 23
8.1 Requirements for Writing the DEVICE DIIVET............cuuiiiiii i 23
8.1.1 Host Processor Considerations and Configuration................ccccceeeeiieeeeiiiceiiiiee e, 23
8.1.2 AIC20EVM DeViICE CAULIONSuiiieeeiiieiiiiiieee e e e e et eeetiiaa s e e e e e e e eeetaa s e e e e e e eeeasban e e eeeeeees 23
TMS320VC5416 DSP, eXpressDSP, and Code Composer Studio are trademarks of Texas Instruments.
Other trademarks are the property of their respective owners. 1

‘4" TEXAS

SLAA166 INSTRUMENTS
8.2 Defining the Interface t0 the DEVICE DIIVENcoii i e e eeeees 24
8.2.1 Framework Interaction With the DIiVer.........cccoii i 24
I B 1Y g U] ol 1 I T 25
8.2.3 Relevant Data StrUCIUIES.......ccoii oo 25
8.3 Implementation Of the DEVICE DIIVENoeeiiiiiiiii e e e e e e e e eeeees 27
8.3.1 Design Decisions and Core COOE.........ceeuuiuuiiie e e e e e 27
8.3.2 Coding Conventions, File Structure, and Packagingcccvvvvvvviiiiieeeeeeiiiiccee e 33
8.4 Changing Device and Channel Parameters During RUN-TIMe............oooviiiiiiiininiee s 34
8.4.1 RuUN-TiMe CoNtrol FUNCHIONSuii e e 34
8.4.2 RUN-TIMe Control TAreadccccooiiiiiiieieeeeeeee e 38
8.5 Development of System-Specific AIC20 DeVICE DIVEIS.....cccccceviiiiiiiiiiiii e eeeenanns 42
LS T @70 T T 18 1= o] o 42
O L= =T = o Yo = SPT 42
Figures
Figure 1. DSK5416-AIC20EVM Host-Target Development Platformcccccoeiiiiiiiiiiiin, 4
Figure 2. DSK5416-AIC20EVM Combination (TOP VIEW) ...coeieiiiiiiiiiae e 5
Figure 3. AIC20EVM I/O Default Channel Selections and ConNectionsccccevvvviiiiiieviinnnnnn. 6
Figure 4. Code Composer Studio Sample Workspace and Project...........ccccvveeiiiiiiiieeeiveeeeiinnn. 8
Figure 5. Code Composer Studio Run Free Command..........ccooooiiiiiiiiiiiiiiiee e 9
Figure 6. TMS320VC5416™ DSP Starter Kit (DSK) BOAIdc.ceeveveevereeieeeeeereeeeeeeeeeeeeeeeeeennns 11
Figure 7. AIC Motherboard (DSP-Codec Development Platform).........ccccccouveimimmimiiiiiiniiiiinninnnns 11
Figure 8. AIC20 Evaluation Module (EVM) ...ttt 12
Figure 9. 2-Device (4-Channel) Cascade Connection to Host Processor Serial Port................ 13
Figure 10. eXpressDSP™ Reference Framework Archit@Cture..........cccocvveveveveeeeeeeeeeneeeneene, 14
Figure 11. Framework Channels: Data FIOWccoiiiiiiiiiiiiiii e 15
Figure 12. Configuring and Viewing DSP/BIOS Statistics (STS) Objectscoveeeeieeiriiiiiiinnnnn. 22
Figure 13. Time Division Multiplexing: Slot Assignment for Data and Control Words............... 23
Figure 14. Reference Platform: Hardware and Software Architecturecccccvvvvvviviiiiiiiiinennnnnn. 24
Figure 15. RCV and XMT Ping-Pong Buffer Formatccccceeiiiiiiiiiiicc e, 25
Figure 16. Cascade Channel Configuration (Global Shadow Registers)cccccoevviiiiiiiiiinnnnn. 27
Figure 17. DSP Peripheral Configuration USING CSLuuuuuiuiiiimiiiiiiiiiiiiieiiiiiinieneeeieeeeeenennene. 28
Figure 18. MCcBSP Interrupt Service Routines Configurationcccceeiiiiiiiiiiiiiiei e, 31
Figure 19. Host CCS GEL Sliders for Changing Channel Volumes............cccoovvviiieie e, 40
Figure 20. DSP/BIOS Timer ISR and Control Thread Configuration..............cccccvevvveiimiiiiiiininnnnnns 41
Tables
Table 1. Configuration fOr AIC20EVM ... 5
Table 2. Configuration for AIC Motherboard ..o, 5
Table 3. DSK5416_AIC20EVM Default I/O Codec Channel Settingsuviiiieiiiiiiieeeeeieeene, 26
Table 4. DSK5416_AIC20EVM Sampling Frequency Settingsccoovveeiiiiiiiiiiiiiiiiiiiiiiieeeeeeeee 29
Table 5. DSK5416_AIC20EVM McBSP Write Decision per Receive Interrupt......cccceeeeeeeeeeene.. 33
Table 6. DSK5416_AIC20EVM Example Naming ConventioNScccocvvvieeeeiiieiiieeeceee e 33
2 TMS320C54x DSP Reference Framework & Device Driver for the TLV320AIC20 HPA Data Converter

*ﬂ" TeExXAS
INSTRUMENTS SLAA166

1 Introduction

The TLV320AIC20 dual-channel codec device, like all data converters used in a digital
signal processing system, needs a host processor to control the device during run-time of
the system. For example, a TMS320 ™ DSP Platform can be used to filter the voice of a
microphone of a headset, and/or apply some noise cancellation algorithm to the
microphone, left ear, and right ear channels of the headset. A DSP is the ideal processor to
set up the AIC20 to sample the different channels of analog-to-digital converters at some
conventional sample rate (e.g. 8 kHz) and process those samples through the filter and
noise reduction algorithms on the DSP. The DSP then routes the processed samples back
to the digital-to-analog converters, producing the desired voice-band outputs. Other popular
applications include (but not limited to) digital hearing aids, interactive toys with voice
recognition and/or speech synthesis capabilities, modems, and cell/speaker-phones.

Writing software device drivers (i.e. the physical layer of code which allows communications
with hardware devices) can be a challenge. It involves knowing the details of the device, as
well as how the host processor needs to interact with the device (and vice versa) to get the
desired results. This application note (and provided source code) is meant to give potential
users of the AIC20 device a reference platform for evaluation and actual development. The
source code is written completely in C to provide the ultimate in portability, readability,
maintainability, and reusability. The device driver itself is packaged in a modular style so
that only minor changes need to be implemented to use the driver for different hardware
configurations (e.g. connecting the AIC20 device to a different peripheral of the host
processor) without affecting the overall interface of the device driver.

A simple reference framework is provided as an example to demonstrate how the device
driver is used in a typical digital signal processing system. We have chosen to use the
popular TMS320VC5416™ DSP starter kit as the development platform. This allows the
system developer to get started in a matter of minutes simply by obtaining a C5416DSK,
AIC20EVM, AIC motherboard, and the source code provided with this application note.

By not starting from scratch every time a new project is commenced, DSP developers get to
market quicker than starting with a blank piece of paper. Texas Instruments is fully
committed to providing our DSP developers with as much off-the-shelf content as possible
so that less time is spent for each system design. This strategy is implemented as Tl's
eXpressDSP™ software and development tool set.

2 Reference Platform Setup and Program Execution

This application note (and accompanying source code) allows potential AIC20 data converter
users to get something up and running quickly, and it allows for evaluation of the device and the
DSP algorithms which can be applied to the data stream of the device. The remainder of this
application note discusses the reference framework and device driver in detail. For those who
just want to get the DSK and EVM combination running with a host PC (as shown below) and
not worry about the implementation details, follow the steps in this section and read the
remainder of this application note as time allows to fully understand how to use the reference
framework (RF) and learn how the device driver was implemented. This section describes how
to configure the target hardware and set up the C5416DSK-AIC20EVM sample project code to
run in real-time along with a host PC running code composer studio.

Before starting this setup procedure (starting on the following page), the following hardware
components must be obtained:

TMS320C54x DSP Reference Framework & Device Driver for the TLV320AIC20 HPA Data Converter
3

‘4" TEXAS
SLAA166 INSTRUMENTS

« DSP Platform: Complete TMS320VC5416™ DSP starter kit (DSK)
. HPA Platform: AIC motherboard & TLV320AIC20 evaluation module

* Voice-band input device(s) (of preferred choice): microphone, handset, headset, signal tone

generator, etc.t
T If using a high-quality stereo device to simulate voice input (such as a CD player, MP3 player, Walkman, PC Soundcard,
etc.) the output of the AIC20EVM will result in decreased sound quality due to the voice-band 8-kHz sampling rate.

« Voice-band output device(s) (of preferred choice): mini speakers (8 Q), handset(150 Q),
headset(150 Q), oscilloscope (to view output signals), etc.

™
O 00000000
| coosenns iy AlC20
D o0000000 I EVM
) 00000000 D (TOP)
VOICE/SOUND INPUTS & OUTPUTS
MOTHER
/ BOARD
PR r— MIDDLE
|G ()
HOST DEVELOPMENT PC
(RUNNING CODE
COMPOSER STUDIO) 1 |
'\
EEk:
| LH
‘ | Ch416 DSK
> (BOTTOM)
v !
O]
. m _/

s @)

POWER 100-240V
SUPPLY e

Figure 1. DSK5416-AIC20EVM Host-Target Development Platform ~ OUTLET

4 TMS320C54x DSP Reference Framework & Device Driver for the TLV320AIC20 HPA Data Converter

*ﬂ" TeExXAS
INSTRUMENTS SLAA166

1. Download the corresponding application note source code from the same web site this
application note was downloaded and extract the files onto the PC that is used as the
host development platform.

2. Verify that the jumper settings on both AIC boards match the information in the following
tables (use the factory default jumper settings for the DSK).

Table 1. Configuration for AIC20EVM

JUMPER POSITION DESCRIPTION
w1 Installed Connects 3.3-V analog drive power ground to AGND (vs no connection)
w2 2-3 Connects the first device’s FSD to the second device's FS (vs connecting the
first device’s FSD to constant high[1] or low[0])
W3 Not installed (1 — 2 connects first channel’s FSD to high[1]; 2 — 3 connects FSD to low[0])
W4 1-2 Connects the first device’s M/S high[1] to make it the master of the cascade
W5 Installed Connects analog and digital grounds together

Table 2. Configuration for AIC Motherboard

JUMPER POSITION DESCRIPTION
w1 1-2 Codec EVM system power-up through DSK board (vs external power supply)
w2 1-2 MCLK source: Use DSP’s CLKOUT (vs onboard 100-MHz oscillator)

3. Connect the AIC motherboard and AIC20EVM to the C5416DSK (using the included
standoffs and screws) as shown below. The correct combination of the three boards
results in a multilayered PCB interconnection with the top board being the AIC20EVM,
the middle board being the AIC motherboard, and the bottom being the C5416DSK
board. The C5416DSK board should be almost completely covered by the AIC20EVM
and AIC motherboard when connected (from top view).

CERCIERERERIERE)
E 55 Al CbI\/OTHERBOQRE @
(D E I 00 O RESET]
@] 00000000 |:| gg |:| o Iil
B cooncees 1 [pee
E 90000000 i 00
®| 00000000 |:| gg
= ool] (]
2 0 & [] 8°
o= 1— | U
CERCIERER)EREE) - e B30838308008288080880830808808988%8 (@
1 7 [

Figure 2. DSK5416-AlC20EVM Combination (Top View)

TMS320C54x DSP Reference Framework & Device Driver for the TLV320AIC20 HPA Data Converter
5

‘4" TEXAS

SLAA166 INSTRUMENTS

NOTE: The reference software acts as a simple pass-through of all data samples for each
codec channel. At system start-up, every 1/O channel is active using 8-kHz sampling rate and
16-bit data samples. To power down specific codec channels at run-time, the device driver
source code needs to be modified and rebuilt. In the main driver file dsk5416 aic20evm.c
(found in the \drivers subdirectory), locate the DSK5416_Al C20EVM set up() function and
modify the following code:

/* The following 4 lines will power down each codec channel */

/ 1 DSK5416_AlI C20EVM chanConf i gPar ans[MST_CHANL] . reg[CR3A] |= PWDN, // master chl power down
/1 DSK5416_Al C20EVM chanConf i gPar ans[MST_CHAN2] . reg[CR3A] | = PWDN, // master ch2 power down
/ 1 DSK5416_AlI C20EVM chanConf i gPar ans[SLV_CHANL] . reg[CR3A] |= PWDN, // slave chl power down
/1 DSK5416_AlI C20EVM chanConfi gPar ans[SLV_CHAN2] . reg[CR3A] |= PWDN, // slave ch2 power down

To actually power down any specific codec channel, simply uncomment the line of code which
corresponds to the channel to be shut down and then rebuild the dsk5416_aic20evm_I[54
(near calls/returns) and dsk5416_aic20evm_I54f (far) library project files found in the \drivers
subdirectory (be sure to Rebuild All to ensure all files are built in their corresponding near or
far memory models). Then, rebuild the sample application project (dsk5416_aic20evm.pjt).

4. Connect the desired voice-based devices (inputs and outputs) to the AIC20EVM
connectors (input/output TB’s and the input Jack) as shown below (TB = terminal block
for a balanced, differential 2-wire connection; HNS = handset; HDS = headset).

AIC20 #1 (MASTER)

1
1
1
| NPUT MBT CHL LINEI (+/-) Codec #1 (L NEO(+/ -) OUTPUT MST CH1L
p TBJ14 i TB J5 >
1 SMARTDM Addr = 0011b |
! 1
! 1
I NPUT MST CH2 MO (+ -) : Codec #2 ISPKQO(+/ -) QUTPUT NST CH2
P Jack J16 0 - TB J2 >
| SMARTDM Addr = 0010b |
1
1
e _____._ 1
- _——_— -
I AIC20 #2 (SLAVE) I
1
1
1
I NPUT SLV CHL HNSI (+/-) b Codec #1 [SPKO(+/ -) QUTPUT SLV CHL
p TBIJI9 —— P o g LY REE >
1 SMARTDM Addr = 0001b |
1
I 1
1
1
I NPUT SLV CH2 HDSI (+/ -) | Codec #2 JHDSQ(+/ -) QUTPUT SLV CH2
p TBJI3 0 ——+—9p TBJ3 >
| SMARTDM Addr = 0000b |
I 1
L o ______ 1

Figure 3. AIC20EVM 1/O Default Channel Selections and Connections

TMS320C54x DSP Reference Framework & Device Driver for the TLV320AIC20 HPA Data Converter

*ﬂ" TeExXAS
INSTRUMENTS SLAA166

NOTE: The polarity of the wire (+ or -) connections to the TB does not matter. The unique, self-
assigned SMARTDM addresses are discussed in a later section, but they are basically used to
identify which codec’s control register data is being sent back to the host processor whenever
the host wants to read specific control register contents of a codec.

5. Set up the C5416DSK host-target platform and invoke Code Composer Studio (C5416
DSK CCS) as per the Quick Start Guide that comes with the C5416DSK package. Make
sure both the DSK and CCS can be started without any communications errors. If using
a spectrum digital XDS-based emulator is preferred, then invoke C5000 CCS instead.

6. Load one of the following CCS workspace files (File > Workspace - Load Workspace):
* audioapp_dsk5416usb.wks (if using the provided C5416DSK USB cable directly)
* audioapp_xds510pp.wks (if using a spectrum digital XDS510-based PP emulator)
e audioapp_xds510usb.wks (if using a spectrum digital XDS510-based USB emulator)

NOTE: For the workspace file to load properly for the XDS emulator configuration, make sure
that there is a CPU named CPU_1 when running the C5000 code composer studio setup
program. If the workspace file fails to load completely, proceed to the next step.

7. Load the audioapp.out (File > Load Program) executable (located in the Debug
subdirectory). Start the sound source(s) on any or all of the inputs, then Debug - Run
the program. You should now hear the sound input(s) at the corresponding channel
sound output(s).

WARNING:

When running CCS and the C5416DSK under normal emulation mode, the JTAG
channel, at times, becomes busy and causes interference to the voice channels.
If this random noise is not desired or causes the analysis to be impossible,
choosing the Run Free option (found under the CCS Toolbar Debug column)
instructs CCS to not communicate with the target emulator while the DSP is
running. The BUSY LED on the DSK should no longer flash during run-time (for
the USB emulation configuration). Please note that none of the real-time
analysis screens are able to update during this period but the target continues
to run freely.

8. Toinsert DSP algorithms, locate the pr ocessBuf f er () function in the audioapp.c
source file. Every (pointer to the) sample from every channel passes through this
function. This is where the DSP processing routine(s) can be inserted to apply signal
processing to any of the AIC20 channels. The default sampling rate is set for 8 kHz on
all channels. The resulting processed voice-band outputs can then be analyzed in detail.

9. To learn how to leverage the existing reference framework for such things as evaluating
DSP algorithms, building actual system code, writing a system-specific AIC20 device
driver, learning how the DSK5416_AIC20EVM device driver was designed and
implemented, or understanding how eXpressDSP™ components can be leveraged to
reduce time-to-market, read the remaining sections of this application note.

TMS320C54x DSP Reference Framework & Device Driver for the TLV320AIC20 HPA Data Converter
7

b TEXAS

SLAA166 INSTRUMENTS
B s bt b | bpwerri i Cugl 8 LT FE 1 - 0l - s T v Sbhi e " el bl DD 1 il - | it | _.EJE
‘numm@qmnmmmmu T ; _ anmls
WEE LR e = | _|..,..*;|..'i G| SR LSS AN e ¥ | K&
[P [Fjemet oA OQEEOEEL
T qrbl r Void processfreee [IEES416_ATCTOEVH, Channel alglhan, Semple ®igputFramm, Sample ‘lnng
L M fi j“”"‘: Essple IntersBuf [DEFS4 16_AICIOEVH_NUMCHRNE] ;
I__. ;?--ﬂmnt: PR = rocord higk-res olock time (timer counter) befors calloes lst slgorithm =
l' ijmm" STH_mot |L=tedlgine. CLE_gethtims|]]:
& -—I:ﬂ ¢ FIE alpgoritla caznol proces 1) |-'.l.'|-l saples From different chacoe]s
’. T .y e |ERT do & sefepy () babe 86 & placsebolder for Ak slTeruste Elaoricls
¥ . _lw“ memcpy LintermBuf, fnputFrame, DEKS416_ATCIOEVN_HUMCHRIE) 1 J
E IIM # galrulate slapzed tipe for 1=t slgorithe to execete. tz high-res clochk cyol
:l' ﬂ.u:.a:.'ww STa. rll-:r'.-l-.-eta-inlgli-ll-. CLF_mothtime| } 1,
: 1 s acx_| T R e R e A R T R ¥
=i;- —'m””‘" m_sﬂmatsi:qnn. CLE_gethTima] ||}
E IJJll-\: b
i
i E:..I'. - &= mpplify the aignel in ixtermediste bufder and store reselt im ouiput frame
|| A | 5 l1|1rJ'.t|11r'\-1'\-'.|-u-|-'ll-;1 hen].alaVil. [(Sample *'l-"n.r-"um'ﬂr.f. r-"JtleEr-:rln
o A
| 1 B B Ll |
vkl 4 16 eSdiiregtealathin] 500*° =] Z4le_Tnit Conplate. EfE Ena Tougd| Wi | hreLge
Linkingr 1 Startlp cosplete. el gikaPid - i B]
ptElies T RETEHEE TR ne TV AR BN &7
Juild Complata PEO_ e TEE WITIERnE MM aE B
SR T T R | o ckn 1EL_barplthy AL D A3 A1
~TIrOTe. TRINg=. He F=rdgllira PEM s A SR F. 53 END
-ll.ij b"—'"“lf |L|L| I |] PEMCw(E 5 4R E4E EEL]

FESSTER §6 CORTENTS
S FEDISTER Wil OOWTENTS (e T

FEEETER 85 CORTENTS (a1
ﬂmu—lwm_}

mﬂ.u:- P

Figure 4. Code Composer Studio Sample Workspace and Project

CAUTION:

Halting the processor and then restarting the processor could result in data
words being written into control register timing slots inadvertently. Whenever
the target is stopped, it is always a good idea to reset the CPU and reload the
program before running the target again.

8 TMS320C54x DSP Reference Framework & Device Driver for the TLV320AIC20 HPA Data Converter

b TEXAS

INSTRUMENTS SLAA166
A Vaigrcid Dbk §) S mesmi Teglad Jo0F0 | - U - Dol sy Srmilie TH00 B OrSE Tomld - [alsasga) _._.ﬂ_!ll.l
;muhmmmmuummu |
JEE | F Thees VR RAR EE U SR ET AR

| Pk ek
Iubqﬂ:ql 'I|SH:-IB:-:- e &R TR
T |!|Iq:ﬂ|'| ra
Be 0BSE o
?‘I‘ w —_‘—-’ IM - uE kBl Far fuald | j
o [0= t pinskoag;
¥ : _I:-:_QE e
’-] !I;: ::h g Fil bIIIIFJI.lI =n ['III'.|| {
B .l"] i Bare o | B0 E] BL
ma ‘_"I Al T e THEGEG ¥ iGE! r'lll.-_}"l. l.L'-"'l lLIIlﬂTn.'l Pizg[I-':.'I 'l"tll |
] CSESH1E_SICINEVH_sbufl forkmePing [HET_CHRAZ D] =
= iy [SES416_ALCIOEVH b f feris l":ul::l [SLy H‘ﬂl] =
—_: Batmt F'"-'I'-\.-.IF- Ar 'I'r-\."ll |F‘Jl'|u|.-!: I" '-'”.- '-U."'I"' "| =
= e . d ugsh =kasasl
—:'I.I .:“_E 1 f'f"dlﬁ-_.’.[l: "E.“'I B|”u.|’.| F I.J I"EI' I.L-II 'I = DSRS41E_AICIOEVH qEu
| DEESALE_ALCINEVH ghulTarsmtPing [HET_CHRNZ C] = DSES41E_ALIC2ONMS gk
" [Y Pl Ve BERS4L6_AICHEV sBu ForietPing (SLV_CHA1L O] = DSKG416 AICIOEV b of
] : |
Linking: A Cinsrd Tous L M
o ik L kP ey i 1] I
fiild Commplete, lanrridelie TiEER=00 152053 LM E i = Ik
e - I Rumar) -"‘1’-] R 1T IEN00 il LW e EX 40
Iﬂ. il S FETe-A 2N 1M
=l | P e 1 e ™ mes
SATEIED, s f Lol | irj o] § R el 1 AP0 2 e in
LR |bglince -
p:ni-l'.hi el ity - I J
) mady
L AT]
W s
:l | ‘|
mn e O | W LN
e . 'a 5 CONTERTE,
N § FEGETER RECOMTERTE: &1
1T FEGETER B COHITRTE 1t BT o e e
il ﬁmlmnmmd_l bt i e S
R B B et mihul bassi pramsy Lri |

i--!| HEQEAE F IO || wioasivkisk St EHMMHM..'

Figure 5. Code Composer Studio

3 What Is eXpressDSP™?

Run Free Command

FEAE B LF TV O L e

TI's real-time eXpressDSP™ software and development tool strategy includes three tightly
knit ingredients that empower developers to tap the full potential of TMS320™ DSPs:

1. Code Composer Studio — the world’'s most powerful DSP integrated development
environment
2. Target content software
a. DSP/BIOS: Scalable, real-time software foundation
b. TMS320 DSP algorithm standard (XDAIS): coding guidelines for interoperability and
reuse
c. Reference frameworks: design-ready starterware code common to many
applications
3.

integrated into systems

Third party network: a growing base of TI DSP-based products that can be easily

TMS320C54x DSP Reference Framework & Device Driver for the TLV320AIC20 HPA Data Converter

9

‘4" TEXAS
SLAA166 INSTRUMENTS

Each element is designed to simplify DSP programming and move development from a custom
crafted approach to a new paradigm of interoperable software from multiple vendors supported
by a worldwide infrastructure. All of these components have been used in the development of
the DSP reference framework and AIC20 device driver described by (and provided with) this
application note.

NOTE: For more detailed information on all components of eXpressDSP™, please refer to TI's
one-stop shop for DSP development on the Internet: www.dspvillage.com.

4 TMS320 DSP Algorithm Standard (XDAIS)

The TMS320™ DSP algorithm standard, also known as XDAIS (pronounced DAY-yiss), is a
DSP. A single standard set of coding conventions and application programming interfaces
(APIs) for algorithm creators to wrap the algorithm for system-ready use in any application.
In the past, algorithm creators had to re-engineer an algorithm to integrate it into each
different system. Now, the algorithms are written once by the creator and reused widely by
the system integrators. The standard includes algorithm programming rules, which when
followed by the algorithm creators, enable interoperability of compliant algorithms in the
same system. Algorithm standardization increases the quantity and quality of algorithms
available for faster use by OEMs. TI's third party network provides off-the-shelf compliant
algorithms for ease of integration and reduced time-to-market.

All of TI's generic eXpressDSP™ reference frameworks, as well as the specific framework
used in this application note, allows the developer to seamlessly integrate any algorithm
which is XDAIS-compliant without having to re-engineer the algorithm module nor modify
the system code to instantiate and execute the algorithms. To provide an example and to
create entry points into the framework, two fully XDAIS-compliant algorithms developed by
Tl, the FIR_TI and VOL_TI algorithms are used in the sample framework and applied to the
data stream of the AIC20 cascade. These two algorithms are easily replaced with the
specific algorithms to be evaluated with the AIC20EVM.

5 TMS320VC5416™ DSP Starter Kit

The TMS320VC5416™ DSP starter kit (DSK) is a low-cost development platform designed
to speed the development of power-efficient applications based on TI's TMS320C54x™
DSPs. The kit, which provides new performance-enhancing features such as USB
communications and true plug-n-play functionality, gives both experienced and novice
designers an easy way to get started immediately with their innovative product designs.

NOTE: For more detailed information on all components of eXpressDSP™, please refer to TI's
one-stop shop for DSP development on the Internet: www.dspvillage.com.

10 TMS320C54x DSP Reference Framework & Device Driver for the TLV320AIC20 HPA Data Converter

*ﬁ" TEXAS

INSTRUMENTS SLAA166
1 1 1 1
@® U U U U ® -
1 3 []
1 1 [
USB Connector (to PC)
Connectsto AIC 3481;’3
M otherboard
@® . I
EXPANSI ON PERI PHERAL | NTERFACE
Power Reset N
DIP
Connector Pushbutton—b@ uritohes

Figure 6. TMS320VC5416™ DSP Starter Kit (DSK) Board

6 TLV320AIC20EVM and the DSP-Codec Development Platform

The TLV320AIC20 is a true low-cost low-power highly integrated high-performance dual
voice codec designed with new technological advances. It features two 16-bit analog-to-
digital (A/D) channels and two 16-bit digital-to-analog (D/A) channels, which can be
connected to a handset, headset, speaker, microphone, or a subscriber line via a
programmable analog crosspoint. The maximum sampling rate is 26 KSPS (with on-chip
IIR/FIR filter) and 104 KSPS (with IIR/FIR bypassed).

An AIC20 EVM is available to quickly evaluate the codec device. This board plugs into a
generic AIC motherboard (also referred to as the DSP-Codec Development Platform) that
plugs directly to the expansion peripheral interface (EPI) connector of the C5416 DSK. By
combining these three boards, a reference platform can be used to quickly evaluate the
AIC20 device as well as XDAIS-compliant algorithms used to process the data streams.
The AIC expansion board allows any AlC-based EVM to be plugged directly into any DSK
expansion peripheral Interface connector.

@ AIC MOTHERBOARD @
g |:| O O |i|RESET
o

Connects to 00

g

00

AICEVM > P
o

00
00
00

00

09/ @ o

o

o) &,
- Connectsto

OO — |:| |:|A//DSK EPI
33838080858589808888808080808080805 4 @[(from bottom)

Figure 7. AIC Motherboard (DSP-Codec Development Platform)

TMS320C54x DSP Reference Framework & Device Driver for the TLV320AIC20 HPA Data Converter
11

SLAA166

‘9 TEXAS
INSTRUMENTS

AIC20 #2
(Slave)

AIC20 #1
(M aster)

The AIC20EVM board contains two AlIC20 devices connected in a cascaded configuration.
One device serves as the master while the other device is the slave. Each device contains
two data channels, resulting in a total of four independent data channels supported on the
EVM. When the EVM is connected to the DSK, the devices communicate to the
C5416DSP’s multichannel buffered serial port (McBSP) via time division multiplexed (TDM)
stream. The SMART time division multiplexed serial port (SMARTDM) of the AIC20 uses
the four wires DOUT, DIN, SCLK, and FS to transfer data into and out of the AIC20 device.
The SMARTDM allows for a serial connection of up to 16 AIC20 devices to a single host
serial port. The SMARTDM feature automatically adjusts the number of time slots per
frame sync (FS) to match the number of codecs in the serial interface so that no time slot is
wasted. Each time slot contains a 16-bit word representing sample or control information.
When the master AIC20 device is reset, each codec in the cascade assigns itself a unique
4-bit SMARTDM address which is used to identify the time slot used for sending control
register information from the codec back to the host processor.

CERCIERIERERERE < 3.5 mm jack
E =5 (input to #2)
o] 1 00
S \VAVAVAVEVAVAVAV)] OO
% 00000000 E | 88
— 88888888 I |:| o0 o[Connectsto
0] 00 AIC Motherboard
T ool | (rombotom
= ooll]

g o :
@ —

=]S) ElEEEIEI=HE]E) < 3.5 mm jack
@eel®[eelelellee] L p

Figure 8. AIC20 Evaluation Module (EVM)

Figure 9 shows how the 2 AIC20 devices on the AIC20EVM connect to the DSP in the
C5416DSK. The AIC20 closest to the DSP’s McBSP is the Master device that provides the
FS signal to the DSP. The FS acts as a signal to the DSP so that it knows when to write
and read data to/from the correct TDM slot within the FS period. On the falling edge of the
FS signal should be the read or write from/to the first Master channel’s slot. Figure 9 shows
the slot within the FS period that corresponds to the channels in the cascade. This
configuration allows a single McBSP to talk to any number of cascaded AIC20 devices, up
to a maximum of eight devices (each AIC20 device supports two codec channels, resulting
in a maximum of (8 x 2) = 16 time division multiplexed (TDM) channels in a single serial
data stream).

NOTE: Up to four AIC20EVMs can be stacked on top of the AIC motherboard to achieve the

16-TDM cascaded channel configuration, but requires minor modifications to the existing device
driver as the provided driver is configured for a single AIC20EVM (two devices / four channels).

12 TMS320C54x DSP Reference Framework & Device Driver for the TLV320AIC20 HPA Data Converter

*ﬂ" TEXAS

INSTRUMENTS SLAA166
CLKOUT
DR [
DX
ol
MCLK[¢—®
FSR FS TLV320AIC20 P
[#1] DIN|® ®
CLKX (MASTER) pourt
}—'— SCLK
CLKR FSD WIS
TMS320C5416 !
McBSP v 3.3V
FS
320AIC20 MeLK
TLV320Al
[#2] DINf&—®
(SLAVE) pouT
®—>|scLK
FSD M/S
—i:lJ J:
IOVDD -
Figure 9. 2-Device (4-Channel) Cascade Connection to Host Processor Serial Port

7 Software Reference Framework

DSP/BIOS is TI's real time operating system foundation. It provides multiple thread
scheduling, memory management services, hardware abstraction/configuration, real-time
analysis capabilities, interprocess communication, and structured device driver 1/O.

Applications which use DSP/BIOS take advantage of all the common DSP real-time kernel
services with easy-to-use API's and hand-optimized program modules for increased
portability, maintainability, reusability, and reduced time-to-market.

Accelerating the software development process for designers of DSP-based applications, Tl
produces and supports a series of DSP software reference frameworks (RF). The design-
ready RFs are getting-started solutions for designers in the early stages of application
development, featuring easy-to-use source code that is common to many applications. With
TI's RFs, many of the initial low-level design decisions are eliminated, allowing developers
more time to focus on the code that truly differentiates products. Designers can choose the
specific RF that best meets their system needs and then populate the RF with XDAIS-
compliant algorithms, creating specific applications for a wide range of end equipments.

TMS320C54x DSP Reference Framework & Device Driver for the TLV320AIC20 HPA Data Converter
13

SLAA166

Q’ TEXAS
INSTRUMENTS

Tl Provided

eXpressDSP Generic Application

Customer Adaptation

Application-Specific Code
Unique behavior e.g. Internet Audio Player
Web Phone, Digital Hearing Aid

drivers

Custom DSP/BIOS I/O Drivers
Leverage LIO/PIP/SIO Driver
Additional drivers e.g. UART,DAA

CSL DSP/BJOS™

TMS320 C5000/C6000 DSP
TI DSK/EVM e.g. C5416 DSK

Customer target hardware

Figure 10. eXpressDSP™ Reference Framework Architecture

The reference framework used in this application note is built on the same DSP/BIOS
foundation and allows the developer to easily insert various XDAIS algorithms to evaluate
digital signal processing on the data channels as well. There is also a simulated host
control capability where a control thread is periodically scheduled to run on the target and
checks a shared device I/O area memory space. If the host sets certain flags, the target can
perform the appropriate function during run-time. GEL sliders are provided as an example
to change certain parameters during run-time.

7.1 Data Channel Processing Threads

14

In this application note example, a single thread of execution is used to read a single
sample from each of the AIC20 ADC's at a time, and then each sample is subsequently
sent back out to the same channel’s DAC. Using this convenient entry point, any number of
DSP algorithms can be inserted to apply sample-by-sample or frame-based DSP
processing on every channel. The AIC20 device driver exposes a pair of receive and
transmit ping-pong buffers to pass data between itself and the framework (this is discussed
in greater detail in the device driver section of this application note).

The audioapp.c source file contains the main framework code. The processBuf f er ()
function is automatically called every time a sample from all AIC20 channels have been
read at the end of each FS period (i.e. Rcv ping or pong buffer has just been filled up by the
device driver). The processBuf f er () can be configured for either sample-by-sample
processing or frame-based processing. It gets samples from the currently filled Rx buffer
and place them in the corresponding Tx ping-pong buffer. This is where the processing is
applied to each sample (or the entire frame of data samples) as the Rx data is being
transferred to the Tx buffer by the CPU.

TMS320C54x DSP Reference Framework & Device Driver for the TLV320AIC20 HPA Data Converter

*ﬂ’ TeExXAS
INSTRUMENTS

SLAA166

7.1.1 Sample-by-Sample Processing

voi d processBuf fer(voi d)

{

short pi ngPong;

pi ngPong = SW _get nbox();
if (pingPong == PING {
/1 insert algorithn(s) here to fill up PING output buffer
DSK5416_Al C20EVM gBuf f er Xt Pi ng[MST_CHAN1_D] =
pr ocessSanpl e(MST_CHAN1, &DSK5416 Al C20EVM gBuf f er RevPi ng[MST_CHANL D]); //
DSK5416_Al C20EVM gBuf f er Xt Pi ng[MST_CHAN2_D] =
pr ocessSanpl e(MST_CHAN2, &DSK5416_ Al C20EVM gBuf f er RevPi ng[MST_CHAN2 D]); //
DSK5416_Al C20EVM gBuf f er Xt Pi ng[SLV_CHANL_D] =
processSanpl e(SLV_CHAN1, &DSK5416 Al C20EVM gBuf f er RcvPi ng[SLV_CHANL D]); //
DSK5416_Al C20EVM gBuf f er Xt Pi ng[SLV_CHAN2_D] =
processSanpl e(SLV_CHAN2, &DSK5416_ Al C20EVM gBuf f er RevPi ng[SLV._CHAN2 D]); //

MST Chl

MST Ch2

SLV Chl
SLV Ch2

}
el se { // pingPong == PONG
/1 insert algorithn(s) here to fill up PONG out put
DSK5416_Al C20EVM gBuf f er Xt Pong[MST_CHANL_D] =
processSanpl e(MBT_CHANL, &DSK5416_Al C20EVM gBuf f er RevPong[MST_CHANL_D]); //
DSK5416_Al C20EVM gBuf f er Xt Pong[MST_CHAN2_D] =
processSanpl e(MST_CHAN2, &DSK5416_Al C20EVM gBuf f er RevPong[MST_CHAN2 D]); //
DSK5416_Al C20EVM gBuf f er Xnt Pong[SLV_CHANL_D] =
processSanpl e(SLV_CHAN1, &DSK5416 Al C20EVM gBuf f er RevPong[SLV_CHANL D]); //
DSK5416_Al C20EVM gBuf f er Xnt Pong[SLV_CHAN2_D] =
processSanpl e(SLV_CHAN2, &DSK5416_ Al C20EVM gBuf f er RevPong[SLV._CHAN2 D]); //

buffer

Chi
Ch2
SLV Chl

SLV Ch2

In this case, the pr ocessSanpl e() function is called on every new sample that is read into the
receive data buffer that has just been filled by the device driver. This is where one or more
algorithms can be applied to the sample before it is written to the output buffer. The sample
framework comes with simple, fully XDAIS-compliant finite impulse response (FIR) and
volume/gain control (VOL) algorithms (developed by TI) that are applied in sequence to every
sample received from each data channel.

—_——— —_—————— e —

| |
| |
l RCV PING- | | FIR_TI XDAIS VOL _TI XDAIS l
| PONG BUFFERS | A T B ALGORITHM |7 »1 ALGORITHM |
| (DSK5416_AIC20EVM DRIVER) | | l
| ' ' |
! XMT PING- ['rv !
| PONG BUFFERS | | (FRAMEWORK) |

Figure 11. Framework Channels: Data Flow

These entry points serve as placeholders for the real algorithms that could be inserted and
evaluated with the AIC20EVM data streams. Most XDAIS algorithms come packaged with
<ALGORI THW>_appl y() functions which in most cases can be inserted at the FI R_appl y()
and VOL_appl y() entry points. XDAIS algorithms allow for ease of integration, especially
when swapping out one XDAIS algorithm module for another.

TMS320C54x DSP Reference Framework & Device Driver for the TLV320AIC20 HPA Data Converter
15

‘4" TEXAS

SLAA166 INSTRUMENTS

Ui nt 16 processSanpl e(DSK5416_Al C20EVM _Channel chan, Ui nt16 *i nput Sanpl e)

{
Sanpl e tnpl, tnmp2;

STS set (&tsAlgFir, CLK gethtinme());
FI R_appl y(t hr Audi oproc[chan].al gFIR, (Sanple *)input Sanpl e, & npl);
STS del ta(&stsAlgFir, CLK gethtine()); // measure FIR algorithm execution tine

STS set (&tsAlgVol, CLK gethtinme());
VOL_appl y(t hr Audi oproc[chan] . al gvOL, &t npl, &tnp2);
STS delta(&stsAlgFir, CLK gethtine()); // measure VOL al gorithm execution tine

return ((Uint16)tnp2);

7.1.2 Frame-Based Processing

To reduce the overhead of calling the same processing function(s) on every sample on every
channel and/or to simply evaluate the same algorithm processing on all cascaded channels, a
processkFrane() function is also supplied as another option for the framework:

voi d processBuffer(void)

{

short pingPong;
pi ngPong = SW _get nbox();

if (pingPong == PING { // Fill up Xnt Ping output buffer
processFrane(MST_CHANL, (Sanple *)&DSK5416_Al C20EVM gBuf f er RevPi ng[MST_CHANL_D] ,
(Sanpl e *) &DSK5416_Al C20EVM _gBuf f er Xnt Pi ng[MST_CHANL1_D]) ;

}
el se { // pingPong == PONG
/1 Fill up Xmt Pong output buffer
processFrane(MST_CHANL, (Sanple *)&DSK5416_Al C20EVM gBuf f er RevPong[MST_CHANL_D] ,
(Sanpl e *) &DSK5416_Al C20EVM _gBuf f er Xnt Pong[MST_CHANL1_D]) ;

16

In this case, pr ocessFrane() can run any algorithm that supports frame-based or block-
oriented processing. In other words, the current samples from every channel are treated
as a single frame of multiple samples and can be processed by a single function call, to
apply the same processing function to each channel from the current FS period. In this
application note example, the DSP CPU loading is normally reduced by up to 23% when
switching from sample-by-sample processing to frame-based processing.

NOTE: If choosing the pr ocessFr ane() option, be sure to only use an algorithm that can
process each sample in a frame independently from the other samples in the frame. The FIR_TI
algorithm will only work using the pr ocessSanpl e() option since each frame of data contains
samples from different channels, since a typical filter-type algorithm needs to operate on
consecutive samples from the same sound stream.

TMS320C54x DSP Reference Framework & Device Driver for the TLV320AIC20 HPA Data Converter

*ﬂ" TeExXAS
INSTRUMENTS SLAA166

Voi d processFrane(DSK5416_Al C20EVM Channel al gChan,
Sanpl e *i nput Frane, Sanpl e *out put Frane)
{

Sanpl e i nt er mBuf [DSK5416_Al C20EVM NUMCHANS] ;

/* record high-res clock time (timer counter) before calling 1st al gorithm */
STS set (&stsAl gOne, CLK gethtine());

/* FIR al gorithm cannot process consecutive sanples fromdifferent channels
so just do a mentpy() here as a placehol der for an alternate algorithm*/
mencpy(& nternBuf, inputFrame, DSK5416_Al C2OEVM NUMCHANS* si zeof (Sanpl e)) ;

/* calculate elapsed tinme for 1st algorithmto execute, in high-res clock cycles */
STS delta(&stsAl gone, CLK gethtime());

/* record high-res clock time (timer counter) before calling 2nd al gorithm */
STS set (&stsAl gTwo, CLK gethtine());

/[* anplify the signal ininterm buffer and store result in output frane buffer */
VOL_appl y(t hr Audi opr oc[al gChan] . al gvVOL, (Sanple *) & nternBuf, outputFrane);

/* calculate elapsed tinme for 2nd algorithmto execute, in high-res clock cycles */
STS delta(&stsAl gTwo, CLK gethtime());

On return from the pr ocessFr ane() function call, the processed samples filled up the
corresponding transmit ping or pong output buffer and be sent out to the device driver. For
best results, XDAIS-compliant algorithms should be used for ease of integration and
interoperability, especially when integrating algorithms from multiple sources/vendors.

7.2 Data Channel State Objects

A global array of channel structures (named t hr Audi opr oc[] of data structure type

Thr Audi opr oc) is declared during compile time and is initialized during run-time. Once
initialized, the framework code can access each of the data channel's state information at any
time. Currently, these channel structures store the unique algorithm instance objects that are
used for the processing of each channel. The structure definition is found in the thrAudioproc.h
header file, and can be modified to include any additional channel state information as required
by the application developer.

Here we define a structure that contains all the "private"
thread i nformation: al gorithm handl es, input pipe(s), output

pi pe(s), internmediate buffer(s), if any, and all the other

* information that encapsul ates thread state for each channel.
*/

typedef struct Thr Audi oproc {

/* algorithn(s) */

FIR Handl e al gFI R /* an instance of the FIR algorithm*/
VOL_Handl e al gvQ,; /* an instance of the VOL al gorithm */

E I

/* everything else that is private for a thread comes here */

} Thr Audi opr oc;

TMS320C54x DSP Reference Framework & Device Driver for the TLV320AIC20 HPA Data Converter
17

‘4" TEXAS

SLAA166 INSTRUMENTS

7.3

18

Thr Audi oproc t hr Audi oproc[DSK5416_AlI C20EVM NUMCHANS] = {
{ I'* data channel #1 (Master Channel 1) */
/* algorithmhandl e(s) (to be initialized in runtine) */
NULL, /* al gFIR */
NULL, /* al gvOL */

/* everything else private for the thread */
}, /'* end data channel #1 */
{ I'* data channel #2 (Master Channel 2) */
/* algorithmhandl e(s) (to be initialized in runtine) */
NULL, /* algFIR */
NULL, /* al gvOL */
/* everything else private for the thread */
}, /* end data channel #2 */
{ I* data channel #3 (Slave Channel 1) */
/* algorithmhandle(s) (to be initialized in runtinme) */
NULL, /* algFIR */
NULL, /* al gvOL */
/* everything else private for the thread */
}, /* end data channel #3 */
{ I'* data channel #4 (Slave Channel 2) */
/* algorithmhandl e(s) (to be initialized in runtine) */
NULL, /* algFIR */
NULL, /* al gvOL */
/* everything else private for the thread */

}, /'* end data channel #4 */

The above code shows the global t hr Audi opr oc[] array defined in source code and its ability
to take on default settings within each channel structure. Each array element (channel
structure) corresponds to one of the data channels on the AIC20EVM. Fields such as the
algorithm handles are set during run-time since the XDAIS algorithms in this example are
created and initialized during system start-up, and additional structure fields can be added as
needed.

Data Channel Algorithm Creation

The t hr Audi opr oci ni t () function references the t hr Audi opr oc[] array and take care of
guerying the XDAIS algorithms for their memory requirements, dynamically allocate those
memories from internal and/or external memory heaps defined by the user, and store the
handles to the newly-created algorithm instance objects so that each channel can reference its
own set of algorithm instances.

TMS320C54x DSP Reference Framework & Device Driver for the TLV320AIC20 HPA Data Converter

*ﬂ" TeExXAS
INSTRUMENTS SLAA166

{

}

Voi d t hr Audi oproclnit(Void)

/* declaration of filter, volume paranmeter structures */
FI R_Parans firParans;
VOL_Par ans vol Par ans;

I nt

for (i = 0; i < DSK5416_ Al C20EVM NUMCHANS; i ++) {

/*

* Set the paraneters structure to the default, i.e.

* the one used in i<alg>c, and nodify fields that are different.
*/

firParans = FlI R_PARANS; /* default paraneters */

firParans. coeffpPtr = /* filter coefficients */
(Short *)filterCoefficients[i];

firParans.filterLen = /* filter size */
sizeof (filterCoefficients[i]) / sizeof(Sanple);

firParans. franeLen = 1; /* frame size */

/* create algorithminstance for channel #i */
thrAudi oproc[i].algFIR = FIR create(& IR IFIR &firParans);

/
Confirmthat the instantiati on was successful. |If it failed,
nmost likely the heap is not big enough. To find out the needed
val ue (rather than to guess), in appThreads.c you can do
ALGRF_set up(EXTERNALHEAP, EXTERNALHEAP); i.e. force all
allocation in external nenory, run the initialization functions,
* and exam ne the reports from UTL_showAl gMen{) bel ow.

*/

UTL_assert(thrAudioproc[i].algFIR = NULL);

L

/* and show al gorithm nenory usage */
UTL_showAl gMem(t hr Audi oproc[i].algFIR);

/* do the same for the VOLune al gorithm create paraneters structure */
vol Parans = VOL_PARAMS; /* default paraneters */
vol Parans. franmeSi ze = DSK5416_Al C20EVM NUMCHANS; /* frame size */

/* create instance, confirmcreation success, show nenory usage */
thr Audi oproc[i].algVOL = VO__create(&VOL_IVOL, &vol Parans);
UTL_assert(thrAudioproc[i].algVOL = NULL);

UTL_showAl gMen(t hr Audi oproc[i].al gvOL);

The FIR creat e() and VOL_cr eat e() are XDAIS standardized <ALGORI THM>_cr eat e()
wrapper functions which are called to automate the process of dynamically creating a XDAIS
algorithm instance object pertaining to the specific algorithm which is referenced by the
<ALGORITHM> designation. Since all XDAIS-compliant algorithms implement a standard
interface for algorithm instance creation, each <ALGORI THVW>_cr eat e() function references
the same generic ALGRF_cr eat e() function that is implemented by the RF ALGRF standard
library that can be used to instantiate any XDAIS-compliant algorithm. The creation parameters
for the algorithm instances are also set in this function — i.e. all algorithm create-type code is
bundled in this single function which is called once during system initialization.

TMS320C54x DSP Reference Framework & Device Driver for the TLV320AIC20 HPA Data Converter
19

‘4" TEXAS

SLAA166 INSTRUMENTS

7.4 System-Specific Initialization

Finally, the mai n() function contains all of the one-time system initialization code. In a
DSP/BIOS application, the mai n() function is called once and must return to give control
over to the DSP/BIOS scheduler. The DSK board and device driver (and all DSP
peripherals associated with the device) need to be initialized once within mai n() .

Once mai n() has finished execution and returns, the DSP/BIOS scheduler takes control
over the system and is ready to service hardware/software interrupts and execute tasks and
background functions. Any additional run once code should be added to mai n() since it
only runs once in a DSP/BIOS system on reset.

Voi d mai n()

// Initialize the DSK Board
DSK5416_init();

/]l Initialize the AlC20EVM Device Driver as a whol e
if (DSK5416_Al C2OEVM.init()) {
DSK5416_Al C20EVM set up() ;
DSK5416_Al C20EVM hDevi ce = DSK5416_Al C20EVM open() ;
LOG printf (& ogTrace, "main(): Al C20EVM reset sequence successful.\n");
}
el se {
LOG printf(& ogTrace, "main(): Could not establish presence of Al C Mtherboard!!!'\n");
SYS exit(0);
}
/1 Initialize the XDAI'S al gorithm nodul es as a whol e
FIRinit();
VOL_init();

/1l Create the algorithminstances for each channel state structure
t hr Audi oproclnit();

/1 Return and drop into the DSP/BI OGS environnent

TheFIR init() and VOL_i nit () are XDAIS standardized <ALGORI THM> i ni t () master
initialization functions which are called to initialize the XDAIS algorithm modules as a whole
during system initialization, before any XDAIS algorithm instances are created in the system.
The t hr Audi opr ocl ni t () function, as described in the previous section, is used to instantiate
the channel state objects representing each data stream in the system.

7.5 Algorithm Benchmarking

20

This RF includes two DSP/BIOS statistics (STS) objects used to benchmark the FIR_TI and
VOL_TI algorithm performance. Each STS object accumulates the following statistical
information about an arbitrary 32-bit wide data series:

e Count. The number of values in an application-supplied data series
« Total. The sum of the individual data values in this series

e Maximum. The largest value already encountered in this series

TMS320C54x DSP Reference Framework & Device Driver for the TLV320AIC20 HPA Data Converter

*ﬂ" TeExXAS
INSTRUMENTS SLAA166

Using the count and total, the CCS statistics view plug-in calculates the average on the host.
Additional custom STS objects are added to the system using the DSP/BIOS configuration file
(*.CDB) which is part of the CCS project. The following STS run-time API’s allow the target
application to maintain the various statistics:

e STS add() — updates the count, total, and maximum using the value provided
e STS set () — sets a previous value for reference

» STS delta() --accumulates the difference between the value currently passed in and
the previous value which was set by the most recent call to STS set () or STS reset ()

By using custom STS objects and various combinations of STS operations, the following
statistics can be computed automatically:

e Count the number of occurrences of an event

» Track the maximum and average values for a variable in the program
» Track the minimum value for a variable in the program

 Time events or monitor incremental differences in a value

» Monitor differences between actual values and desired values

The following code sample uses the STS operations to programmatically accumulate the
amount of instruction cycles elapsed by using paired STS _set () & STS del t a() function
calls around each algorithm function call. The CLK_get hti ne() function is a DSP/BIOS API
used to read the current value of the high-resolution timer counter; thus the unit of measurement
is the number of instruction cycles.

In this case, the STS object stsAlgOne is used to store statistics each time the FI R_appl y()
function is called, and the stsAlgTwo is used to benchmark the VOL_appl y() algorithm
execution times.

/* record high-res clock time (timer counter) before calling FIR al gorithm*/
STS set (&stsAl gOne, CLK gethtinme());

/* apply filter and store result in tenp buffer */
FI R_appl y(t hr Audi oproc[chan].al gFIR, (Sanple *)input Sanpl e, & npl);

/* calculate elapsed time for FIR algorithmto execute, in high-res clock cycles */
STS delta(&stsAl gOne, CLK gethtine());

/* record high-res clock time (timer counter) before calling 2nd al gorithm */
STS set (&stsAl gTwo, CLK gethtinme());

/* anplify the signal and store result in tenp buffer */
VOL_appl y(t hr Audi oproc[chan] . al gvOL, &t npl, &tnp2);

/* calculate elapsed time for 2nd algorithmto execute, in high-res clock cycles */
STS delta(&stsAl gTwo, CLK gethtine());

TMS320C54x DSP Reference Framework & Device Driver for the TLV320AIC20 HPA Data Converter
21

*ﬂ” TEXAS
SLAA166 INSTRUMENTS

The statistics are viewed in real-time with the statistics view plug-in by choosing the CCS
DSP/BIOS - Statistics View menu item. The reference framework project already comes with
the Statistics View window open and configured to show the statistics for both of the included
STS objects (stsAlgOne and stsAlgTwo). More STS objects can be inserted to benchmark other
portions of system code as needed. To create an STS object, right-click the STS — Statistics
Object Manager icon and select Insert STS. Right-click on the newly created STS object and
select Rename to give the STS object a meaningful name. This is the name of the STS object
used in the corresponding programmatic calls to the STS API’s in the system code to gather
statistics during run-time of the system without ever halting the target processor. The statistics
data is sent from the target to the host only during CPU idle time using a host-target
communications technology called real-time data exchange (RTDX™). DSP/BIOS real-time
analysis data is always transferred via RTDX which is completely nonintrusive and never breaks
the real-time processing functionality of the DSP system.

B s bk | Ape tiei Dagtal 1T | - D545 - il © e Siaals 50| 5 SR Taadi - [sl apyidl] ._ﬂﬂ
o i DB b e Pewdl Deeg Paer B oson Tels (Q@amiog Ja =il 2
o) i |l a | ES 4 el
[T = atag | O
e L]
il at | OBl -EdL Korral bt Ve |
= ————————— Fissi Crumnal Gy -
B [Fre | [Ermend vt |.- LA T
e I " i i B = Pty b
et i Flvurstiial 1 o I [e e T
F = . éalj-ﬁu.:.t = [0 1w~ Evend Liog Misnaes 1 e i
S =) DR Canfig n 05 et wE i P e, e hageed
o i = D ogloees 1 ':w"“"'w ';"'1"1
L 4 | o areranad Fias I = E TN . Saiwies Ot Parsgr 1 1 - a
EI-E T =l KX _barpCty | 1 P 1
cagul i | j L | siiligien |
1 rovosdonn ore | ey T |
= (o Sounr STy — — — - — — 1
RET- = il Temctronaston
¥ ce3s1E -l = It Cobpen
i 1 ﬂ_‘ % ol Chis "L Liwary
t1_S4l8plesinebrossgeoalgen” awdiospp.cdb = Canl Tkl [T Lo
(LS5 1 1] L
Auild Complete, KEN a6 IO N il mn BN
4 | - Wl AMIE 95 Bt T
- — e IR | ADENENE _SlEelE | ITER
_] 2 BT e o
LA T ielTE 1 BT The+{TH |
R e
Loy M |y T i
el I J
O map REBETER 5 CINTENTS: (R =
| L] AEGGTEN M CINTENTS (W0
[REGETER BE CINTEMTS (1
™ = FRadl SruC =
i, = FRME SN =
LA e REGETER BE CONTENTS (h &
A | B s B MLGETEN I CINTEATS (4
TR | i REFETER BE CINTENTS (b 2
A 5 e E RN | e
P R TED (e Sl Vs
Rowt| QEDS B P IT | Epous gowoesd, || g st WS EFEN Tl amae

Figure 12. Configuring and Viewing DSP/BIOS Statistics (STS) Objects

22 TMS320C54x DSP Reference Framework & Device Driver for the TLV320AIC20 HPA Data Converter

*ﬂ" TeExXAS
INSTRUMENTS SLAA166

8

8.1

8.1.1

8.1.2

DSK5416 AIC20EVM Device Driver

Requirements for Writing the Device Driver

In general, writing a device driver requires detailed knowledge of both the host processor and
the device itself. Without understanding how the host processor and device interface to each
other and the exact timing of communication between the two, writing the device driver can be a
very difficult task, especially when one does not have an expensive logic analyzer and other
sophisticated instruments. The device driver should also implement a modular and easy-to-
understand interface. The baseline driver developed here is the DSK5416_AIC20EVM driver.

Host Processor Considerations and Configuration

In this case, the host processor is a TMS320VC5416 DSP with three on-chip serial ports, or
multichannel buffered serial ports (McBSPs). Each McBSP is bi-directional (i.e. capable of
receiving and transmitting data simultaneously using the same port, therefore, a single McBSP
is used to communicate with the device, which in this case is an AIC20EVM. When the
AIC20EVM is plugged into the C5416DSK, all device lines connect to McBSP #1 of the DSP.
Refer to Figure 9 to see exactly which lines are connected between the host and cascade of
AIC20 devices. In addition, the McBSP receive mode must be set for 1-bit delay since the
AIC20 always responds with its DOUT data delayed by 1 bit for every word.

AIC20EVM Device Cautions

To the host processor, the AIC20EVM is a single device in the system. The AIC20EVM contains
two AIC20 devices connected in a cascade configuration. One device acts as the master while
the other acts as the slave. The master device is the AIC20 closest to the DSP. The master
AIC20 device provides a Frame Sync signal to the DSP so that the DSP knows when a
complete frame of data has been received from the AIC20EVM. Within this FS period, there are
four data and four control timing slots. Each slot corresponds to a specific channel within the
overall AIC20 cascade of devices. It is important that the device driver reads and writes data
from/to the correct timing slot; otherwise the host processor will be communicating the wrong
data to the wrong channel. These eight timing slots per FS period make up a time-division
multiplexed data stream — i.e. each channel reads/writes data at a specific time slot within the
overall FS period.

Master FS l_ I_

4—— pata Frame ——P4—— Control Frame ———P¢——— Data Frame ——»

AIC20 #1 AIC20 #2 AIC20 #1 AIC20 #2

DIN or |sjave Master | Master | Slave |Slave Master | Master | Slave Slave Master | Master |Slave Slave
DOUT |Chan2|chan 1 |Chan2 |Chan1 [Chan 2 {Chan1|Chan2 |Chan 1| Chan2|Chan 1 |Chan2 |[Chan 1 | Chan?2

Time Slots

Figure 13. Time Division Multiplexing: Slot Assignment for Data and Control Words

TMS320C54x DSP Reference Framework & Device Driver for the TLV320AIC20 HPA Data Converter
23

SLAA166

‘4" TEXAS

INSTRUMENTS

8.2

8.2.1

24

Defining the Interface to the Device Driver

The details of how the host and device interact with one another help to determine the specific

interface of the device driver. The interface should be easy to understand, easy to use, and
present a modular solution to encapsulate and abstract as much detail as possible from the
application framework.

The following diagram shows how a framework interacts with the DSK5416_AIC20EVM device

Framework Interaction with the Driver

driver module. The relevant data structures and functions are shown in the diagram:

Rx and Tx ping-pong buffers: Frame buffers used to read data from the device driver and

store data to be sent out by the device driver

Driver functions: APIs to initialize, execute, and close the device driver

Channel configuration array: an array of configuration parameters used to set the attributes

for each individual channel of the AIC20 cascade

SPECIFIC APPLICATION LAYER

GENERIC REFERENCE FRAMEWORK

CHANNEL
MANAGEMENT

A

XDAIS
ALGORITHMS

ANALYSIS

y

REAL-TIME $

y

XMT PING-
PONG BUFFERS

RCV PING-PONG
BUFFERS

DRIVER
FUNCTIONS
(APIs)

CHANNEL
CONFIGURATION
ARRAY

DSK5416_AlIC20EVM DEVICE DRIVER

CHIP SUPPORT LIBRARY

DSP/BIOS REAL-TIME SOFTWARE FOUNDATION &

TMS320VC5416
DSK BOARD

AlC
MOTHERBOARD

AIC20
EVM

USB JTAG EMULATION &
RTDX™ TECHNOLOGY

Figure 14. Reference Platform: Hardware and Software Architecture

TMS320C54x DSP Reference Framework & Device Driver for the TLV320AIC20 HPA Data Converter

*ﬂ" TeExXAS
INSTRUMENTS SLAA166

8.2.2 Driver Functions

There are a minimum of three functions that need to be invoked by the framework. The function
prototypes can be found in the device driver's header file <dsk5416_aic20evm.h>.

e DSK5416_ Al C20EVM.i ni t () — needs to be called only once during system initialization

» DSK5416_Al C20EVM set up() — needs to be called to set up channel configuration
parameters before opening the device

« DSK5416_Al C20EVM open() — needs to be called to physically set up and start the
device after the init() and setup() functions have been executed

» DSK5416_Al C20EVM cl ose() — can be called by the framework to power down the entire
AIC20 device cascade for system shutdown purposes

8.2.3 Relevant Data Structures

8.2.3.1 Ping-Pong Buffers

The DSK5416_AIC20EVM device driver defines four global buffers used to pass data between
device and framework. The typical ping-pong buffering scheme is implemented, meaning there
are two receive buffers and two transmit buffers. When one receive buffer fills up, the driver
begins to fill the other receive buffer. Similarly, when the framework wants to output data to the
device, it should switch back and forth between transmit buffers each time a buffer becomes full.

ARRAY 0 1 2 3 4 5 6 7
INDEX SLAVE MASTER MASTER SLAVE SLAVE MASTER MASTER SLAVE
CHAN 2 CHAN 1 CHAN 2 CHAN 1 CHAN 2 CHAN 1 CHAN 2 CHAN 1
CONTROL DATA DATA DATA DATA CONTROL | CONTROL | CONTROL
REG WORD WORD WORD WORD REG REG REG

SLV_CHAN2_C MST_CHANLI D MST_CHAN2_ D SLV _CHAN1 D SLV_CHAN2_D MST_CHANI_C MST_CHAN2_C SLV_CHAN1_C

Figure 15. RCV and XMT Ping-Pong Buffer Format

The following enumerated types, defined in the header file <dsk5416_aic20evm.h>, are used to
locate specific channel information within each buffer, rather than trying to remember which time
slot corresponds to which channel's data and control information:

/* Enunerated types for array locations in the DSK5416_Al C20EVM buffers */
typedef enum DSK5416_AlI C20EVM Buf f er I ndex {

SLV.CHAN2_C, // "Slave" Channel 2 CTRL sl ot
MST_CHANL_D, // "Master" Channel 1 DATA sl ot
MST _CHAN2 D, // "Master" Channel 2 DATA sl ot
SLV_CHAN1_D, // "Slave" Channel 1 DATA sl ot
SLV.CHAN2 D, // "Slave" Channel 2 DATA sl ot
MST_CHANL_C, // "Master" Channel 1 CTRL sl ot
MST _CHAN2_C, // "Master" Channel 2 CTRL sl ot
SLV_CHAN1_C // "Slave" Channel 1 CTRL sl ot

} DSK5416_AlI C20EVM Buf f er | ndex;

TMS320C54x DSP Reference Framework & Device Driver for the TLV320AIC20 HPA Data Converter
25

SLAA166

‘9 TEXAS
INSTRUMENTS

8.2.3.2 Channel Configuration Array

26

Within the device driver interface, there is an array (of size DSK5416_AIC20EVM_NUMCHANS) of
channel configuration parameters that is declared globally so that both framework and device
driver can access them. Each element of the array is just a structure that contains all of the
possible control register settings that pertain to a specific channel. The device driver initializes
each channel’s structure with a set of common default values during compile time. However,
there are certain parameters that cannot be the same for each channel, such as the input (ADC)
and output (DAC) settings. Before the device driver sends out these control register settings
during device initialization, the device driver code itself needs to be modified manually to
incorporate settings other than the default.

In the example source file dsk5416_aic20evm.c, locate the following portion of code that is part
of the DSK5416_AlI C20EVM set up() function:

Voi d DSK5416_Al C20EVM set up()

{

/1 ** TODO Configure the unique configuration paraneters for each
DSK5416_Al C20EVM _chanConf i gPar ans[MST_CHAN1]
DSK5416_Al C20EVM _chanConf i gPar ans[MST_CHANZ]
DSK5416_Al C20EVM _chanConf i gPar ams[SLV_CHAN1] .
DSK5416_Al C20EVM chanConf i gPar ans[SLV_CHANZ2] .

DSK5416_Al C20EVM chanConf i gPar ans[MST_CHAN1] .
DSK5416_Al C20EVM _chanConf i gPar ans[MST_CHANZ]
DSK5416_Al C20EVM chanConf i gPar ans[SLV_CHAN1]
DSK5416_Al C20EVM _chanConf i gPar ams[SLV_CHANZ?] .

}

channel **

.reg[CR6A] = LINElI; // master chl ADC
.reg[CR6A] = MCl; [// master ch2 ADC
reg[CR6A] = HNSI; // slave chl ADC
reg[CR6A] = HDSI; // slave ch2 ADC
reg[CR6B] = LINEQ, // master chl DAC
.reg[CR6B] = SPKO, // master ch2 DAC
.reg[CR6B] = SPKGQ, // slave chl DAC
reg[CR6B] = HDSO // slave ch2 DAC

The above code is setting each channel’'s ADC and DAC lines for a specific configuration. Here
is where any other control register modifications can be added and set for each channel. The
above code which is supplied out of the box with the associated sample code results in the
following voice device 1/O configuration on the AIC20EVM board:

Table 3. DSK5416_AIC20EVM Default I/0 Codec Channel Settings
AIC20EVM CASCADE EVM INPUT CODEC INPUT LINE | EVM OUTPUT CODEC OUTPUT LINE
CHANNEL CONNECTION CONNECTION
Master channel #1 J14 (+/-) Line input (LINEI) J5 (+/-) Line output (LINEO) [600 Q]
Master channel #2 J16 (3.5 mm MIC input (MICI) J2 (+/-) Speaker output (SPKO) [8 Q]
input jack)
Slave channel #1 J19 (+/-) Hand set input (HNSI) J11 (+/-) Speaker output (SPKO) [8 Q]
Slave channel #2 J13 (+/-) Head set input (HDSI) J3 (+/-) Head set output (HDSO) [150 Q]

CAUTION:

Disconnecting and reconnecting the sound sources from the codec input lines
during normal operation could result in unwanted noise spikes input to the
channels and cause the DSK5416 AIC20EVM device driver to stop working

altogether.

TMS320C54x DSP Reference Framework & Device Driver for the TLV320AIC20 HPA Data Converter

*ﬂ’ TeExXAS
INSTRUMENTS

SLAA166

The device header file <aic20.h> contains the configuration structure definition that is used for
each channel. A set of default control registers is set in this header file and can be changed

freely by the application developer so that a known default set of control registers is

programmed for all AIC20 cascaded channels during the DSK5416_Al C20EVM open()
function call. The default sampling rate as specified in the <aic20.h> file that is packaged with
the sample application code is 8 kHz for each channel. Making changes to the sampling
frequency may involve reconfiguring the DSP CLKOUT which is based on the DSP clock speed.

ARRAY
INDEX

reg[10]
reg[11]
reg[12]
reg[13]

control word determine which sub-register of the overall

WARNING:
Do not change the bit fields that determine the different register contents for a
Control Register with the same number (e.g. control register #5 has four sub-
registers: CRs # 5A, 5B, 5C, 5D). Typically, the 1 or 2 most significant bits of the

control register gets

programmed. Refer to the <aic20.h> file comments that identify these bit fields.

0 1 2 3
MASTER MASTER SLAVE SLAVE
CHAN 1 CHAN 2 CHAN 1 CHAN 2

CONTROL CONTROL CONTROL CONTROL
REGISTERS REGISTERS REGISTERS REGISTERS
CR #01 CR #01 CR #01 CR #01
CR #02 CR #02 CR #02 CR #02
CR #3A CR #3A CR #3A CR #3A
CR #3B CR #3B CR #3B CR #3B
CR #3C CR #3C CR #3C CR #3C
CR #3D CR #3D CR #3D CR #3D
CR #4A CR #4A CR #4A CR #4A
CR #4B CR #4B CR #4B CR #4B
CR #5A CR #5A CR #5A CR #5A
CR #5B CR #5B CR #5B CR #5B
CR #5C CR #5C CR #5C CR #5C
CR #5D CR #5D CR #5D CR #5D
CR #6A CR #6A CR #6A CR #6A
CR #6B CR #6B CR #6B CR #6B

Figure 16. Cascade Channel Configuration (Global Shadow Registers)

8.3 Implementation of the Device Driver

8.3.1 Design Decisions and Core Code

8.3.1.1 DSP Peripherals and Initialization Sequence

Before the DSP can communicate with the AIC20 devices, its McBSP must be configured during
the system initialization phase. TI's chip support library (CSL) tools and APIs are used to easily
configure the McBSP #1 so that it can properly receive and transmit data from/to the device.

TMS320C54x DSP Reference Framework & Device Driver for the TLV320AIC20 HPA Data Converter

27

*ﬂ” TEXAS

SLAA166 INSTRUMENTS

28

The chip support library can be used in two ways — via a DSP/BIOS configuration file (*.CDB), or
by programmatically invoking APIs. The DSK5416_AIC20EVM device driver uses the CSL in
both ways. To configure the McBSP, the audioapp.cdb file is used to store information on how
the serial port should be configured at startup. To see the settings that are required for proper
receive and transmit operation of the McBSP, double-click on the audioapp.cdb file that is part of
the CCS project in the Project View window. Expand the Chip Support Library category and
then expand the MCBSP Multichannel Buffered Serial Port and then the MCBSP Channel
Configuration categories. Right-click on the mcbspCfg0 icon and select Properties.

¥ aifce ki | Spect i Dagial 1T | - S - ke 1 pavpeties Slwia N E DSE Taale I =\ X}
ﬂﬂdﬂu'ﬁ_ﬁ,ﬂmmmw1ﬁmmﬂ E)
WEE)RR W KA @ ST EE| e
[— #][ietag o (B = - By s
Ble oosEEEd |
h = T S .oy
{1 it Kot Dala Fom TTH K- Min ook BeeDol) 1T _ieclgtholi o _ _ _ _ _ o o
T et 2 Er | [Fropty [vdm [
i - & | g [rutrarmrt e Cesifirgen D0, PO ared O m Sarial Pk Pem Trem
n Tl PG Comig \". B by 1| i e 11341 Estovnm :
: | T 1| e e)
Fi ‘ ,;,m,mm, | | Dok odsery Falng Eds |
W inckde N = Frawre-Twme Podariy (PR e Hagh
= Y] L > -‘ﬂmm :':;;l.wmm ! :q'_p'h'”m' Dty !
- 4 1 5 i
i 1 Mg “ D« arrersl Pursose | X D'llql:lI-l'n._ ot |
i oagh G Clit P s Sopriiiet Frumm CPRRCE | Irgr o
- B 1 b 1 [l uqlnrb:?rr-mm-wl 1 || macon g P [TWDLERT | TN T 1
I = gl MCESF Condnaon Fasa | | et L e et 1805 |
-—— = whor i T P | CREIENT) B -l
g |G- - Ly ey : |
ﬁ — T e — = = = 1 Dt Frarws (Do (50T CTREA) Teiatis 1
T i B T sl Intwreap Fiosde SEHTHY Fias Iy ST |
TEF. - Nimae Dz 1 | b 1o Svme Poporan (79161 Fatmi Trarmin
o - 1] 1 Cirmuirvien) | TLOMSRL WO g reE Frat |
i Y SOEPER - W) Tee Deaie B] Extiaa |
I Confupes F, P, OUEA, gd CUES o Seval Posit P Tres I
Clio b ke [T = (] CLEFLMT s res
! Chock Moas [T = | | (CLEAM] AR e Ot |
1| Ciock Polssty fimRy Furgg Ecigm
| Framrw-Syrc Pty (FIRF| Fcrew High |
I e oy (PLA TR Y 14 1
Fos FUARET) S v
| | whont Langeh Preweed [EWEAEMIy 16-hits I
B i |ngih Prasee] (BT M) Ji-bis
| | sorenyTrars M| (prem) [!
| | wordPrors P Frruma) | |
| [t 2o e iacem) Dy 1
Iy Figie TIPS 2]
1 | PSS Estval I
1 Bk P S B (RFIE) Fesstant Traedes 1
Segrefi bl pctlicadian (RULET) Lt il el
| | Compuarding (FoCd BT Mo Carpancding-PEE P
B 1
;E_
[I Fix Helpy, Lo F

Ruw| NEDEE P IO Pwwtman | Bpoewss [vogusisn. Brnswa | QS HIMER ANSLR 0w

Figure 17. DSP Peripheral Configuration Using CSL

The DSP/BIOS system takes care of initializing the McBSP based on these settings. Once the
McBSP #1 is configured, only a single call to a CSL API needs to be performed. Once the
McBSP has started, a series of control words, based on the contents of the global channel
configuration array, is sent out in a single stream all at once. DSK5416_Al C20EVM open()
must be called after the one-time call to DSK5416_Al C20EVM_i ni t ().

TMS320C54x DSP Reference Framework & Device Driver for the TLV320AIC20 HPA Data Converter

*ﬂ" TeExXAS
INSTRUMENTS SLAA166

DSK5416_Al C20EVM Devi ceHandl e DSK5416_Al C20EVM open()

{
| RQ _enabl e(1 RQ_EVT_XI NT1) ;

MCBSP_st ar t (C54XX_MCBSP_hMcbsp, MCBSP_XM T_START | MCBSP_RCV_START |
MCBSP_SRGR_START | MCBSP_SRGR _FRAMESYNC, 220);

/1 Send out all the Control Register data for all channels
DSK5416_Al C20EVM pr ogr amAl | Regs() ;

I RQ enabl e(I RQ_EVT_RINT1);

8.3.1.2 Configuring DSP Speed, DSP CLKOUT, and AIC20 Sampling Frequency

A master clock (MCLK) signal must be provided to drive each AIC20 device. All of the AIC20’s
operations and timings are driven off the incoming MCLK signal. In turn, each AIC20 generates
a serial clock (SCLK), which is then fed back to the McBSP to drive the read/write bit timings.

The TMS320VC5416 ™ DSP is capable of operating at a maximum speed of 160 MHz. Based
on the DSP speed, a CLKOUT can be generated to drive an external device such as the AIC20.
In essence, the CLKOUT serves as the MCLK for the AIC20 cascade. The VC5416 allows the
CLKOUT to be derived from the DSP speed divided by a factor of 1, 2, 3, or 4.

On the C5416DSK board, a 16-MHz oscillator feeds the CLKIN to the DSP. The DSP PLL
multiplier value (PLLMUL) allows the DSP speed to be set as a multiple of the CLKIN, up to 160
MHz. For this reference platform, 144 MHz was chosen for the DSP speed. Why was 160 MHz
not chosen — the maximum speed allowable for the TMS320VC54167?

According to the AIC20 data manual, the sampling frequency is set by the following formula:
Fs=[MCLK/(16 XMXxNXxP)]
{10 MHz <= (MCLK / P) <= 25 MHz}, {1 <= M <= 128}, {1 <= N <= 16}, {1 <= P <= 8}
By inspection, we see that the MCLK (DSP CLKOUT) value, as well as the restrictions on the

values of M, N, P, determine the attainable sampling frequency. In order to achieve exactly 8-
kHz sampling rate and get closest to the maximum DSP speed, 144 MHz was chosen because:

CLKOUT =DSP Speed / PLLDIV =144 MHz / [1, 2, 3, 4] = 144 MHz / 3 = 48 MHz
Using a CLKOUT of 48 MHz, it is possible to achieve exactly 8 kHz, 12 kHz, and 24 kHz
sampling rates with the DSP running at 144 MHz. For example, to get exactly 8 kHz, we can

choose M=15, N=5, P=5 so that [48 MHz / (16 x 15 x 5 x 5)] = 8 kHz. It is possible to achieve 16-
kHz sampling frequency, but the DSP speed would only be 128 MHz out of a possible 160 MHz.

Table 4. DSK5416_AIC20EVM Sampling Frequency Settings

SAMPLING M N P | DSPPLLMUL | DSPPLLDIV | DSP SPEED DSP CLKOUT
FREQUENCY (AIC20 MCLK)
8 kHz 15 5 5 8 (+ 1) 3 144 MHz 48 MHz
12 kHz 10 5 5 8 (+ 1) 3 144 MHz 48 MHz
16 kHz 10 5 5 7 (+ 1) 2 128 MHz 64 MHz
24 kHz 5 5 5 8 (+ 1) 3 144 MHz 48 MHz

Note: Achieving 16-kHz sampling rate requires DSP speed and CLKOUT to be reconfigured from the default values.

TMS320C54x DSP Reference Framework & Device Driver for the TLV320AIC20 HPA Data Converter
29

‘4" TEXAS

SLAA166 INSTRUMENTS

8.3.1.3 Interrupt Service Routines

30

ISR Initialization Code

The interrupt service routines (ISRs) are initialized using TI's standard Chip Support Library
(CSL) APIs. These easy-to-use API's allow the device driver's DSK5416_Al C20EVM i ni t ()
function to dynamically plug the ISR into the vector table as well as enable global interrupts.

DSK5416_Al C20EVM Devi ceHandl e DSK5416_Al C20EVM.i ni t ()

{
U nt 16 i ndex;

/1 Set up the SWABR, BSCR, SWCR registers
EBUS_confi g(&DSK5416_Al C20EVM nmyMenConfi g) ;

[/l Check for Mbtherboard connection and force reset if it's there
if (DSK5416_DC REG & DSK5416_DC DETECT) {

DSK5416 DC REG &= DSK5416 DC NO RST;

DSK5416_DC REG | = DSK5416_DC RESET;

for (index = 0; index < EB_RESET_DELAY; index++)

DSK5416_Al C20EVM del ay(EB_RESET_DELAY) ;

DSK5416 DC REG &= DSK5416 DC NO RST;
}
el se

return (FALSE);

/1 Clear any pending interrupts (IFR)
I RQ cl ear (I RQ_EVT_RI NT1);
I RQ cl ear (1 RQ_EVT_XI NT1);

/1 Place the HW hooks at the proper spots in the interrupt vector table
/1 NOTE: only use I RQ plug() when NOT using the DSP/BI OS HWN Di spatcher!!!
I RQ_pl ug(! RQ_EVT_RINT1, &DSK5416_Al C20EVM r cvXnt Sanpl e) ;

I RQ pl ug(! RQ_EVT_XI NT1, &DSK5416_AlI C20EVM franeSync);

/1 Enable interrupts globally (INTM
| RQ_gl obal Enabl e();

/1l Device initialization successful
return (TRUE);

The McBSP transmitter is initialized to generate an interrupt on every new FS detected. The
McBSP receiver will be initialized to generate an interrupt on every RRDY Event, which means
each time a new data word has been received at the McBSP and shifted into the data receive
register (DRR). The CPU can directly access the DRR without much of a performance hit, since
it is a memory mapped register (MMR) that resides in DSP internal data memory. The details of
what happens during every McBSP Tx and Rx interrupt are discussed in the following section.

TMS320C54x DSP Reference Framework & Device Driver for the TLV320AIC20 HPA Data Converter

*ﬂ" TEXAS

INSTRUMENTS SLAA166
- McBSP Tx Interrupt generated on every FS ----J»
Master FS
4— pataFrame — P4 Control Frame — P4 ——— DataFrame — »
D_OUT Slave |Master | Master |Slave |Slave [Master | Master |Slave | Slave |Master | Master |Slave | Slave
Time Slots |Chan 2| Chan 1 | Chan 2 | Chan 1 |Chan 2 {Chan 1| Chan 2 |Chan 1| Chan 2 | Chan 1 [Chan 2 [Chan 1 | Chan 2

*

McBSP Rx Interrupt generated on every incoming sample

Figure 18. McBSP Interrupt Service Routines Configuration

McBSP Transmit ISR (Tx Event = FSX Detected)

The FS signal from the master AIC20 device is connected to the FSX and FSR inputs of the
McBSP. This configuration allows the DSP to detect the FS at the McBSP, generate an
interrupt, and have the interrupt serviced. The function DSK5416_Al C20EVM franmeSync() is
implemented to increase a global frame sync counter, as well as tell the DSP that the current
data word coming into the McBSP DRR corresponds to the first timing slot of the FS period. A
global index array is used to point to the current time slot. Each time the FS interrupt occurs,
this index is simply set to 0 which serves as the pointer to the first array element of the receive
buffer. The McBSP Rx ISR relies on the Tx ISR to reset the buffer index each time a new FS
signal is detected at the McBSP FSX input.

interrupt void DSK5416_Al C20EVM frameSync()
/1 Called when FSX detected
{
/1 Update counter to signal that another FS has just been detected
DSK5416_Al C20EVM gFsCount er ++;
/'l Reset timng slot pointer
DSK5416_AlI C20EVM gBuf f er I ndex = O;
}

McBSP Receive ISR (Rx Event = RRDY Detected)

The McBSP’s receive mode can be configured to generate a special interrupt each time a new
data word has been read at the McBSP. Therefore, the logical function for the associated ISR
would be to just read in the current contents of the DRR. The global buffer index is always
pointing to the current time slot which just corresponds to a specific position in the receive buffer
array. Once the data has been read and written to the receive buffer, the buffer index is
incremented for the next data word to be read at the McBSP. When the index reaches the
frame buffer size, that signals that the buffer is full and needs to be processed. A DSP/BIOS
software interrupt (SWI) is posted which invokes the pr ocessBuf f er () function where the
data can be consumed by the application framework.

TMS320C54x DSP Reference Framework & Device Driver for the TLV320AIC20 HPA Data Converter
31

‘4" TEXAS
SLAA166 INSTRUMENTS

In a DSP/BIOS-based scheduling system, the highest priority SWI runs, but can be preempted
by all hardware interrupts (HWIs). In this example, the hardware interrupts are used to read and
write the actual data values while the SWIs are used to perform the less urgent (but still real-
time critical) DSP processing functions on the filled receive buffers. The McBSP receive ISR
keeps track of how many words have been written into the current receive ping-pong buffer, and
when the buffer is full (i.e. FS period completed), the SWI processing function is posted and runs
in the context of the DSP/BIOS scheduler when no HWIs are being serviced.

Since both receive and transmit modes are driven by the same serial clock (SCLK) of the AIC20
cascade, it would make sense for the device driver to transmit an output sample for every input
sample that is received. So, the McBSP receive ISR immediately writes out a sample from the
current Tx buffer right after a new sample has been read into the current Rx buffer. However,
since the McBSP transmit mode is double-buffered, whatever data word is written to the data
Xmit register (DXR) appears on the data bus exactly 2 time slots in the future. So, the ISR must
look ahead two channels and get that channel's data to write out during each current read cycle
(triggered by an RRDY event).

For example, if the current received word is master channel 1's data, then the Tx data for slave
channel 1 must be written to the McBSP immediately after the read (buffer index 1>2->[3]). If
the current Rx timing slot is slave channel 1's CR contents, then the Tx data for master channel
1 (buffer index 7->0->[1]) must be immediately written to the McBSP to assure it falls within the
correct timing slot 2 cycles in the future, due to the double-buffered nature of the McBSP
transmitter. See the following Table for the lookahead decision-making process on which Tx
buffer sample must be sent out depending on the current Rx buffer index. In summary, every
read cycle (i.e. every RRDY receive event) must include one read and one write operation by
the host processor to keep the TDM DIN and DOUT data streams continuous. The
DSK5416_Al C20EVM r cvXm Sanpl e() function is plugged into the vector table as the ISR to
run for every McBSP RRDY event.

interrupt void DSK5416_AlI C20EVM rcvXnt Sanmpl e() // Called for every McBSP RRDY Receive event

{
static short DSK5416_Al C20EVM pi ngOr Pong = PI NG

i f (DSK5416_Al C20EVM pi ngOr Pong == PING {
/! Read the current DOUT word
DSK5416_Al C20EVM gBuf f er RevPi ng[gBuf f er I ndex] = MCBSP_r ead16(C54XX_MCBSP_hMbsp) ;
/! Wite out the DIN word for the corresponding future timng slot
MCBSP_wr i t e16(DSK5416_Al C20EVM gBuf f er Xnt Pi ng[(gBuf f er | ndex+RXTXOFFSET) % BUFFSI ZE)]) ;
Il Increment timing slot pointer for next read
DSK5416_AlI C20EVM gBuf f er | ndex++;
I/ Post SW if frame buffer full
i f (DSK5416_Al C20EVM gBuf fer | ndex == DSK5416_Al C20EVM BUFFSI ZE) {
SW _or (&processBufferSwi, PING;
DSK5416_Al C20EVM pi ngOr Pong = PONG,
}

}
el se { // DSK5416_Al C20EVM pi ngOr Pong == PONG

<repeat above code exactly but for the PONG Rx & Tx buffers>
}

}

32 TMS320C54x DSP Reference Framework & Device Driver for the TLV320AIC20 HPA Data Converter

*ﬂ" TEXAS

INSTRUMENTS SLAA166
Table 5. DSK5416_AIC20EVM McBSP Write Decision per Receive Interrupt
BUFFER | CURRENT READ (DOUT) TIME SLOT | TX BUFFER | (DIN) TIME SLOT DATA TO IMMEDIATELY
INDEX BASED ON CURRENT RX BUFFER ARRAY WRITE TO DXR AFTER CURRENT READ
(RX) INDEX VALUE LOCATION (DOUT) FROM DRR
0 SLAVE CHANNEL #2 CONTROL 2 MASTER CHANNEL #2 DATA
1 MASTER CHANNEL #1 DATA 3 SLAVE CHANNEL #1 DATA
2 MASTER CHANNEL #2 DATA 4 SLAVE CHANNEL #2 DATA
3 SLAVE CHANNEL #1 DATA 5 MASTER CHANNEL #1 CONTROL
4 SLAVE CHANNEL #2 DATA 6 MASTER CHANNEL #2 CONTROL
5 MASTER CHANNEL #1 CONTROL 7 SLAVE CHANNEL #1 CONTROL
6 MASTER CHANNEL #2 CONTROL 0 SLAVE CHANNEL #2 CONTROL
7 SLAVE CHANNEL #1 CONTROL 1 MASTER CHANNEL #1 DATA

8.3.2 Coding Conventions, File Structure, and Packaging

The DSK5416_AIC20EVM device driver code follows the standard coding conventions used in
all eXpressDSP™ components (XDAIS, DSP/BIOS, RF) to allow for ease of integration and easy
readability. All global symbols are prefixed with the <BOARD>_<DEVICE>_ API designation
(e.g. DSK5416_AIC20EVM_) prefix to maintain uniqueness of symbol names so that the code
can co-exist with all other system code and avoid symbol clashes. The interface itself also
follows a uniform naming convention so that it is always obvious if a label is a constant, data
type, function name, field within a structure, a function parameter, etc.

Table 6.

DSK5416_AIC20EVM Example Naming Conventions

Label Type

Convention

Example

SYMBOLIC CONSTANTS

All UPPERCcase, single word (no
underscores) after prefix

DSK5416_AIC20EVM_NUMCHANS

All data types

Titlecase (no underscores) after prefix

DSK5416_AIC20EVM_Bufferindex

Structure fields DSK5416_AIC20EVM_chanConfigParams|[].reg[]
DSK5416_AIC20EVM_writeControlWords(Uint16

Begins with lowercase after prefix (N0 imaster, Uint16 slave2, Uint16 slavel, Uintl6 Slave0)
underscores after the prefix)

function parameters

variables DSK5416_AIC20EVM_hDevice

function names Single-word (no underscores), begins DSK5416_AIC20EVM_init()

with lowercase after prefix

Note: Never use the underscore (‘_’) character to separate words after the <BOARD>_<DEVICE>_ prefix; use Titlecase words
instead to separate multiple worded names (e.g. DSK5416_AIC20EVM_readControlDataWords)

The DSK5416_AIC20EVM device driver files also follow the standard eXpressDSP™ device
driver packaging and delivery conventions. The main interface to the device driver is aptly
named dsk5416_aic20evm.h (following the <board>_<device>.h naming convention), and only
the relevant data types and APIs are exposed to the outside world. The following is a summary
of the files that make up the DSK5416_AIC20EVM device driver:

* <aic20.h> — contains control register configuration data types and default settings

» <dsk5416_aic20evm.h> — contains all relevant constants, data types, and APIs used to
interact with the device driver

TMS320C54x DSP Reference Framework & Device Driver for the TLV320AIC20 HPA Data Converter
33

‘4" TEXAS

SLAA166 INSTRUMENTS

8.4

8.4.1

34

e dsk5416_aic20evm.c — contains all device-specific code for basic AIC20EVM operations

e dsk5416 aic20evm_ctrl.c — contains (optional) run-time control code to change channel
operating parameters on the fly

Typically, eXpressDSP™ device drivers are packaged as a single library file which follows the
<board>_<device>.I<dspcore> naming convention. The library file can then be linked into the
application just as if it were any other foundation library used for building the project. For this
application note example, the device driver object code is packaged in a single file named
dsk5416_aic20evm.I54f, where the f stands for far calls and returns on the C54x-based object
code. For an application that uses the near call/return memory model, the device driver source
code could be rebuilt with the appropriate options and named dsk5416_aic20evm.|54 (no f in the
suffix) to designate that the library is to be used in a near memory model system only.

NOTE: The | in the *.154f file name suffix is a lower-case letter L. This is how TI distinguishes file
names that are library archives.

Changing Device and Channel Parameters During Run-Time

The DSK5416 AIC20EVM device driver code out of the box, in its currently released form,
configures the AIC20 devices for programming mode (vs continuous mode). Programming
mode means that for every FS period, there is a specific time slot to either send a command to
read/write a specific control register of a specific channel. For example, if there are four audio
channels in the cascade, then each FS period consists of eight timing slots (first four timing slots
are for reading/writing the actual data sample, while the remaining four timing slots read or write
to a single control register for the time slot’s channel).

To send either a read or write control register command to a specific channel, the framework
needs to write the command in the appropriate location in the Xmt ping-pong buffer. If no
command is to be sent out, then the value of the command should be set to zero since it is not
desired to write a random value to the control register timing slot and inadvertently change it.

Run-Time Control Functions

The sample source file dsk5416_aic20evm_ctrl.c contains a group of ready-to-use wrapper
functions that modify control register contents in the channel configuration array using
convenient-to-use high-level APIs called by the framework. The channel configuration array can
be treated as shadow registers of the actual AIC20 device registers. The framework only needs
to call the functions on the correct channels by writing to the appropriate control register timing
slot(s) in the Xmt ping-pong buffer.

TMS320C54x DSP Reference Framework & Device Driver for the TLV320AIC20 HPA Data Converter

*ﬂ" TeExXAS
INSTRUMENTS SLAA166

DSK5416_Al C20EVM gBuf f er Xnt Pi ng[MST_CHANL_C] =
DSK5416_Al C20EVM enabl eFl R(hDevi ce, MST_CHANL) ;
DSK5416_Al C20EVM gBuf f er Xnt Pi ng[MST_CHAN2_C] =
DSK5416_Al C20EVM _nut eHandset (hDevi ce, MST_CHAN2, DSK5416_Al C20EVM ENABLE) ;
DSK5416_Al C20EVM gBuf f er Xnt Pi ng[SLV_CHANL_C] =
DSK5416_AlI C20EVM set Speaker Gai n(hDevi ce, SLV_CHAN1, SPKG DB02);
DSK5416_Al C20EVM gBuf f er Xnt Pi ng[SLV_CHAN2_C] =
DSK5416_Al C20EVM set Si det oneGai ns(hDevi ce, SLV_CHAN2, S| DETONEMJTE, STG _NDB27);

In the above example, by just writing to the appropriate control register timing slots into the Xmt
buffer of the device driver, the following configuration parameters are changed within the same
FS period:

* Master channel #1 FIR filter is ENABLED (IR filter is disabled automatically)

* Master channel #2 handset output is MUTED

» Slave channel #1 speaker gain is set to +2 dB

» Slave channel #2 sidetone gains are set (Analog is MUTED & Digital = —27dB)

Whenever no control register changes are needed, it is strongly recommended to write O’s for
the control register timing slots to avoid inadvertently writing out random control data.

DSK5416_Al C20EVM gBuf f er Xnt Pong[MST_CHAN1_C] = 0; // Master Chan 1 ctrl
DSK5416_Al C20EVM gBuf f er Xnt Pong[MST_CHAN2_C] = 0; // Master Chan 2 ctrl
DSK5416_Al C20EVM gBuf f er Xnt Pong[SLV_CHAN1_C] = 0; // Slave Chan 1 ctrl
DSK5416_Al C20EVM gBuf f er Xnt Pong[SLV_CHAN2_C] = 0; // Slave Chan 2 ctrl

The following is a complete list of the run-time AIC20 control functions supplied with the existing
DSK5416_AIC20EVM driver module (also found in the header file <dsk5416_aic20evm.h>:

Control Register #1

Ui nt 16 DSK5416_Al C20EVM enabl eFl R(DSK5416_Al C20EVM Devi ceHandl e hDevi ce,
DSK5416_Al C20EVM _Channel chan);
Ui nt 16 DSK5416_Al C20EVM enabl el | R(DSK5416_Al C20EVM Devi ceHandl e hDevi ce,
DSK5416_Al C20EVM _Channel chan);
U nt 16 DSK5416_Al C20EVM set Anal ogLoopback(DSK5416_Al C20EVM Devi ceHandl e hDevi ce,
DSK5416_Al C20EVM _Channel chan,
DSK5416_Al C20EVM Cnd cnd) ;
Ui nt16 DSK5416_Al C20EVM set Di gi t al Loopback(DSK5416_Al C20EVM Devi ceHandl e hDevi ce,
DSK5416_Al C20EVM Channel chan,
DSK5416_Al C20EVM Cnd cnd) ;

Control Register #2

U nt 16 DSK5416_Al C20EVM set Tur bovbde(DSK5416_Al C20EVM Devi ceHandl e hDevi ce,
DSK5416_Al C20EVM Channel chan,
DSK5416_Al C20EVM Cnd cnd) ;

U nt 16 DSK5416_Al C20EVM set DI Fbypass(DSK5416_Al C20EVM Devi ceHandl e hDevi ce,
DSK5416_Al C20EVM _Channel chan,
DSK5416_Al C20EVM Cnd cnd) ;

TMS320C54x DSP Reference Framework & Device Driver for the TLV320AIC20 HPA Data Converter
35

‘4" TEXAS

SLAA166 INSTRUMENTS

36

Control Register #3A

Ui nt 16 DSK5416_Al C20EVM _power downADC(DSK5416_Al C20EVM Devi ceHandl e hDevi ce,
DSK5416_Al C20EVM_Channel chan);

Ui nt 16 DSK5416_Al C20EVM _power downDAC(DSK5416_Al C20EVM Devi ceHandl e hDevi ce,
DSK5416_Al C20EVM_Channel chan);

Ui nt 16 DSK5416_Al C20EVM power downALL(DSK5416_Al C20EVM Devi ceHandl e hDevi ce,
DSK5416_Al C20EVM_Channel chan);

Ui nt 16 DSK5416_Al C20EVM r eset (DSK5416_Al C20EVM Devi ceHandl e hDevi ce,

DSK5416_Al C20EVM_Channel chan);

Control Register #3B

Ui nt 16 DSK5416_Al C20EVM set 8KBPF(DSK5416_Al C20EVM Devi ceHandl e hDevi ce,
DSK5416_Al C20EVM _Channel chan,
DSK5416_Al C20EVM Cnd cnd) ;
Ui nt 16 DSK5416_Al C20EVM nut eHandset (DSK5416_AlI C20EVM Devi ceHandl e hDevi ce,
DSK5416_Al C20EVM Channel chan,
DSK5416_Al C20EVM Cmd cnd) ;
U nt 16 DSK5416_AlI C20EVM nut eHeadset (DSK5416_AlI C20EVM Devi ceHandl e hDevi ce,
DSK5416_Al C20EVM _Channel chan,
DSK5416_Al C20EVM Cnd cnd) ;
Ui nt 16 DSK5416_Al C20EVM nut eLi neQut put (DSK5416_Al C20EVM Devi ceHandl e hDevi ce,
DSK5416_Al C20EVM Channel chan,
DSK5416_Al C20EVM Cnd cnd) ;
U nt 16 DSK5416_AlI C20EVM nut eSpeaker (DSK5416_AlI C20EVM Devi ceHandl e hDevi ce,
DSK5416_Al C20EVM Cnd cnd,
DSK5416_Al C20EVM _Channel chan);

NOTE: Control registers #4A and #4B are used to set the M, N, P values for configuring the
sampling frequency. It is not advisable to reconfigure the sampling frequencies during run-time,
especially since those values may depend on reconfiguring the DSP speed and CLKOUT
frequencies as well. Hence, no run-time control functions are supplied for these registers.

Control Register #5A

typedef enum DSK5416_AlI C20EVM A2DGain { /* e.g. DB0O7_5 = +7.5 dB A/D Gain */
A2DMUTE, DB54_0, DB48_0, DB42_0, DB40_5, DB39_0, DB37_5, DB36_0, DB34_5, DB33_0,
DB31 5, DB30 0, DB28 5, DB27 0, DB25 5, DB24 0, DB22 5, DB21 0, DB19 5, DB18 0,
DB16_5, DB15_0, DB13_5, DB12_0, DB10_5, DB09_0, DB07_5, DB06_0, DB04_5, DB03_0,
DBO1 5, DB0OO_O

} DSK5416_AlI C20EVM_A2DGai n;

Ui nt 16 DSK5416_Al C20EVM set ADPGA(DSK5416_AlI C20EVM Devi ceHandl e hDevi ce,
DSK5416_Al C20EVM Channel chan,
DSK5416_Al C20EVM A2DGai n gai n) ;

Control Register #5B

typedef enum DSK5416_AlI C20EVM D2AGain { /* e.g. NDBO7_5 = -7.5 dB DA Gain */
D2AMUTE, NDB54_0, NDB48_0, NDB42_0, NDB40_5, NDB39_0, NDB37_5, NDB36_0, NDB34_5,

NDB33_0, NDB31_5, NDB30_0, NDB28_5, NDB27_0, NDB25_5, NDB24_0, NDB22_5, NDB21_0,

NDB19_5, NDB18_0, NDB16_5, NDB15_0, NDB13_5, NDB12_0, NDB10_5, NDB09_0, NDBO7_5,

NDBO6_0, NDB04_5, NDB03_0, NDBO1_5, NDB0O_O

} DSK5416_Al C20EVM D2AGai n;

TMS320C54x DSP Reference Framework & Device Driver for the TLV320AIC20 HPA Data Converter

*ﬂ" TeExXAS
INSTRUMENTS SLAA166

U nt 16 DSK5416_Al C20EVM set DAPGA(DSK5416_AlI C20EVM Devi ceHandl e hDevi ce,
DSK5416_AlI C20EVM_Channel chan,
DSK5416_Al C20EVM D2AGai n gai n);

Control Register #5C

typedef enum DSK5416_ Al C20EVM Si detoneGain { /* e.g. STG NDB24 = -24 dB s/t gain */
S| DETONEMUTE, STG NDB27, STG NDB24, STG NDB21, STG NDB18, STG NDB15, STG NDB12,

STG_NDB09

} DSK5416_Al C20EVM Si det oneGai n;

U nt 16 DSK5416_Al C20EVM set Si det oneGai ns(DSK5416_Al C20EVM Devi ceHandl e hDevi ce,
DSK5416_Al C20EVM Channel chan,
DSK5416_Al C20EVM _Si det oneGai n gai nAnal og,
DSK5416_Al C20EVM _Si det oneGai n gainDigital);

Control Register #5D

typedef enum DSK5416_AlI C20EVM SpeakerGain { /* e.g. SPKG DBO1 = +1 dB speaker gain */
SPKG_DB00, SPKG DB01, SPKG DB02, SPKG DB03
} DSK5416_AlI C20EVM Speaker Gai n;

U nt 16 DSK5416_Al C20EVM set Speaker Gai n(DSK5416_Al C20EVM Devi ceHandl e hDevi ce,
DSK5416_Al C20EVM _Channel chan,
DSK5416_Al C20EVM Speaker Gai n gai n);

Control Register #6A

U nt 16 DSK5416_Al C20EVM set Headset | Q(DSK5416_Al C20EVM Devi ceHandl e hDevi ce,
DSK5416_Al C20EVM _Channel chan,
DSK5416_Al C20EVM Cnd cnd) ;
U nt 16 DSK5416_Al C20EVM set Handset | OQ(DSK5416_Al C20EVM Devi ceHandl e hDevi ce,
DSK5416_Al C20EVM Channel chan,
DSK5416_Al C20EVM Cnd cnd) ;
U nt 16 DSK5416_Al C20EVM set Cal | er | D(DSK5416_Al C20EVM Devi ceHandl e hDevi ce,
DSK5416_Al C20EVM _Channel chan,
DSK5416_Al C20EVM Cnd cnd) ;
U nt 16 DSK5416_Al C20EVM set Li nel nput (DSK5416_Al C20EVM Devi ceHandl e hDevi ce,
DSK5416_Al C20EVM Channel chan,
DSK5416_Al C20EVM Cnd cnd) ;
U nt 16 DSK5416_Al C20EVM set M cl nput (DSK5416_AlI C20EVM Devi ceHandl e hDevi ce,
DSK5416_Al C20EVM _Channel chan,
DSK5416_Al C20EVM Cnd cnd) ;
U nt 16 DSK5416_Al C20EVM set Handset | nput (DSK5416_Al C20EVM Devi ceHandl e hDevi ce,
DSK5416_AlI C20EVM Channel chan,
DSK5416_Al C20EVM Cnd cnd) ;
U nt 16 DSK5416_Al C20EVM set Headset | nput (DSK5416_AlI C20EVM Devi ceHandl e hDevi ce,
DSK5416_Al C20EVM_Channel chan,
DSK5416_Al C20EVM Cnd cnd) ;

TMS320C54x DSP Reference Framework & Device Driver for the TLV320AIC20 HPA Data Converter
37

‘4" TEXAS
SLAA166 INSTRUMENTS

Control Register #6B

Ui nt 16 DSK5416_AlI C20EVM set Anal ogSi det oneHeadset (DSK5416_Al C20EVM Devi ceHandl e hDevi ce,
DSK5416_ Al C20EVM Channel chan,
DSK5416_Al C20EVM Cnd cnd) ;
Ui nt 16 DSK5416_AlI C20EVM set Anal ogSi det oneHandset (DSK5416_Al C20EVM Devi ceHandl e hDevi ce,
DSK5416_Al C20EVM _Channel chan,
DSK5416_Al C20EVM Cnd cnd) ;
Ui nt 16 DSK5416_Al C20EVM set Speaker Qut put (DSK5416_Al C20EVM Devi ceHandl e hDevi ce,
DSK5416_ Al C20EVM Channel chan,
DSK5416_Al C20EVM Cnd cnd) ;
Ui nt 16 DSK5416_Al C20EVM set Li neCut put (DSK5416_Al C20EVM Devi ceHandl e hDevi ce,
DSK5416_Al C20EVM_Channel chan,
DSK5416_Al C20EVM Cnd cnd) ;
Ui nt 16 DSK5416_Al C20EVM set Handset Qut put (DSK5416_Al C20EVM Devi ceHandl e hDevi ce,
DSK5416_ Al C20EVM Channel chan,
DSK5416_Al C20EVM Cnd cnd) ;
Ui nt 16 DSK5416_AlI C20EVM set Headset Cut put (DSK5416_Al C20EVM Devi ceHandl e,
DSK5416_Al C20EVM _Channel chan,
DSK5416_Al C20EVM Cnd cnd) ;

8.4.2 Run-Time Control Thread

A program on the host PC could be created to control each AIC20 channel during run-time of the
system. This program could simply send a high-level command to the target via RTDX™ and
then the framework would just need to write the command to the appropriate channel’s control
register time slot. The device driver sends out the control register command in the correct time
slot like it does with the normal audio sample data that is transmitted to the DIN line of the AIC20
device, as shown in the above code samples.

In this reference framework example, a control thread is provided as a simple example of how
the host program can send commands to the target to change its configuration such as
algorithm and device parameters. The control thread is a periodic ISR which is run every 20
timer ticks in its current DSP/BIOS configuration. So if each timer tick is 1 ms (i.e. the default
setting for DSP/BIOS), then the control thread is scheduled to run every 20 ms. The ISR
accesses a global array of data words which represents something like a device I/O area. The
array contains a specific location where if the value is nonzero, then that serves as a flag for the
control thread to take the appropriate action based on the other values in the device I/O area.

The device 1/O area array is set up to contain the gain percentage for each of the VOL_TI
algorithm instances that belong to each data channel. So if the control thread sees that the host
has just modified the device 1/O area (by checking if the first word in the device I/O area array is
non-zero), then the control thread ISR simply reads each new gain percentage value and
changes the corresponding channel’s VOL_TI algorithm object accordingly.

38 TMS320C54x DSP Reference Framework & Device Driver for the TLV320AIC20 HPA Data Converter

*ﬂ" TEXAS

INSTRUMENTS SLAA166
Int deviceControlslQArea[] = {
FALSE, /* initially, no user action */
0, /* available for future use */
100, /* default volume gain % for channel #1 */
100, /* default volume gain % for channel #2 */
100, /* default volume gain % for channel #3 */
100, /* default volume gain % for channel #4 */
I

The purpose of the control thread is to detect hardware events such as a user pressing on the
device's buttons and other controls, and applying them to data processing. (For example,
changing the volume, modifying filter parameters, canceling a channel etc.). The mechanism is
the following: a hardware event such as a button press triggers an interrupt, serviced by the
following t hr Control I sr () function.

Void thrControl Isr(Void) {
Int i;
static Uns activati onCount = O;

/* W are really called fromthe CLK object upon every tiner interrupt

* whereas user's action would occur after relatively long intervals,

* so we try to sinulate that, too. Since interrupts occur every

* 1ns (so is the CDB configured), we arbitrarily decide to actually

* do anything in this procedure every 20 interrupts, i.e. every 20 ns.
* |f the if() clause below is renpved, then the response to the user's
* action could happen in one nillisecond. That would be the case with
*

control ISR activated by a separate interrupt line. Such | SR woul d
* not need the if() clause bel ow
*/
if (++activationCount < 20) [* 20 ms */
return;
el se
activationCount = O;

/* now proceed with regular "I/O nmenory" reading actions */

/* check if there has been any unread user input */
if (deviceControl sl CArea[0] == FALSE)
return; /* there has not; return */

/* Read "volune" value for all channels and store
* the information in control thread' s data structure. Interpretation
* is trivial in this case, we just copy host's data to control thread's
* data structure.
*/
for (i = 0; i < DSK5416_Al C2OEVM NUMCHANS; i ++)
/* read "slider" for volunme */
thrControl.outputVolune[i] = deviceControlslQArea] 2 + i];

/* now post the control thread */
SW _post(&swi Control);

/* and clear the "user input" flag */
devi ceControl sl QArea[0] = FALSE;

TMS320C54x DSP Reference Framework & Device Driver for the TLV320AIC20 HPA Data Converter
39

Q’ TEXAS
SLAA166 INSTRUMENTS

This procedure quickly reads the hardware parameters, interprets them, stores the result of the
interpretation in thrControl thread's data structure, posts the swiControl thread, and exits. It does
not modify any of the data processing parameters itself.

The swiControl thread is a SWI like the processing SWIs, and has exactly the same priority; it
executes thread function t hr Cont r ol Run() . Function t hr Cont r ol Run() , based on the data
presented by t hr Cont r ol | sr (), modifies processing thread's data and/or XDAIS algorithms'
parameters. The reason the encapsulate processing parameters modification logic is in a
separate SWI thread is twofold:

* To keep the time spent in a hardware interrupt at a minimum;

« thrControllsr() mostlikely interrupted a data processing thread; Do not modify
processing parameters in the middle of processing activity.

By having swiControl have the same priority as the processing threads, we ensure that it does
not prevent them, nor gets starved by them, so it has a low latency. The swiControl thread has
the priority of the lowest-priority thread whose data parameters it modifies.

An alternative approach may be to check the device controls every certain period (for example,
20 ms), if there is no interrupt that would inform us about the hardware event. This choice
depends on the application and the device.

In our example, the host writes into an area of memory that simulates 1/0 area where the
buttons and other controls are located. There is a clkControl CLK object that runs the
thrControl I sr() function; that is a timer interrupt which simulates a device control interrupt.
This is used when developing and testing applications on a board, such as DSK5416, where no
buttons are connected to any interrupt lines. Each channel’s volume gain can be changed by
accessing the GEL sliders found in the GEL column of the CCS Toolbar (GEL - Application
Control > Set_channel_<x>_volume). More sliders can be added by modifying the provided

app.gel file.

B /C54H Simailator | Texas [nsteamsents) CFU - C54% (Simulatos) - Code Composer Studio k -|Uj£|
Flle EdkE Wiesw Project Debig Profiled)]

Il Tt jﬂﬂ'u%...lﬂ vE SRl g
| mmapn pi = || Cetug ; i | 2| B W T

Ble OBDEERNL

BR[O ssemppor = x| i)| N X1
i '-Jﬂ_lqu I

: (I Generaked Fle:
35| 2gn
o 3) Lbranes

] o sckouspp o

= - W =t
B & | - I Ll_J -|J

I ijﬂ = 200 BE 1=
CPU HALTED ' Forbelp, pressFL 'l e e

Figure 19. Host CCS GEL Sliders for Changing Channel Volumes

40 TMS320C54x DSP Reference Framework & Device Driver for the TLV320AIC20 HPA Data Converter

*ﬂ" TeExXAS
INSTRUMENTS SLAA166

This reference framework example currently only allows the VOL_TI algorithm’s gain percentage
to be changed permanently during runtime, however, it should be easy for the developer to build
additional functionality into the control thread to perform device-specific changes such as mute
certain outputs of a channel, enable/disable the built-in HW audio filters, or increase/decrease
the speaker gain of a specific channel. The control thread could simply write the commands
directly into the control register timing slots of the Xmt ping-pong buffers so that the control data
is sent out to the device by the device driver during normal operation. An example of this
functionality is shown in the code example at the beginning of this section.

[7§ Caa b {1t lind b4 11901 R Cdmidalin | Uik it Siislls - | 1] TR
.] i [E =18 &
il =] - I o _-I_|=-"r- R BN G R EE AR
| msteary 0 | [T ER el § - s A R
Feae OESEEHMNA
-H i‘ = B Doe Soe iin$ Ext b Simck Sowbldlic 172 LF ek idsrage: sprtnbn pani
TF‘ W Ty Ll ._ﬂ_:.-.l.;- o Evecdtion Ordm [FE]

=3 Frakedts § ! - 0 e ik

¥ L i Schweriing 3 diinied
. = (L DRI Cang = Q- ok - _J)

@ dorid 7T IR —

3 b e Pl ¥ [Ty PaIe_cheed > . _I
- ¥ (o i & @ PED - Pareds Furon Pan e Garmy |
o LR T T & | Hwl - el Beh, St Routine Mt
x M et e = 41 - Saftwrt ke Marages Ot e | - |

=P oL B B e
El) msdoagn B e buteries F
| ,-::: 1 F Ll bagh pesoksicn, i by sl i |
% B e o 20 i g ! et [0 |
&] thakabogenc | |4 Bl Forctemasion [. e — 1
4] Hwanbmis T, g founma |F|:‘-|-mh.m_q-:h1
A wals £ g T St ey
r
| bt
e
i ﬂ
-—ILE_l [o0] Coes | [t |
“Linking =
Build Compleie.
B o |
STATETE, b oL | ﬂ:‘
[P T Fa i, D £

ﬂu-|| AEDEE F D0 || Bosiredetaag. . ||l 05 St [T 8]0 05 scmee | 'ﬂ_ﬂ.{._&-ﬂ!lﬂfﬁ.ﬂ TP
Figure 20. DSP/BIOS Timer ISR and Control Thread Configuration

The clkControl and swiControl threads are preconfigured in the provided reference framework’s
DSP/BIOS configuration (*.CDB) file. Every CLK object has an associated function which runs
in the context of the timer ISR that has a period set in the clock manager properties
(microseconds/Int). Thet hr Control | SR() function is associated with the clkControl CLK
object which is executed on each timer interrupt which occurs every 1000 ps (i.e. 1 ms).

TMS320C54x DSP Reference Framework & Device Driver for the TLV320AIC20 HPA Data Converter
41

‘4" TEXAS

SLAA166 INSTRUMENTS

8.5

10

42

Development of System-Specific AIC20 Device Drivers

The provided AIC20 device driver code can be completely reused to develop AIC20 device
drivers for just about any specific target hardware platform. The best method would be to make
a copy of the Code Composer Studio project that accompanies this application note, modify it for
a specific target hardware platform, and then build a specific application on top of the provided
framework. There is also a small CCS project file (dsk5416_aic20evm_154f.pjt) located in the
drivers subdirectory that can be used to rebuild the device driver library file. Use this project file
to build your own custom AIC20-based driver libraries and follow the same naming conventions
(i.e. <BOARD>_<DEVICE> prefixes for all file names, code labels, and global symbols).

Conclusion

Writing device driver code from scratch can be a tricky, tedious, and time-consuming process. It
involves the lowest level of understanding details with respect to the host processor peripherals
that connect to the device itself, and the precise timings must be understood on both sides to
determine the correct interactions between host and device.

A reference framework with a reusable, portable, configurable, modular, production quality, and
ready-to-run device driver has been developed to aid the DSP system designer who is
evaluating or using a TMS320C54x-based processor and the TLV320AIC20 HPA voice-band
data converter in the system design. The provided production-quality C source code, along with
the plethora of software components and development tools offered through TI's eXpressDSP™
software strategy, allow the designer to get started quickly and even use the baseline code for
actual production purposes to get to market faster. The sample framework is also useful for
rapid prototyping, as well as evaluating various DSP algorithms working in conjunction with the
TLV320AIC20 dual-channel voice-band codec on a TMS320C54x™ DSP platform, TI’s most
popular family of digital signal processors.

References

1. Codec Evaluation System (SLAA141)

Demo/Test Codec Systems with TLV320AIC20/21/24/25 EVM (SLAA153)

TLV320AIC20, Low Power, Highly-Integrated Programmable 16-Bit 26-KSPS Dual Channel

Codec (SLAS363)

TLV320AIC20, TLV320AIC21, TLV320AIC24, TLV320AIC25 EVM (SLAU088)

DSP-Codec Development Platform (SLAU090)

TMS320VC5416 Fixed-Point Digital Signal Processor (SPRS095)

Reference Frameworks for eXpressDSP Software: RF1, A Compact Static System

(SPRA791)

8. Reference Frameworks for eXpressDSP Software: RF3, A Flexible, Multi-Channel, Multi-
Algorithm, Static System (SPRA793)

9. Reference Frameworks for eXpressDSP Software: RF5, An Extensive, High-Density System
(SPRA795)

10. TMS320C54x DSP/BIOS Users Guide (SPRU326)

11. TMS320C5000 DSP/BIOS API Reference (SPRU404)

12. DSP/BIOS by Degrees: Using DSP/BIOS Features in an Existing Application (SPRA591)

13. Writing DSP/BIOS Device Drivers for Block 1/0 (SPRA802)

wn

No oks

TMS320C54x DSP Reference Framework & Device Driver for the TLV320AIC20 HPA Data Converter

*ﬂ" TeExXAS
INSTRUMENTS SLAA166

14. TMS320 DSP Algorithm Standard Rules and Guidelines (SPRU352)

15. TMS320 DSP Algorithm Standard APl Reference Guide (SPRU360)

16. TMS320C54x DSP Reference Set, CPU and Peripherals, Volume 1 (SPRU131)
17. TMS320C54x DSP Reference Set, Enhanced Peripherals, Volume 5 (SPRU302)
18. TMS320C54x, Chip Support Library API Reference Guide (SPRU420)

19. TMS320C54x Code Composer Studio Tutorial (SPRU327)

20. Real-Time Data Exchange: A White Paper (SPRY012)

21. How to Write an RTDX Host Application Using MATLAB (SPRA386)

TMS320C54x DSP Reference Framework & Device Driver for the TLV320AIC20 HPA Data Converter
43

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subjectto TI's terms
and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent Tl
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.

Tl assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using Tl components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.

Tl does not warrant or represent that any license, either express or implied, is granted under any Tl patent right,
copyright, mask work right, or other Tl intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by Tl regarding third—party products or services
does not constitute a license from Tl to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from Tl under the patents or other intellectual property of TI.

Reproduction of information in Tl data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. Tl is not responsible or liable for
such altered documentation.

Resale of Tl products or services with statements different from or beyond the parameters stated by Tl for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. Tl is not responsible or liable for any such statements.

Mailing Address:
Texas Instruments

Post Office Box 655303
Dallas, Texas 75265

Copyright 00 2003, Texas Instruments Incorporated

