
Application Report
SLAA166 – January 2003

TMS320VC5416 DSP, eXpressDSP, and Code Composer Studio are trademarks of Texas Instruments.
Other trademarks are the property of their respective owners. 1

TMS320C54x DSP Reference Framework & Device Driver
for the TLV320AIC20 HPA Data Converter

Randy Wu Semiconductor Sales & Marketing / Digital Applications

ABSTRACT

The TLV320AIC20 is a high performance analog (HPA) data converter geared for voice-
band digital applications (typically 8-kHz sampling rates). The TLV320AIC20EVM is an
evaluation module that connects to a TI DSP starter kit (DSK) via a standard AIC
motherboard (Part no. AICDEVPLATEVM). The EVM contains two AIC20 dual-codec
devices connected in a cascaded configuration, allowing the user to configure four
separate but simultaneous I/O channels using a host processor, such as the
TMS320VC5416TM DSP low-power device.

This application note, along with the associated source code (which provides the standard
data pass-through system allowing DSP algorithms to be inserted for digital signal
processing), explains how to use the provided reference platform to evaluate the data
converter, create AIC20-based device drivers, insert sample algorithms to apply digital
signal processing to the data streams, and how to use the provided eXpressDSPTM

software framework as the foundation for developing actual AIC20-based applications. A
complete Code Composer StudioTM project with all the source code (completely written in
C for readability, portability, maintainability, and ease of use) is available for download
along with this application note.

Contents
1 Introduction...3
2 Reference Platform Setup and Program Execution..3
3 What Is eXpressDSPTM? ...9
4 TMS320 DSP Algorithm Standard (XDAIS)..10
5 TMS320VC5416TM DSP Starter Kit..10
6 TLV320AIC20EVM and the DSP-Codec Development Platform ...11
7 Software Reference Framework...13

7.1 Data Channel Processing Threads..14
7.1.1 Sample-by-Sample Processing..15
7.1.2 Frame-Based Processing ..16

7.2 Data Channel State Objects..17
7.3 Data Channel Algorithm Creation..18
7.4 System-Specific Initialization...20
7.5 Algorithm Benchmarking ...20

8 DSK5416_AIC20EVM Device Driver...23
8.1 Requirements for Writing the Device Driver...23

8.1.1 Host Processor Considerations and Configuration...23
8.1.2 AIC20EVM Device Cautions..23

SLAA166

2 TMS320C54x DSP Reference Framework & Device Driver for the TLV320AIC20 HPA Data Converter

8.2 Defining the Interface to the Device Driver ..24
8.2.1 Framework Interaction With the Driver...24
8.2.2 Driver Functions ..25
8.2.3 Relevant Data Structures...25

8.3 Implementation of the Device Driver ...27
8.3.1 Design Decisions and Core Code..27
8.3.2 Coding Conventions, File Structure, and Packaging..33

8.4 Changing Device and Channel Parameters During Run-Time...34
8.4.1 Run-Time Control Functions..34
8.4.2 Run-Time Control Thread..38

8.5 Development of System-Specific AIC20 Device Drivers..42
9 Conclusion..42
10 References ..42

Figures
Figure 1. DSK5416-AIC20EVM Host-Target Development Platform ...4
Figure 2. DSK5416-AIC20EVM Combination (Top View) ...5
Figure 3. AIC20EVM I/O Default Channel Selections and Connections6
Figure 4. Code Composer Studio Sample Workspace and Project..8
Figure 5. Code Composer Studio Run Free Command...9
Figure 6. TMS320VC5416TM DSP Starter Kit (DSK) Board ...11
Figure 7. AIC Motherboard (DSP-Codec Development Platform) ...11
Figure 8. AIC20 Evaluation Module (EVM) ...12
Figure 9. 2-Device (4-Channel) Cascade Connection to Host Processor Serial Port................13
Figure 10. eXpressDSPTM Reference Framework Architecture...14
Figure 11. Framework Channels: Data Flow ..15
Figure 12. Configuring and Viewing DSP/BIOS Statistics (STS) Objects22
Figure 13. Time Division Multiplexing: Slot Assignment for Data and Control Words23
Figure 14. Reference Platform: Hardware and Software Architecture ...24
Figure 15. RCV and XMT Ping-Pong Buffer Format ..25
Figure 16. Cascade Channel Configuration (Global Shadow Registers)27
Figure 17. DSP Peripheral Configuration Using CSL ..28
Figure 18. McBSP Interrupt Service Routines Configuration ...31
Figure 19. Host CCS GEL Sliders for Changing Channel Volumes..40
Figure 20. DSP/BIOS Timer ISR and Control Thread Configuration...41

Tables
Table 1. Configuration for AIC20EVM ...5
Table 2. Configuration for AIC Motherboard ..5
Table 3. DSK5416_AIC20EVM Default I/O Codec Channel Settings ...26
Table 4. DSK5416_AIC20EVM Sampling Frequency Settings ...29
Table 5. DSK5416_AIC20EVM McBSP Write Decision per Receive Interrupt...........................33
Table 6. DSK5416_AIC20EVM Example Naming Conventions..33

SLAA166

TMS320C54x DSP Reference Framework & Device Driver for the TLV320AIC20 HPA Data Converter
3

1 Introduction
The TLV320AIC20 dual-channel codec device, like all data converters used in a digital
signal processing system, needs a host processor to control the device during run-time of
the system. For example, a TMS320 TM DSP Platform can be used to filter the voice of a
microphone of a headset, and/or apply some noise cancellation algorithm to the
microphone, left ear, and right ear channels of the headset. A DSP is the ideal processor to
set up the AIC20 to sample the different channels of analog-to-digital converters at some
conventional sample rate (e.g. 8 kHz) and process those samples through the filter and
noise reduction algorithms on the DSP. The DSP then routes the processed samples back
to the digital-to-analog converters, producing the desired voice-band outputs. Other popular
applications include (but not limited to) digital hearing aids, interactive toys with voice
recognition and/or speech synthesis capabilities, modems, and cell/speaker-phones.

Writing software device drivers (i.e. the physical layer of code which allows communications
with hardware devices) can be a challenge. It involves knowing the details of the device, as
well as how the host processor needs to interact with the device (and vice versa) to get the
desired results. This application note (and provided source code) is meant to give potential
users of the AIC20 device a reference platform for evaluation and actual development. The
source code is written completely in C to provide the ultimate in portability, readability,
maintainability, and reusability. The device driver itself is packaged in a modular style so
that only minor changes need to be implemented to use the driver for different hardware
configurations (e.g. connecting the AIC20 device to a different peripheral of the host
processor) without affecting the overall interface of the device driver.

A simple reference framework is provided as an example to demonstrate how the device
driver is used in a typical digital signal processing system. We have chosen to use the
popular TMS320VC5416TM DSP starter kit as the development platform. This allows the
system developer to get started in a matter of minutes simply by obtaining a C5416DSK,
AIC20EVM, AIC motherboard, and the source code provided with this application note.

By not starting from scratch every time a new project is commenced, DSP developers get to
market quicker than starting with a blank piece of paper. Texas Instruments is fully
committed to providing our DSP developers with as much off-the-shelf content as possible
so that less time is spent for each system design. This strategy is implemented as TI’s
eXpressDSPTM software and development tool set.

2 Reference Platform Setup and Program Execution

This application note (and accompanying source code) allows potential AIC20 data converter
users to get something up and running quickly, and it allows for evaluation of the device and the
DSP algorithms which can be applied to the data stream of the device. The remainder of this
application note discusses the reference framework and device driver in detail. For those who
just want to get the DSK and EVM combination running with a host PC (as shown below) and
not worry about the implementation details, follow the steps in this section and read the
remainder of this application note as time allows to fully understand how to use the reference
framework (RF) and learn how the device driver was implemented. This section describes how
to configure the target hardware and set up the C5416DSK-AIC20EVM sample project code to
run in real-time along with a host PC running code composer studio.

Before starting this setup procedure (starting on the following page), the following hardware
components must be obtained:

SLAA166

4 TMS320C54x DSP Reference Framework & Device Driver for the TLV320AIC20 HPA Data Converter

• DSP Platform: Complete TMS320VC5416TM DSP starter kit (DSK)

• HPA Platform: AIC motherboard & TLV320AIC20 evaluation module

• Voice-band input device(s) (of preferred choice): microphone, handset, headset, signal tone
generator, etc.†
† If using a high-quality stereo device to simulate voice input (such as a CD player, MP3 player, Walkman, PC Soundcard,

etc.) the output of the AIC20EVM will result in decreased sound quality due to the voice-band 8-kHz sampling rate.

• Voice-band output device(s) (of preferred choice): mini speakers (8 Ω), handset(150 Ω),
headset(150 Ω), oscilloscope (to view output signals), etc.

Figure 1. DSK5416-AIC20EVM Host-Target Development Platform

5V DC
POWER
SUPPLY

C5416 DSK
(BOTTOM)

AIC
MOTHER
BOARD

(MIDDLE)

AIC20
EVM
(TOP)

HOST DEVELOPMENT PC
(RUNNING CODE

COMPOSER STUDIO)

VOICE/SOUND INPUTS & OUTPUTS

USB
CABLE

100-240V
AC

OUTLET

SLAA166

TMS320C54x DSP Reference Framework & Device Driver for the TLV320AIC20 HPA Data Converter
5

1. Download the corresponding application note source code from the same web site this
application note was downloaded and extract the files onto the PC that is used as the
host development platform.

2. Verify that the jumper settings on both AIC boards match the information in the following
tables (use the factory default jumper settings for the DSK).

Table 1. Configuration for AIC20EVM

JUMPER POSITION DESCRIPTION

W1 Installed Connects 3.3-V analog drive power ground to AGND (vs no connection)

W2 2 – 3 Connects the first device’s FSD to the second device’s FS (vs connecting the
first device’s FSD to constant high[1] or low[0])

W3 Not installed (1 – 2 connects first channel’s FSD to high[1]; 2 – 3 connects FSD to low[0])

W4 1 – 2 Connects the first device’s M/S high[1] to make it the master of the cascade

W5 Installed Connects analog and digital grounds together

Table 2. Configuration for AIC Motherboard

JUMPER POSITION DESCRIPTION

W1 1 – 2 Codec EVM system power-up through DSK board (vs external power supply)

W2 1 – 2 MCLK source: Use DSP’s CLKOUT (vs onboard 100-MHz oscillator)

3. Connect the AIC motherboard and AIC20EVM to the C5416DSK (using the included
standoffs and screws) as shown below. The correct combination of the three boards
results in a multilayered PCB interconnection with the top board being the AIC20EVM,
the middle board being the AIC motherboard, and the bottom being the C5416DSK
board. The C5416DSK board should be almost completely covered by the AIC20EVM
and AIC motherboard when connected (from top view).

Figure 2. DSK5416-AIC20EVM Combination (Top View)

RESET

AIC MOTHERBOARD

SLAA166

6 TMS320C54x DSP Reference Framework & Device Driver for the TLV320AIC20 HPA Data Converter

NOTE: The reference software acts as a simple pass-through of all data samples for each
codec channel. At system start-up, every I/O channel is active using 8-kHz sampling rate and
16-bit data samples. To power down specific codec channels at run-time, the device driver
source code needs to be modified and rebuilt. In the main driver file dsk5416_aic20evm.c
(found in the \drivers subdirectory), locate the DSK5416_AIC20EVM_setup() function and
modify the following code:

/* The following 4 lines will power down each codec channel */
//DSK5416_AIC20EVM_chanConfigParams[MST_CHAN1].reg[CR3A] |= PWDN; // master ch1 power down
//DSK5416_AIC20EVM_chanConfigParams[MST_CHAN2].reg[CR3A] |= PWDN; // master ch2 power down
//DSK5416_AIC20EVM_chanConfigParams[SLV_CHAN1].reg[CR3A] |= PWDN; // slave ch1 power down
//DSK5416_AIC20EVM_chanConfigParams[SLV_CHAN2].reg[CR3A] |= PWDN; // slave ch2 power down

To actually power down any specific codec channel, simply uncomment the line of code which
corresponds to the channel to be shut down and then rebuild the dsk5416_aic20evm_l54
(near calls/returns) and dsk5416_aic20evm_l54f (far) library project files found in the \drivers
subdirectory (be sure to Rebuild All to ensure all files are built in their corresponding near or
far memory models). Then, rebuild the sample application project (dsk5416_aic20evm.pjt).

4. Connect the desired voice-based devices (inputs and outputs) to the AIC20EVM
connectors (input/output TB’s and the input Jack) as shown below (TB = terminal block
for a balanced, differential 2-wire connection; HNS = handset; HDS = headset).

Figure 3. AIC20EVM I/O Default Channel Selections and Connections

AIC20 #1 (MASTER)

Codec #1

SMARTDM Addr = 0011b
TB J14

LINEI(+/-)

OUTPUT MST CH2Codec #2

SMARTDM Addr = 0010b

LINEO(+/-)
TB J5

Jack J16
MICI(+/-) SPKO(+/-)

TB J2

OUTPUT MST CH1

INPUT MST CH2

INPUT MST CH1

AIC20 #2 (SLAVE)

Codec #1

SMARTDM Addr = 0001b
TB J19

HNSI(+/-)

OUTPUT SLV CH2Codec #2

SMARTDM Addr = 0000b

SPKO(+/-)
TB J11

TB J13
HDSI(+/-) HDSO(+/-)

TB J3

OUTPUT SLV CH1

INPUT SLV CH2

INPUT SLV CH1

SLAA166

TMS320C54x DSP Reference Framework & Device Driver for the TLV320AIC20 HPA Data Converter
7

NOTE: The polarity of the wire (+ or -) connections to the TB does not matter. The unique, self-
assigned SMARTDM addresses are discussed in a later section, but they are basically used to
identify which codec’s control register data is being sent back to the host processor whenever
the host wants to read specific control register contents of a codec.

5. Set up the C5416DSK host-target platform and invoke Code Composer Studio (C5416
DSK CCS) as per the Quick Start Guide that comes with the C5416DSK package. Make
sure both the DSK and CCS can be started without any communications errors. If using
a spectrum digital XDS-based emulator is preferred, then invoke C5000 CCS instead.

6. Load one of the following CCS workspace files (File ! Workspace ! Load Workspace):

• audioapp_dsk5416usb.wks (if using the provided C5416DSK USB cable directly)

• audioapp_xds510pp.wks (if using a spectrum digital XDS510-based PP emulator)

• audioapp_xds510usb.wks (if using a spectrum digital XDS510-based USB emulator)

NOTE: For the workspace file to load properly for the XDS emulator configuration, make sure
that there is a CPU named CPU_1 when running the C5000 code composer studio setup
program. If the workspace file fails to load completely, proceed to the next step.

7. Load the audioapp.out (File ! Load Program) executable (located in the Debug
subdirectory). Start the sound source(s) on any or all of the inputs, then Debug ! Run
the program. You should now hear the sound input(s) at the corresponding channel
sound output(s).

WARNING:
When running CCS and the C5416DSK under normal emulation mode, the JTAG
channel, at times, becomes busy and causes interference to the voice channels.
If this random noise is not desired or causes the analysis to be impossible,
choosing the Run Free option (found under the CCS Toolbar Debug column)
instructs CCS to not communicate with the target emulator while the DSP is
running. The BUSY LED on the DSK should no longer flash during run-time (for
the USB emulation configuration). Please note that none of the real-time
analysis screens are able to update during this period but the target continues
to run freely.

8. To insert DSP algorithms, locate the processBuffer() function in the audioapp.c
source file. Every (pointer to the) sample from every channel passes through this
function. This is where the DSP processing routine(s) can be inserted to apply signal
processing to any of the AIC20 channels. The default sampling rate is set for 8 kHz on
all channels. The resulting processed voice-band outputs can then be analyzed in detail.

9. To learn how to leverage the existing reference framework for such things as evaluating
DSP algorithms, building actual system code, writing a system-specific AIC20 device
driver, learning how the DSK5416_AIC20EVM device driver was designed and
implemented, or understanding how eXpressDSP™ components can be leveraged to
reduce time-to-market, read the remaining sections of this application note.

SLAA166

8 TMS320C54x DSP Reference Framework & Device Driver for the TLV320AIC20 HPA Data Converter

Figure 4. Code Composer Studio Sample Workspace and Project

CAUTION:
Halting the processor and then restarting the processor could result in data
words being written into control register timing slots inadvertently. Whenever
the target is stopped, it is always a good idea to reset the CPU and reload the
program before running the target again.

SLAA166

TMS320C54x DSP Reference Framework & Device Driver for the TLV320AIC20 HPA Data Converter
9

Figure 5. Code Composer Studio Run Free Command

3 What Is eXpressDSPTM?
TI’s real-time eXpressDSPTM software and development tool strategy includes three tightly
knit ingredients that empower developers to tap the full potential of TMS320TM DSPs:

1. Code Composer Studio – the world’s most powerful DSP integrated development
environment

2. Target content software

a. DSP/BIOS: Scalable, real-time software foundation

b. TMS320 DSP algorithm standard (XDAIS): coding guidelines for interoperability and
reuse

c. Reference frameworks: design-ready starterware code common to many
applications

3. Third party network: a growing base of TI DSP-based products that can be easily
integrated into systems

SLAA166

10 TMS320C54x DSP Reference Framework & Device Driver for the TLV320AIC20 HPA Data Converter

Each element is designed to simplify DSP programming and move development from a custom
crafted approach to a new paradigm of interoperable software from multiple vendors supported
by a worldwide infrastructure. All of these components have been used in the development of
the DSP reference framework and AIC20 device driver described by (and provided with) this
application note.

NOTE: For more detailed information on all components of eXpressDSPTM, please refer to TI’s
one-stop shop for DSP development on the Internet: www.dspvillage.com.

4 TMS320 DSP Algorithm Standard (XDAIS)
The TMS320TM DSP algorithm standard, also known as XDAIS (pronounced DAY-yiss), is a
DSP. A single standard set of coding conventions and application programming interfaces
(APIs) for algorithm creators to wrap the algorithm for system-ready use in any application.
In the past, algorithm creators had to re-engineer an algorithm to integrate it into each
different system. Now, the algorithms are written once by the creator and reused widely by
the system integrators. The standard includes algorithm programming rules, which when
followed by the algorithm creators, enable interoperability of compliant algorithms in the
same system. Algorithm standardization increases the quantity and quality of algorithms
available for faster use by OEMs. TI’s third party network provides off-the-shelf compliant
algorithms for ease of integration and reduced time-to-market.

All of TI’s generic eXpressDSPTM reference frameworks, as well as the specific framework
used in this application note, allows the developer to seamlessly integrate any algorithm
which is XDAIS-compliant without having to re-engineer the algorithm module nor modify
the system code to instantiate and execute the algorithms. To provide an example and to
create entry points into the framework, two fully XDAIS-compliant algorithms developed by
TI, the FIR_TI and VOL_TI algorithms are used in the sample framework and applied to the
data stream of the AIC20 cascade. These two algorithms are easily replaced with the
specific algorithms to be evaluated with the AIC20EVM.

5 TMS320VC5416TM DSP Starter Kit
The TMS320VC5416TM DSP starter kit (DSK) is a low-cost development platform designed
to speed the development of power-efficient applications based on TI’s TMS320C54xTM

DSPs. The kit, which provides new performance-enhancing features such as USB
communications and true plug-n-play functionality, gives both experienced and novice
designers an easy way to get started immediately with their innovative product designs.

NOTE: For more detailed information on all components of eXpressDSPTM, please refer to TI’s
one-stop shop for DSP development on the Internet: www.dspvillage.com.

SLAA166

TMS320C54x DSP Reference Framework & Device Driver for the TLV320AIC20 HPA Data Converter
11

Figure 6. TMS320VC5416TM DSP Starter Kit (DSK) Board

6 TLV320AIC20EVM and the DSP-Codec Development Platform
The TLV320AIC20 is a true low-cost low-power highly integrated high-performance dual
voice codec designed with new technological advances. It features two 16-bit analog-to-
digital (A/D) channels and two 16-bit digital-to-analog (D/A) channels, which can be
connected to a handset, headset, speaker, microphone, or a subscriber line via a
programmable analog crosspoint. The maximum sampling rate is 26 KSPS (with on-chip
IIR/FIR filter) and 104 KSPS (with IIR/FIR bypassed).

An AIC20 EVM is available to quickly evaluate the codec device. This board plugs into a
generic AIC motherboard (also referred to as the DSP-Codec Development Platform) that
plugs directly to the expansion peripheral interface (EPI) connector of the C5416 DSK. By
combining these three boards, a reference platform can be used to quickly evaluate the
AIC20 device as well as XDAIS-compliant algorithms used to process the data streams.
The AIC expansion board allows any AIC-based EVM to be plugged directly into any DSK
expansion peripheral Interface connector.

Figure 7. AIC Motherboard (DSP-Codec Development Platform)

RESET

AIC MOTHERBOARD

Connects to
AIC EVM

Connects to
DSK EPI
(from bottom)

5416
DSPConnects to AIC

Motherboard

USB Connector (to PC)

Power
Connector

Reset
Pushbutton DIP

Switches

EXPANSION PERIPHERAL INTERFACE

SLAA166

12 TMS320C54x DSP Reference Framework & Device Driver for the TLV320AIC20 HPA Data Converter

The AIC20EVM board contains two AIC20 devices connected in a cascaded configuration.
One device serves as the master while the other device is the slave. Each device contains
two data channels, resulting in a total of four independent data channels supported on the
EVM. When the EVM is connected to the DSK, the devices communicate to the
C5416DSP’s multichannel buffered serial port (McBSP) via time division multiplexed (TDM)
stream. The SMART time division multiplexed serial port (SMARTDM) of the AIC20 uses
the four wires DOUT, DIN, SCLK, and FS to transfer data into and out of the AIC20 device.
The SMARTDM allows for a serial connection of up to 16 AIC20 devices to a single host
serial port. The SMARTDM feature automatically adjusts the number of time slots per
frame sync (FS) to match the number of codecs in the serial interface so that no time slot is
wasted. Each time slot contains a 16-bit word representing sample or control information.
When the master AIC20 device is reset, each codec in the cascade assigns itself a unique
4-bit SMARTDM address which is used to identify the time slot used for sending control
register information from the codec back to the host processor.

Figure 8. AIC20 Evaluation Module (EVM)

Figure 9 shows how the 2 AIC20 devices on the AIC20EVM connect to the DSP in the
C5416DSK. The AIC20 closest to the DSP’s McBSP is the Master device that provides the
FS signal to the DSP. The FS acts as a signal to the DSP so that it knows when to write
and read data to/from the correct TDM slot within the FS period. On the falling edge of the
FS signal should be the read or write from/to the first Master channel’s slot. Figure 9 shows
the slot within the FS period that corresponds to the channels in the cascade. This
configuration allows a single McBSP to talk to any number of cascaded AIC20 devices, up
to a maximum of eight devices (each AIC20 device supports two codec channels, resulting
in a maximum of (8 × 2) = 16 time division multiplexed (TDM) channels in a single serial
data stream).

NOTE: Up to four AIC20EVMs can be stacked on top of the AIC motherboard to achieve the
16-TDM cascaded channel configuration, but requires minor modifications to the existing device
driver as the provided driver is configured for a single AIC20EVM (two devices / four channels).

Connects to
AIC Motherboard
(from bottom)

3.5 mm jack
(input to #2)

AIC20 #2
(Slave)

AIC20 #1
(Master)

3.5 mm jack
(input to #1)

SLAA166

TMS320C54x DSP Reference Framework & Device Driver for the TLV320AIC20 HPA Data Converter
13

Figure 9. 2-Device (4-Channel) Cascade Connection to Host Processor Serial Port

7 Software Reference Framework
DSP/BIOS is TI’s real time operating system foundation. It provides multiple thread
scheduling, memory management services, hardware abstraction/configuration, real-time
analysis capabilities, interprocess communication, and structured device driver I/O.

Applications which use DSP/BIOS take advantage of all the common DSP real-time kernel
services with easy-to-use API’s and hand-optimized program modules for increased
portability, maintainability, reusability, and reduced time-to-market.

Accelerating the software development process for designers of DSP-based applications, TI
produces and supports a series of DSP software reference frameworks (RF). The design-
ready RFs are getting-started solutions for designers in the early stages of application
development, featuring easy-to-use source code that is common to many applications. With
TI’s RFs, many of the initial low-level design decisions are eliminated, allowing developers
more time to focus on the code that truly differentiates products. Designers can choose the
specific RF that best meets their system needs and then populate the RF with XDAIS-
compliant algorithms, creating specific applications for a wide range of end equipments.

MCLK

DIN

DOUT

M/SFSD

TLV320AIC20
[#1]

(MASTER)

FS

SCLK

3.3 V

MCLK

DIN

DOUT

M/SFSD

TLV320AIC20
[#2]

(SLAVE)

FS

SCLK

CLKOUT

DR

DX

FSX

FSR

CLKX

CLKR

TMS320C5416
McBSP

IOVDD

SLAA166

14 TMS320C54x DSP Reference Framework & Device Driver for the TLV320AIC20 HPA Data Converter

C u sto m er targ et h ardw are

C us tom D S P /B IO S I/O D riv e rs
L e v erag e L IO /P IP /S IO D riv er

A d dit io n a l d riv e rs e .g . U AR T ,D A A

R F S ta rte rw are
"S k e le ta l R F s ta rte rw are
" e X pre ss D S P alg orithm c o nta ine rs
"O ptim ize d for sy s tem c o m ple x ity
"R e us a ble c om p on en ts - c u t a n d pa s te

A lg orith m S ta nda rd (X D A IS)
R e pla c e T I pro v id e d a lgos (F IR ,V O L)

w ith G .7 2 3 , M P E G 4 , M P 3 e tc .
(e X p re ssD S P c om plian t a lg o s

from T I th ird pa rtie s)

A p plic a tio n-S p ec ific C o de
U n iq u e b eh a v io r e .g . In te rn e t Au dio P lay e r

W eb P ho n e, D ig ita l H ea ring A id

T I D S K /E V M e.g . C 5416 D S K

T M S 320 C 5000 /C 6000 D S P

A LG

A L G

eXp ressD S P G en eric Ap p lica tio n

D S P /B IO S™
drive rs

R F S tarte rw a re

C S L

A lgo rithm
M a n ag er

C ha n ne l
A bs tra c tion

M em ory
M gm t

T I P rovid ed C u sto m e r A d a p ta tio n

Figure 10. eXpressDSPTM Reference Framework Architecture

The reference framework used in this application note is built on the same DSP/BIOS
foundation and allows the developer to easily insert various XDAIS algorithms to evaluate
digital signal processing on the data channels as well. There is also a simulated host
control capability where a control thread is periodically scheduled to run on the target and
checks a shared device I/O area memory space. If the host sets certain flags, the target can
perform the appropriate function during run-time. GEL sliders are provided as an example
to change certain parameters during run-time.

7.1 Data Channel Processing Threads

In this application note example, a single thread of execution is used to read a single
sample from each of the AIC20 ADC’s at a time, and then each sample is subsequently
sent back out to the same channel’s DAC. Using this convenient entry point, any number of
DSP algorithms can be inserted to apply sample-by-sample or frame-based DSP
processing on every channel. The AIC20 device driver exposes a pair of receive and
transmit ping-pong buffers to pass data between itself and the framework (this is discussed
in greater detail in the device driver section of this application note).

The audioapp.c source file contains the main framework code. The processBuffer()
function is automatically called every time a sample from all AIC20 channels have been
read at the end of each FS period (i.e. Rcv ping or pong buffer has just been filled up by the
device driver). The processBuffer() can be configured for either sample-by-sample
processing or frame-based processing. It gets samples from the currently filled Rx buffer
and place them in the corresponding Tx ping-pong buffer. This is where the processing is
applied to each sample (or the entire frame of data samples) as the Rx data is being
transferred to the Tx buffer by the CPU.

SLAA166

TMS320C54x DSP Reference Framework & Device Driver for the TLV320AIC20 HPA Data Converter
15

7.1.1 Sample-by-Sample Processing

void processBuffer(void)
{

short pingPong;

pingPong = SWI_getmbox();

if (pingPong == PING) {
// insert algorithm(s) here to fill up PING output buffer

DSK5416_AIC20EVM_gBufferXmtPing[MST_CHAN1_D] =
processSample(MST_CHAN1, &DSK5416_AIC20EVM_gBufferRcvPing[MST_CHAN1_D]); // MST Ch1

DSK5416_AIC20EVM_gBufferXmtPing[MST_CHAN2_D] =
processSample(MST_CHAN2, &DSK5416_AIC20EVM_gBufferRcvPing[MST_CHAN2_D]); // MST Ch2

DSK5416_AIC20EVM_gBufferXmtPing[SLV_CHAN1_D] =
processSample(SLV_CHAN1, &DSK5416_AIC20EVM_gBufferRcvPing[SLV_CHAN1_D]); // SLV Ch1

DSK5416_AIC20EVM_gBufferXmtPing[SLV_CHAN2_D] =
processSample(SLV_CHAN2, &DSK5416_AIC20EVM_gBufferRcvPing[SLV_CHAN2_D]); // SLV Ch2

}
else { // pingPong == PONG

// insert algorithm(s) here to fill up PONG output buffer
DSK5416_AIC20EVM_gBufferXmtPong[MST_CHAN1_D] =

processSample(MST_CHAN1, &DSK5416_AIC20EVM_gBufferRcvPong[MST_CHAN1_D]); // MST Ch1
DSK5416_AIC20EVM_gBufferXmtPong[MST_CHAN2_D] =

processSample(MST_CHAN2, &DSK5416_AIC20EVM_gBufferRcvPong[MST_CHAN2_D]); // MST Ch2
DSK5416_AIC20EVM_gBufferXmtPong[SLV_CHAN1_D] =

processSample(SLV_CHAN1, &DSK5416_AIC20EVM_gBufferRcvPong[SLV_CHAN1_D]); // SLV Ch1
DSK5416_AIC20EVM_gBufferXmtPong[SLV_CHAN2_D] =

processSample(SLV_CHAN2, &DSK5416_AIC20EVM_gBufferRcvPong[SLV_CHAN2_D]); // SLV Ch2
}

}

In this case, the processSample() function is called on every new sample that is read into the
receive data buffer that has just been filled by the device driver. This is where one or more
algorithms can be applied to the sample before it is written to the output buffer. The sample
framework comes with simple, fully XDAIS-compliant finite impulse response (FIR) and
volume/gain control (VOL) algorithms (developed by TI) that are applied in sequence to every
sample received from each data channel.

Figure 11. Framework Channels: Data Flow

These entry points serve as placeholders for the real algorithms that could be inserted and
evaluated with the AIC20EVM data streams. Most XDAIS algorithms come packaged with
<ALGORITHM>_apply() functions which in most cases can be inserted at the FIR_apply()
and VOL_apply() entry points. XDAIS algorithms allow for ease of integration, especially
when swapping out one XDAIS algorithm module for another.

XMT PING-
PONG BUFFERS

RCV PING-
PONG BUFFERS

VOL_TI XDAIS
ALGORITHM

FIR_TI XDAIS
ALGORITHM

(FRAMEWORK)

(DSK5416_AIC20EVM DRIVER)

SLAA166

16 TMS320C54x DSP Reference Framework & Device Driver for the TLV320AIC20 HPA Data Converter

Uint16 processSample(DSK5416_AIC20EVM_Channel chan, Uint16 *inputSample)
{

Sample tmp1, tmp2;

STS_set(&stsAlgFir, CLK_gethtime());
FIR_apply(thrAudioproc[chan].algFIR, (Sample *)inputSample, &tmp1);
STS_delta(&stsAlgFir, CLK_gethtime()); // measure FIR algorithm execution time

STS_set(&stsAlgVol, CLK_gethtime());
VOL_apply(thrAudioproc[chan].algVOL, &tmp1, &tmp2);
STS_delta(&stsAlgFir, CLK_gethtime()); // measure VOL algorithm execution time

return ((Uint16)tmp2);
}

7.1.2 Frame-Based Processing

To reduce the overhead of calling the same processing function(s) on every sample on every
channel and/or to simply evaluate the same algorithm processing on all cascaded channels, a
processFrame() function is also supplied as another option for the framework:

void processBuffer(void)
{

short pingPong;

pingPong = SWI_getmbox();

if (pingPong == PING) { // Fill up Xmt Ping output buffer
processFrame(MST_CHAN1, (Sample *)&DSK5416_AIC20EVM_gBufferRcvPing[MST_CHAN1_D],

(Sample *)&DSK5416_AIC20EVM_gBufferXmtPing[MST_CHAN1_D]);
}
else { // pingPong == PONG

// Fill up Xmt Pong output buffer
processFrame(MST_CHAN1, (Sample *)&DSK5416_AIC20EVM_gBufferRcvPong[MST_CHAN1_D],

(Sample *)&DSK5416_AIC20EVM_gBufferXmtPong[MST_CHAN1_D]);
}

}

In this case, processFrame() can run any algorithm that supports frame-based or block-
oriented processing. In other words, the current samples from every channel are treated
as a single frame of multiple samples and can be processed by a single function call, to
apply the same processing function to each channel from the current FS period. In this
application note example, the DSP CPU loading is normally reduced by up to 23% when
switching from sample-by-sample processing to frame-based processing.

NOTE: If choosing the processFrame() option, be sure to only use an algorithm that can
process each sample in a frame independently from the other samples in the frame. The FIR_TI
algorithm will only work using the processSample() option since each frame of data contains
samples from different channels, since a typical filter-type algorithm needs to operate on
consecutive samples from the same sound stream.

SLAA166

TMS320C54x DSP Reference Framework & Device Driver for the TLV320AIC20 HPA Data Converter
17

Void processFrame(DSK5416_AIC20EVM_Channel algChan,
Sample *inputFrame, Sample *outputFrame)

{
Sample intermBuf[DSK5416_AIC20EVM_NUMCHANS];

/* record high-res clock time (timer counter) before calling 1st algorithm */
STS_set(&stsAlgOne, CLK_gethtime());

/* FIR algorithm cannot process consecutive samples from different channels
so just do a memcpy() here as a placeholder for an alternate algorithm */

memcpy(&intermBuf, inputFrame, DSK5416_AIC20EVM_NUMCHANS*sizeof(Sample));

/* calculate elapsed time for 1st algorithm to execute, in high-res clock cycles */
STS_delta(&stsAlgOne, CLK_gethtime());

/* record high-res clock time (timer counter) before calling 2nd algorithm */
STS_set(&stsAlgTwo, CLK_gethtime());

/* amplify the signal in interm. buffer and store result in output frame buffer */
VOL_apply(thrAudioproc[algChan].algVOL, (Sample *)&intermBuf, outputFrame);

/* calculate elapsed time for 2nd algorithm to execute, in high-res clock cycles */
STS_delta(&stsAlgTwo, CLK_gethtime());

}

On return from the processFrame() function call, the processed samples filled up the
corresponding transmit ping or pong output buffer and be sent out to the device driver. For
best results, XDAIS-compliant algorithms should be used for ease of integration and
interoperability, especially when integrating algorithms from multiple sources/vendors.

7.2 Data Channel State Objects

A global array of channel structures (named thrAudioproc[] of data structure type
ThrAudioproc) is declared during compile time and is initialized during run-time. Once
initialized, the framework code can access each of the data channel’s state information at any
time. Currently, these channel structures store the unique algorithm instance objects that are
used for the processing of each channel. The structure definition is found in the thrAudioproc.h
header file, and can be modified to include any additional channel state information as required
by the application developer.

/*
* Here we define a structure that contains all the "private"
* thread information: algorithm handles, input pipe(s), output
* pipe(s), intermediate buffer(s), if any, and all the other
* information that encapsulates thread state for each channel.
*/

typedef struct ThrAudioproc {
/* algorithm(s) */
FIR_Handle algFIR; /* an instance of the FIR algorithm */
VOL_Handle algVOL; /* an instance of the VOL algorithm */

/* everything else that is private for a thread comes here */

} ThrAudioproc;

SLAA166

18 TMS320C54x DSP Reference Framework & Device Driver for the TLV320AIC20 HPA Data Converter

ThrAudioproc thrAudioproc[DSK5416_AIC20EVM_NUMCHANS] = {
{ /* data channel #1 (Master Channel 1) */

/* algorithm handle(s) (to be initialized in runtime) */
NULL, /* algFIR */
NULL, /* algVOL */

/* everything else private for the thread */

}, /* end data channel #1 */

{ /* data channel #2 (Master Channel 2) */
/* algorithm handle(s) (to be initialized in runtime) */
NULL, /* algFIR */
NULL, /* algVOL */

/* everything else private for the thread */

}, /* end data channel #2 */

{ /* data channel #3 (Slave Channel 1) */
/* algorithm handle(s) (to be initialized in runtime) */
NULL, /* algFIR */
NULL, /* algVOL */

/* everything else private for the thread */

}, /* end data channel #3 */

{ /* data channel #4 (Slave Channel 2) */
/* algorithm handle(s) (to be initialized in runtime) */
NULL, /* algFIR */
NULL, /* algVOL */

/* everything else private for the thread */

}, /* end data channel #4 */
};

The above code shows the global thrAudioproc[] array defined in source code and its ability
to take on default settings within each channel structure. Each array element (channel
structure) corresponds to one of the data channels on the AIC20EVM. Fields such as the
algorithm handles are set during run-time since the XDAIS algorithms in this example are
created and initialized during system start-up, and additional structure fields can be added as
needed.

7.3 Data Channel Algorithm Creation

The thrAudioprocinit() function references the thrAudioproc[] array and take care of
querying the XDAIS algorithms for their memory requirements, dynamically allocate those
memories from internal and/or external memory heaps defined by the user, and store the
handles to the newly-created algorithm instance objects so that each channel can reference its
own set of algorithm instances.

SLAA166

TMS320C54x DSP Reference Framework & Device Driver for the TLV320AIC20 HPA Data Converter
19

Void thrAudioprocInit(Void)
{

/* declaration of filter, volume parameter structures */
FIR_Params firParams;
VOL_Params volParams;
Int i;

for (i = 0; i < DSK5416_AIC20EVM_NUMCHANS; i++) {
/*
* Set the parameters structure to the default, i.e.
* the one used in i<alg>.c, and modify fields that are different.
*/

firParams = FIR_PARAMS; /* default parameters */
firParams.coeffPtr = /* filter coefficients */

(Short *)filterCoefficients[i];
firParams.filterLen = /* filter size */

sizeof(filterCoefficients[i]) / sizeof(Sample);
firParams.frameLen = 1; /* frame size */

/* create algorithm instance for channel #i */
thrAudioproc[i].algFIR = FIR_create(&FIR_IFIR, &firParams);

/*
* Confirm that the instantiation was successful. If it failed,
* most likely the heap is not big enough. To find out the needed
* value (rather than to guess), in appThreads.c you can do
* ALGRF_setup(EXTERNALHEAP, EXTERNALHEAP); i.e. force all
* allocation in external memory, run the initialization functions,
* and examine the reports from UTL_showAlgMem() below.
*/

UTL_assert(thrAudioproc[i].algFIR != NULL);

/* and show algorithm memory usage */
UTL_showAlgMem(thrAudioproc[i].algFIR);

/* do the same for the VOLume algorithm: create parameters structure */
volParams = VOL_PARAMS; /* default parameters */
volParams.frameSize = DSK5416_AIC20EVM_NUMCHANS; /* frame size */

/* create instance, confirm creation success, show memory usage */
thrAudioproc[i].algVOL = VOL_create(&VOL_IVOL, &volParams);
UTL_assert(thrAudioproc[i].algVOL != NULL);
UTL_showAlgMem(thrAudioproc[i].algVOL);

}
}

The FIR_create() and VOL_create() are XDAIS standardized <ALGORITHM>_create()
wrapper functions which are called to automate the process of dynamically creating a XDAIS
algorithm instance object pertaining to the specific algorithm which is referenced by the
<ALGORITHM> designation. Since all XDAIS-compliant algorithms implement a standard
interface for algorithm instance creation, each <ALGORITHM>_create() function references
the same generic ALGRF_create() function that is implemented by the RF ALGRF standard
library that can be used to instantiate any XDAIS-compliant algorithm. The creation parameters
for the algorithm instances are also set in this function – i.e. all algorithm create-type code is
bundled in this single function which is called once during system initialization.

SLAA166

20 TMS320C54x DSP Reference Framework & Device Driver for the TLV320AIC20 HPA Data Converter

7.4 System-Specific Initialization

Finally, the main() function contains all of the one-time system initialization code. In a
DSP/BIOS application, the main() function is called once and must return to give control
over to the DSP/BIOS scheduler. The DSK board and device driver (and all DSP
peripherals associated with the device) need to be initialized once within main().

Once main() has finished execution and returns, the DSP/BIOS scheduler takes control
over the system and is ready to service hardware/software interrupts and execute tasks and
background functions. Any additional run once code should be added to main()since it
only runs once in a DSP/BIOS system on reset.

Void main()
{

// Initialize the DSK Board
DSK5416_init();

// Initialize the AIC20EVM Device Driver as a whole
if (DSK5416_AIC20EVM_init()) {

DSK5416_AIC20EVM_setup();
DSK5416_AIC20EVM_hDevice = DSK5416_AIC20EVM_open();
LOG_printf(&logTrace, "main(): AIC20EVM reset sequence successful.\n");

}
else {

LOG_printf(&logTrace, "main(): Could not establish presence of AIC Motherboard!!!\n");
SYS_exit(0);

}

// Initialize the XDAIS algorithm modules as a whole
FIR_init();
VOL_init();

// Create the algorithm instances for each channel state structure
thrAudioprocInit();

// Return and drop into the DSP/BIOS environment
}

The FIR_init() and VOL_init() are XDAIS standardized <ALGORITHM>_init() master
initialization functions which are called to initialize the XDAIS algorithm modules as a whole
during system initialization, before any XDAIS algorithm instances are created in the system.
The thrAudioprocInit() function, as described in the previous section, is used to instantiate
the channel state objects representing each data stream in the system.

7.5 Algorithm Benchmarking

This RF includes two DSP/BIOS statistics (STS) objects used to benchmark the FIR_TI and
VOL_TI algorithm performance. Each STS object accumulates the following statistical
information about an arbitrary 32-bit wide data series:

• Count. The number of values in an application-supplied data series

• Total. The sum of the individual data values in this series

• Maximum. The largest value already encountered in this series

SLAA166

TMS320C54x DSP Reference Framework & Device Driver for the TLV320AIC20 HPA Data Converter
21

Using the count and total, the CCS statistics view plug-in calculates the average on the host.
Additional custom STS objects are added to the system using the DSP/BIOS configuration file
(*.CDB) which is part of the CCS project. The following STS run-time API’s allow the target
application to maintain the various statistics:

• STS_add() – updates the count, total, and maximum using the value provided

• STS_set() – sets a previous value for reference

• STS_delta() -- accumulates the difference between the value currently passed in and
the previous value which was set by the most recent call to STS_set()or STS_reset()

By using custom STS objects and various combinations of STS operations, the following
statistics can be computed automatically:

• Count the number of occurrences of an event

• Track the maximum and average values for a variable in the program

• Track the minimum value for a variable in the program

• Time events or monitor incremental differences in a value

• Monitor differences between actual values and desired values

The following code sample uses the STS operations to programmatically accumulate the
amount of instruction cycles elapsed by using paired STS_set() & STS_delta() function
calls around each algorithm function call. The CLK_gethtime() function is a DSP/BIOS API
used to read the current value of the high-resolution timer counter; thus the unit of measurement
is the number of instruction cycles.

In this case, the STS object stsAlgOne is used to store statistics each time the FIR_apply()
function is called, and the stsAlgTwo is used to benchmark the VOL_apply() algorithm
execution times.

/* record high-res clock time (timer counter) before calling FIR algorithm */
STS_set(&stsAlgOne, CLK_gethtime());

/* apply filter and store result in temp buffer */
FIR_apply(thrAudioproc[chan].algFIR, (Sample *)inputSample, &tmp1);

/* calculate elapsed time for FIR algorithm to execute, in high-res clock cycles */
STS_delta(&stsAlgOne, CLK_gethtime());

/* record high-res clock time (timer counter) before calling 2nd algorithm */
STS_set(&stsAlgTwo, CLK_gethtime());

/* amplify the signal and store result in temp buffer */
VOL_apply(thrAudioproc[chan].algVOL, &tmp1, &tmp2);

/* calculate elapsed time for 2nd algorithm to execute, in high-res clock cycles */
STS_delta(&stsAlgTwo, CLK_gethtime());

SLAA166

22 TMS320C54x DSP Reference Framework & Device Driver for the TLV320AIC20 HPA Data Converter

The statistics are viewed in real-time with the statistics view plug-in by choosing the CCS
DSP/BIOS ! Statistics View menu item. The reference framework project already comes with
the Statistics View window open and configured to show the statistics for both of the included
STS objects (stsAlgOne and stsAlgTwo). More STS objects can be inserted to benchmark other
portions of system code as needed. To create an STS object, right-click the STS – Statistics
Object Manager icon and select Insert STS. Right-click on the newly created STS object and
select Rename to give the STS object a meaningful name. This is the name of the STS object
used in the corresponding programmatic calls to the STS API’s in the system code to gather
statistics during run-time of the system without ever halting the target processor. The statistics
data is sent from the target to the host only during CPU idle time using a host-target
communications technology called real-time data exchange (RTDX™). DSP/BIOS real-time
analysis data is always transferred via RTDX which is completely nonintrusive and never breaks
the real-time processing functionality of the DSP system.

Figure 12. Configuring and Viewing DSP/BIOS Statistics (STS) Objects

SLAA166

TMS320C54x DSP Reference Framework & Device Driver for the TLV320AIC20 HPA Data Converter
23

8 DSK5416_AIC20EVM Device Driver

8.1 Requirements for Writing the Device Driver

In general, writing a device driver requires detailed knowledge of both the host processor and
the device itself. Without understanding how the host processor and device interface to each
other and the exact timing of communication between the two, writing the device driver can be a
very difficult task, especially when one does not have an expensive logic analyzer and other
sophisticated instruments. The device driver should also implement a modular and easy-to-
understand interface. The baseline driver developed here is the DSK5416_AIC20EVM driver.

8.1.1 Host Processor Considerations and Configuration

In this case, the host processor is a TMS320VC5416 DSP with three on-chip serial ports, or
multichannel buffered serial ports (McBSPs). Each McBSP is bi-directional (i.e. capable of
receiving and transmitting data simultaneously using the same port, therefore, a single McBSP
is used to communicate with the device, which in this case is an AIC20EVM. When the
AIC20EVM is plugged into the C5416DSK, all device lines connect to McBSP #1 of the DSP.
Refer to Figure 9 to see exactly which lines are connected between the host and cascade of
AIC20 devices. In addition, the McBSP receive mode must be set for 1-bit delay since the
AIC20 always responds with its DOUT data delayed by 1 bit for every word.

8.1.2 AIC20EVM Device Cautions

To the host processor, the AIC20EVM is a single device in the system. The AIC20EVM contains
two AIC20 devices connected in a cascade configuration. One device acts as the master while
the other acts as the slave. The master device is the AIC20 closest to the DSP. The master
AIC20 device provides a Frame Sync signal to the DSP so that the DSP knows when a
complete frame of data has been received from the AIC20EVM. Within this FS period, there are
four data and four control timing slots. Each slot corresponds to a specific channel within the
overall AIC20 cascade of devices. It is important that the device driver reads and writes data
from/to the correct timing slot; otherwise the host processor will be communicating the wrong
data to the wrong channel. These eight timing slots per FS period make up a time-division
multiplexed data stream – i.e. each channel reads/writes data at a specific time slot within the
overall FS period.

Figure 13. Time Division Multiplexing: Slot Assignment for Data and Control Words

Master FS

DIN or
DOUT

Master
Chan 1

Data Frame Control Frame

Time Slots

AIC20 #1 AIC20 #2 AIC20 #1 AIC20 #2

Data Frame

Master
Chan 2

Slave
Chan 1

Slave
Chan 2

Slave
Chan 2

Slave
Chan 2

Slave
Chan 2

Master
Chan 2

Master
Chan 2

Master
Chan 1

Master
Chan 1

Slave
Chan 1

Slave
Chan 1

SLAA166

24 TMS320C54x DSP Reference Framework & Device Driver for the TLV320AIC20 HPA Data Converter

8.2 Defining the Interface to the Device Driver

The details of how the host and device interact with one another help to determine the specific
interface of the device driver. The interface should be easy to understand, easy to use, and
present a modular solution to encapsulate and abstract as much detail as possible from the
application framework.

8.2.1 Framework Interaction with the Driver

The following diagram shows how a framework interacts with the DSK5416_AIC20EVM device
driver module. The relevant data structures and functions are shown in the diagram:

• Rx and Tx ping-pong buffers: Frame buffers used to read data from the device driver and
store data to be sent out by the device driver

• Driver functions: APIs to initialize, execute, and close the device driver

• Channel configuration array: an array of configuration parameters used to set the attributes
for each individual channel of the AIC20 cascade

Figure 14. Reference Platform: Hardware and Software Architecture

TMS320VC5416
DSK BOARD

AIC
MOTHERBOARD

AIC20
EVM

DSP/BIOS REAL-TIME SOFTWARE FOUNDATION &
CHIP SUPPORT LIBRARY

DSK5416_AIC20EVM DEVICE DRIVER

GENERIC REFERENCE FRAMEWORK

SPECIFIC APPLICATION LAYER

XMT PING-
PONG BUFFERS

RCV PING-PONG
BUFFERS

DRIVER
FUNCTIONS

(APIs)

CHANNEL
CONFIGURATION
ARRAY

CHANNEL
MANAGEMENT

XDAIS
ALGORITHMS

USB JTAG EMULATION &
RTDXTM TECHNOLOGY

REAL-TIME
ANALYSIS

SLAA166

TMS320C54x DSP Reference Framework & Device Driver for the TLV320AIC20 HPA Data Converter
25

8.2.2 Driver Functions

There are a minimum of three functions that need to be invoked by the framework. The function
prototypes can be found in the device driver’s header file <dsk5416_aic20evm.h>.

• DSK5416_AIC20EVM_init() – needs to be called only once during system initialization

• DSK5416_AIC20EVM_setup() – needs to be called to set up channel configuration
parameters before opening the device

• DSK5416_AIC20EVM_open() – needs to be called to physically set up and start the
device after the init() and setup() functions have been executed

• DSK5416_AIC20EVM_close() – can be called by the framework to power down the entire
AIC20 device cascade for system shutdown purposes

8.2.3 Relevant Data Structures

8.2.3.1 Ping-Pong Buffers

The DSK5416_AIC20EVM device driver defines four global buffers used to pass data between
device and framework. The typical ping-pong buffering scheme is implemented, meaning there
are two receive buffers and two transmit buffers. When one receive buffer fills up, the driver
begins to fill the other receive buffer. Similarly, when the framework wants to output data to the
device, it should switch back and forth between transmit buffers each time a buffer becomes full.

ARRAY 0 1 2 3 4 5 6 7
INDEX SLAVE

CHAN 2

CONTROL

REG

MASTER

CHAN 1

DATA

WORD

MASTER

CHAN 2

DATA

WORD

SLAVE

CHAN 1

DATA

WORD

SLAVE

CHAN 2

DATA

WORD

MASTER

CHAN 1

CONTROL

REG

MASTER

CHAN 2

CONTROL

REG

SLAVE

CHAN 1

CONTROL

REG
SLV_CHAN2_C MST_CHAN1_D MST_CHAN2_D SLV_CHAN1_D SLV_CHAN2_D MST_CHAN1_C MST_CHAN2_C SLV_CHAN1_C

Figure 15. RCV and XMT Ping-Pong Buffer Format

The following enumerated types, defined in the header file <dsk5416_aic20evm.h>, are used to
locate specific channel information within each buffer, rather than trying to remember which time
slot corresponds to which channel’s data and control information:

/* Enumerated types for array locations in the DSK5416_AIC20EVM buffers */
typedef enum DSK5416_AIC20EVM_BufferIndex {

SLV_CHAN2_C, // "Slave" Channel 2 CTRL slot
MST_CHAN1_D, // "Master" Channel 1 DATA slot
MST_CHAN2_D, // "Master" Channel 2 DATA slot
SLV_CHAN1_D, // "Slave" Channel 1 DATA slot
SLV_CHAN2_D, // "Slave" Channel 2 DATA slot
MST_CHAN1_C, // "Master" Channel 1 CTRL slot
MST_CHAN2_C, // "Master" Channel 2 CTRL slot
SLV_CHAN1_C // "Slave" Channel 1 CTRL slot

} DSK5416_AIC20EVM_BufferIndex;

SLAA166

26 TMS320C54x DSP Reference Framework & Device Driver for the TLV320AIC20 HPA Data Converter

8.2.3.2 Channel Configuration Array

Within the device driver interface, there is an array (of size DSK5416_AIC20EVM_NUMCHANS) of
channel configuration parameters that is declared globally so that both framework and device
driver can access them. Each element of the array is just a structure that contains all of the
possible control register settings that pertain to a specific channel. The device driver initializes
each channel’s structure with a set of common default values during compile time. However,
there are certain parameters that cannot be the same for each channel, such as the input (ADC)
and output (DAC) settings. Before the device driver sends out these control register settings
during device initialization, the device driver code itself needs to be modified manually to
incorporate settings other than the default.

In the example source file dsk5416_aic20evm.c, locate the following portion of code that is part
of the DSK5416_AIC20EVM_setup() function:

Void DSK5416_AIC20EVM_setup()
{

// ** TODO: Configure the unique configuration parameters for each channel **
DSK5416_AIC20EVM_chanConfigParams[MST_CHAN1].reg[CR6A] = LINEI; // master ch1 ADC
DSK5416_AIC20EVM_chanConfigParams[MST_CHAN2].reg[CR6A] = MICI; // master ch2 ADC
DSK5416_AIC20EVM_chanConfigParams[SLV_CHAN1].reg[CR6A] = HNSI; // slave ch1 ADC
DSK5416_AIC20EVM_chanConfigParams[SLV_CHAN2].reg[CR6A] = HDSI; // slave ch2 ADC

DSK5416_AIC20EVM_chanConfigParams[MST_CHAN1].reg[CR6B] = LINEO; // master ch1 DAC
DSK5416_AIC20EVM_chanConfigParams[MST_CHAN2].reg[CR6B] = SPKO; // master ch2 DAC
DSK5416_AIC20EVM_chanConfigParams[SLV_CHAN1].reg[CR6B] = SPKO; // slave ch1 DAC
DSK5416_AIC20EVM_chanConfigParams[SLV_CHAN2].reg[CR6B] = HDSO; // slave ch2 DAC

}

The above code is setting each channel’s ADC and DAC lines for a specific configuration. Here
is where any other control register modifications can be added and set for each channel. The
above code which is supplied out of the box with the associated sample code results in the
following voice device I/O configuration on the AIC20EVM board:

Table 3. DSK5416_AIC20EVM Default I/O Codec Channel Settings

AIC20EVM CASCADE
CHANNEL

EVM INPUT
CONNECTION

CODEC INPUT LINE EVM OUTPUT
CONNECTION

CODEC OUTPUT LINE

Master channel #1 J14 (+/-) Line input (LINEI) J5 (+/-) Line output (LINEO) [600 Ω]

Master channel #2 J16 (3.5 mm
input jack)

MIC input (MICI) J2 (+/-) Speaker output (SPKO) [8 Ω]

Slave channel #1 J19 (+/-) Hand set input (HNSI) J11 (+/-) Speaker output (SPKO) [8 Ω]

Slave channel #2 J13 (+/-) Head set input (HDSI) J3 (+/-) Head set output (HDSO) [150 Ω]

CAUTION:
Disconnecting and reconnecting the sound sources from the codec input lines
during normal operation could result in unwanted noise spikes input to the
channels and cause the DSK5416_AIC20EVM device driver to stop working
altogether.

SLAA166

TMS320C54x DSP Reference Framework & Device Driver for the TLV320AIC20 HPA Data Converter
27

The device header file <aic20.h> contains the configuration structure definition that is used for
each channel. A set of default control registers is set in this header file and can be changed
freely by the application developer so that a known default set of control registers is
programmed for all AIC20 cascaded channels during the DSK5416_AIC20EVM_open()
function call. The default sampling rate as specified in the <aic20.h> file that is packaged with
the sample application code is 8 kHz for each channel. Making changes to the sampling
frequency may involve reconfiguring the DSP CLKOUT which is based on the DSP clock speed.

WARNING:
Do not change the bit fields that determine the different register contents for a
Control Register with the same number (e.g. control register #5 has four sub-
registers: CRs # 5A, 5B, 5C, 5D). Typically, the 1 or 2 most significant bits of the
control word determine which sub-register of the overall control register gets
programmed. Refer to the <aic20.h> file comments that identify these bit fields.

ARRAY 0 1 2 3
INDEX MASTER

CHAN 1

CONTROL

REGISTERS

MASTER

CHAN 2

CONTROL

REGISTERS

SLAVE

CHAN 1

CONTROL

REGISTERS

SLAVE

CHAN 2

CONTROL

REGISTERS

reg[0] CR #01 CR #01 CR #01 CR #01
reg[1] CR #02 CR #02 CR #02 CR #02
reg[2] CR #3A CR #3A CR #3A CR #3A
reg[3] CR #3B CR #3B CR #3B CR #3B
reg[4] CR #3C CR #3C CR #3C CR #3C
reg[5] CR #3D CR #3D CR #3D CR #3D
reg[6] CR #4A CR #4A CR #4A CR #4A
reg[7] CR #4B CR #4B CR #4B CR #4B
reg[8] CR #5A CR #5A CR #5A CR #5A
reg[9] CR #5B CR #5B CR #5B CR #5B

reg[10] CR #5C CR #5C CR #5C CR #5C
reg[11] CR #5D CR #5D CR #5D CR #5D
reg[12] CR #6A CR #6A CR #6A CR #6A
reg[13] CR #6B CR #6B CR #6B CR #6B

Figure 16. Cascade Channel Configuration (Global Shadow Registers)

8.3 Implementation of the Device Driver

8.3.1 Design Decisions and Core Code

8.3.1.1 DSP Peripherals and Initialization Sequence

Before the DSP can communicate with the AIC20 devices, its McBSP must be configured during
the system initialization phase. TI’s chip support library (CSL) tools and APIs are used to easily
configure the McBSP #1 so that it can properly receive and transmit data from/to the device.

SLAA166

28 TMS320C54x DSP Reference Framework & Device Driver for the TLV320AIC20 HPA Data Converter

The chip support library can be used in two ways – via a DSP/BIOS configuration file (*.CDB), or
by programmatically invoking APIs. The DSK5416_AIC20EVM device driver uses the CSL in
both ways. To configure the McBSP, the audioapp.cdb file is used to store information on how
the serial port should be configured at startup. To see the settings that are required for proper
receive and transmit operation of the McBSP, double-click on the audioapp.cdb file that is part of
the CCS project in the Project View window. Expand the Chip Support Library category and
then expand the MCBSP Multichannel Buffered Serial Port and then the MCBSP Channel
Configuration categories. Right-click on the mcbspCfg0 icon and select Properties.

Figure 17. DSP Peripheral Configuration Using CSL

The DSP/BIOS system takes care of initializing the McBSP based on these settings. Once the
McBSP #1 is configured, only a single call to a CSL API needs to be performed. Once the
McBSP has started, a series of control words, based on the contents of the global channel
configuration array, is sent out in a single stream all at once. DSK5416_AIC20EVM_open()
must be called after the one-time call to DSK5416_AIC20EVM_init().

SLAA166

TMS320C54x DSP Reference Framework & Device Driver for the TLV320AIC20 HPA Data Converter
29

DSK5416_AIC20EVM_DeviceHandle DSK5416_AIC20EVM_open()
{

IRQ_enable(IRQ_EVT_XINT1);

MCBSP_start(C54XX_MCBSP_hMcbsp, MCBSP_XMIT_START | MCBSP_RCV_START |
MCBSP_SRGR_START | MCBSP_SRGR_FRAMESYNC, 220);

// Send out all the Control Register data for all channels
DSK5416_AIC20EVM_programAllRegs();

IRQ_enable(IRQ_EVT_RINT1);
}

8.3.1.2 Configuring DSP Speed, DSP CLKOUT, and AIC20 Sampling Frequency

A master clock (MCLK) signal must be provided to drive each AIC20 device. All of the AIC20’s
operations and timings are driven off the incoming MCLK signal. In turn, each AIC20 generates
a serial clock (SCLK), which is then fed back to the McBSP to drive the read/write bit timings.

The TMS320VC5416 TM DSP is capable of operating at a maximum speed of 160 MHz. Based
on the DSP speed, a CLKOUT can be generated to drive an external device such as the AIC20.
In essence, the CLKOUT serves as the MCLK for the AIC20 cascade. The VC5416 allows the
CLKOUT to be derived from the DSP speed divided by a factor of 1, 2, 3, or 4.

On the C5416DSK board, a 16-MHz oscillator feeds the CLKIN to the DSP. The DSP PLL
multiplier value (PLLMUL) allows the DSP speed to be set as a multiple of the CLKIN, up to 160
MHz. For this reference platform, 144 MHz was chosen for the DSP speed. Why was 160 MHz
not chosen – the maximum speed allowable for the TMS320VC5416?

According to the AIC20 data manual, the sampling frequency is set by the following formula:

Fs = [MCLK / (16 x M x N x P)]

{10 MHz <= (MCLK / P) <= 25 MHz}, {1 <= M <= 128}, {1 <= N <= 16}, {1 <= P <= 8}

By inspection, we see that the MCLK (DSP CLKOUT) value, as well as the restrictions on the
values of M, N, P, determine the attainable sampling frequency. In order to achieve exactly 8-
kHz sampling rate and get closest to the maximum DSP speed, 144 MHz was chosen because:

CLKOUT = DSP Speed / PLLDIV = 144 MHz / [1, 2, 3, 4] = 144 MHz / 3 = 48 MHz

Using a CLKOUT of 48 MHz, it is possible to achieve exactly 8 kHz, 12 kHz, and 24 kHz
sampling rates with the DSP running at 144 MHz. For example, to get exactly 8 kHz, we can
choose M=15, N=5, P=5 so that [48 MHz / (16 x 15 x 5 x 5)] = 8 kHz. It is possible to achieve 16-
kHz sampling frequency, but the DSP speed would only be 128 MHz out of a possible 160 MHz.

Table 4. DSK5416_AIC20EVM Sampling Frequency Settings

SAMPLING
FREQUENCY

M N P DSP PLLMUL DSP PLLDIV DSP SPEED DSP CLKOUT
(AIC20 MCLK)

8 kHz 15 5 5 8 (+ 1) 3 144 MHz 48 MHz

12 kHz 10 5 5 8 (+ 1) 3 144 MHz 48 MHz

16 kHz 10 5 5 7 (+ 1) 2 128 MHz 64 MHz

24 kHz 5 5 5 8 (+ 1) 3 144 MHz 48 MHz
Note: Achieving 16-kHz sampling rate requires DSP speed and CLKOUT to be reconfigured from the default values.

SLAA166

30 TMS320C54x DSP Reference Framework & Device Driver for the TLV320AIC20 HPA Data Converter

8.3.1.3 Interrupt Service Routines

ISR Initialization Code

The interrupt service routines (ISRs) are initialized using TI’s standard Chip Support Library
(CSL) APIs. These easy-to-use API’s allow the device driver’s DSK5416_AIC20EVM_init()
function to dynamically plug the ISR into the vector table as well as enable global interrupts.

DSK5416_AIC20EVM_DeviceHandle DSK5416_AIC20EVM_init()
{

Uint16 index;

// Set up the SWWSR, BSCR, SWCR registers
EBUS_config(&DSK5416_AIC20EVM_myMemConfig);

// Check for Motherboard connection and force reset if it's there
if (DSK5416_DC_REG & DSK5416_DC_DETECT) {

DSK5416_DC_REG &= DSK5416_DC_NO_RST;
DSK5416_DC_REG |= DSK5416_DC_RESET;
for (index = 0; index < EB_RESET_DELAY; index++)

DSK5416_AIC20EVM_delay(EB_RESET_DELAY);
DSK5416_DC_REG &= DSK5416_DC_NO_RST;

}
else

return (FALSE);

// Clear any pending interrupts (IFR)
IRQ_clear(IRQ_EVT_RINT1);
IRQ_clear(IRQ_EVT_XINT1);

// Place the HWI hooks at the proper spots in the interrupt vector table
// NOTE: only use IRQ_plug() when NOT using the DSP/BIOS HWI Dispatcher!!!
IRQ_plug(IRQ_EVT_RINT1, &DSK5416_AIC20EVM_rcvXmtSample);
IRQ_plug(IRQ_EVT_XINT1, &DSK5416_AIC20EVM_frameSync);

// Enable interrupts globally (INTM)
IRQ_globalEnable();

// Device initialization successful
return (TRUE);

}

The McBSP transmitter is initialized to generate an interrupt on every new FS detected. The
McBSP receiver will be initialized to generate an interrupt on every RRDY Event, which means
each time a new data word has been received at the McBSP and shifted into the data receive
register (DRR). The CPU can directly access the DRR without much of a performance hit, since
it is a memory mapped register (MMR) that resides in DSP internal data memory. The details of
what happens during every McBSP Tx and Rx interrupt are discussed in the following section.

SLAA166

TMS320C54x DSP Reference Framework & Device Driver for the TLV320AIC20 HPA Data Converter
31

Figure 18. McBSP Interrupt Service Routines Configuration

McBSP Transmit ISR (Tx Event = FSX Detected)

The FS signal from the master AIC20 device is connected to the FSX and FSR inputs of the
McBSP. This configuration allows the DSP to detect the FS at the McBSP, generate an
interrupt, and have the interrupt serviced. The function DSK5416_AIC20EVM_frameSync() is
implemented to increase a global frame sync counter, as well as tell the DSP that the current
data word coming into the McBSP DRR corresponds to the first timing slot of the FS period. A
global index array is used to point to the current time slot. Each time the FS interrupt occurs,
this index is simply set to 0 which serves as the pointer to the first array element of the receive
buffer. The McBSP Rx ISR relies on the Tx ISR to reset the buffer index each time a new FS
signal is detected at the McBSP FSX input.

interrupt void DSK5416_AIC20EVM_frameSync()
// Called when FSX detected
{

// Update counter to signal that another FS has just been detected
DSK5416_AIC20EVM_gFsCounter++;
// Reset timing slot pointer
DSK5416_AIC20EVM_gBufferIndex = 0;

}

McBSP Receive ISR (Rx Event = RRDY Detected)

The McBSP’s receive mode can be configured to generate a special interrupt each time a new
data word has been read at the McBSP. Therefore, the logical function for the associated ISR
would be to just read in the current contents of the DRR. The global buffer index is always
pointing to the current time slot which just corresponds to a specific position in the receive buffer
array. Once the data has been read and written to the receive buffer, the buffer index is
incremented for the next data word to be read at the McBSP. When the index reaches the
frame buffer size, that signals that the buffer is full and needs to be processed. A DSP/BIOS
software interrupt (SWI) is posted which invokes the processBuffer() function where the
data can be consumed by the application framework.

Master FS

DOUT
Time Slots

Master
Chan 1

Data Frame Control Frame

McBSP Tx Interrupt generated on every FS

Data Frame

Master
Chan 2

Slave
Chan 1

Slave
Chan 2

Slave
Chan 2

Slave
Chan 2

Slave
Chan 2

Master
Chan 2

Master
Chan 2

Master
Chan 1

Master
Chan 1

Slave
Chan 1

Slave
Chan 1

McBSP Rx Interrupt generated on every incoming sample

SLAA166

32 TMS320C54x DSP Reference Framework & Device Driver for the TLV320AIC20 HPA Data Converter

In a DSP/BIOS-based scheduling system, the highest priority SWI runs, but can be preempted
by all hardware interrupts (HWIs). In this example, the hardware interrupts are used to read and
write the actual data values while the SWIs are used to perform the less urgent (but still real-
time critical) DSP processing functions on the filled receive buffers. The McBSP receive ISR
keeps track of how many words have been written into the current receive ping-pong buffer, and
when the buffer is full (i.e. FS period completed), the SWI processing function is posted and runs
in the context of the DSP/BIOS scheduler when no HWIs are being serviced.

Since both receive and transmit modes are driven by the same serial clock (SCLK) of the AIC20
cascade, it would make sense for the device driver to transmit an output sample for every input
sample that is received. So, the McBSP receive ISR immediately writes out a sample from the
current Tx buffer right after a new sample has been read into the current Rx buffer. However,
since the McBSP transmit mode is double-buffered, whatever data word is written to the data
Xmit register (DXR) appears on the data bus exactly 2 time slots in the future. So, the ISR must
look ahead two channels and get that channel’s data to write out during each current read cycle
(triggered by an RRDY event).

For example, if the current received word is master channel 1’s data, then the Tx data for slave
channel 1 must be written to the McBSP immediately after the read (buffer index 1!2![3]). If
the current Rx timing slot is slave channel 1’s CR contents, then the Tx data for master channel
1 (buffer index 7!0![1]) must be immediately written to the McBSP to assure it falls within the
correct timing slot 2 cycles in the future, due to the double-buffered nature of the McBSP
transmitter. See the following Table for the lookahead decision-making process on which Tx
buffer sample must be sent out depending on the current Rx buffer index. In summary, every
read cycle (i.e. every RRDY receive event) must include one read and one write operation by
the host processor to keep the TDM DIN and DOUT data streams continuous. The
DSK5416_AIC20EVM_rcvXmtSample() function is plugged into the vector table as the ISR to
run for every McBSP RRDY event.

interrupt void DSK5416_AIC20EVM_rcvXmtSample() // Called for every McBSP RRDY Receive event
{

static short DSK5416_AIC20EVM_pingOrPong = PING;

if (DSK5416_AIC20EVM_pingOrPong == PING) {
// Read the current DOUT word
DSK5416_AIC20EVM_gBufferRcvPing[gBufferIndex] = MCBSP_read16(C54XX_MCBSP_hMcbsp);
// Write out the DIN word for the corresponding future timing slot
MCBSP_write16(DSK5416_AIC20EVM_gBufferXmtPing[(gBufferIndex+RXTXOFFSET)%(BUFFSIZE)]);
// Increment timing slot pointer for next read
DSK5416_AIC20EVM_gBufferIndex++;
// Post SWI if frame buffer full
if (DSK5416_AIC20EVM_gBufferIndex == DSK5416_AIC20EVM_BUFFSIZE) {

SWI_or(&processBufferSwi, PING);
DSK5416_AIC20EVM_pingOrPong = PONG;

}
}
else { // DSK5416_AIC20EVM_pingOrPong == PONG

<repeat above code exactly but for the PONG Rx & Tx buffers>
}

}

SLAA166

TMS320C54x DSP Reference Framework & Device Driver for the TLV320AIC20 HPA Data Converter
33

Table 5. DSK5416_AIC20EVM McBSP Write Decision per Receive Interrupt

BUFFER
INDEX
(RX)

CURRENT READ (DOUT) TIME SLOT
BASED ON CURRENT RX BUFFER

INDEX VALUE

TX BUFFER
ARRAY

LOCATION

(DIN) TIME SLOT DATA TO IMMEDIATELY
WRITE TO DXR AFTER CURRENT READ

(DOUT) FROM DRR

0 SLAVE CHANNEL #2 CONTROL 2 MASTER CHANNEL #2 DATA

1 MASTER CHANNEL #1 DATA 3 SLAVE CHANNEL #1 DATA

2 MASTER CHANNEL #2 DATA 4 SLAVE CHANNEL #2 DATA

3 SLAVE CHANNEL #1 DATA 5 MASTER CHANNEL #1 CONTROL

4 SLAVE CHANNEL #2 DATA 6 MASTER CHANNEL #2 CONTROL

5 MASTER CHANNEL #1 CONTROL 7 SLAVE CHANNEL #1 CONTROL

6 MASTER CHANNEL #2 CONTROL 0 SLAVE CHANNEL #2 CONTROL

7 SLAVE CHANNEL #1 CONTROL 1 MASTER CHANNEL #1 DATA

8.3.2 Coding Conventions, File Structure, and Packaging

The DSK5416_AIC20EVM device driver code follows the standard coding conventions used in
all eXpressDSPTM components (XDAIS, DSP/BIOS, RF) to allow for ease of integration and easy
readability. All global symbols are prefixed with the <BOARD>_<DEVICE>_ API designation
(e.g. DSK5416_AIC20EVM_) prefix to maintain uniqueness of symbol names so that the code
can co-exist with all other system code and avoid symbol clashes. The interface itself also
follows a uniform naming convention so that it is always obvious if a label is a constant, data
type, function name, field within a structure, a function parameter, etc.

Table 6. DSK5416_AIC20EVM Example Naming Conventions

Label Type Convention Example

SYMBOLIC CONSTANTS All UPPERcase, single word (no
underscores) after prefix

DSK5416_AIC20EVM_NUMCHANS

All data types Titlecase (no underscores) after prefix DSK5416_AIC20EVM_BufferIndex

Structure fields

function parameters

variables

Begins with lowercase after prefix (no
underscores after the prefix)

DSK5416_AIC20EVM_chanConfigParams[].reg[]

DSK5416_AIC20EVM_writeControlWords(Uint16
master, Uint16 slave2, Uint16 slave1, Uint16 slave0)

DSK5416_AIC20EVM_hDevice

function names Single-word (no underscores), begins
with lowercase after prefix

DSK5416_AIC20EVM_init()

Note: Never use the underscore (‘_’) character to separate words after the <BOARD>_<DEVICE>_ prefix; use Titlecase words
instead to separate multiple worded names (e.g. DSK5416_AIC20EVM_readControlDataWords)

The DSK5416_AIC20EVM device driver files also follow the standard eXpressDSPTM device
driver packaging and delivery conventions. The main interface to the device driver is aptly
named dsk5416_aic20evm.h (following the <board>_<device>.h naming convention), and only
the relevant data types and APIs are exposed to the outside world. The following is a summary
of the files that make up the DSK5416_AIC20EVM device driver:

• <aic20.h> – contains control register configuration data types and default settings

• <dsk5416_aic20evm.h> – contains all relevant constants, data types, and APIs used to
interact with the device driver

SLAA166

34 TMS320C54x DSP Reference Framework & Device Driver for the TLV320AIC20 HPA Data Converter

• dsk5416_aic20evm.c – contains all device-specific code for basic AIC20EVM operations

• dsk5416_aic20evm_ctrl.c – contains (optional) run-time control code to change channel
operating parameters on the fly

Typically, eXpressDSPTM device drivers are packaged as a single library file which follows the
<board>_<device>.l<dspcore> naming convention. The library file can then be linked into the
application just as if it were any other foundation library used for building the project. For this
application note example, the device driver object code is packaged in a single file named
dsk5416_aic20evm.l54f, where the f stands for far calls and returns on the C54x-based object
code. For an application that uses the near call/return memory model, the device driver source
code could be rebuilt with the appropriate options and named dsk5416_aic20evm.l54 (no f in the
suffix) to designate that the library is to be used in a near memory model system only.

NOTE: The l in the *.l54f file name suffix is a lower-case letter L. This is how TI distinguishes file
names that are library archives.

8.4 Changing Device and Channel Parameters During Run-Time

The DSK5416_AIC20EVM device driver code out of the box, in its currently released form,
configures the AIC20 devices for programming mode (vs continuous mode). Programming
mode means that for every FS period, there is a specific time slot to either send a command to
read/write a specific control register of a specific channel. For example, if there are four audio
channels in the cascade, then each FS period consists of eight timing slots (first four timing slots
are for reading/writing the actual data sample, while the remaining four timing slots read or write
to a single control register for the time slot’s channel).

To send either a read or write control register command to a specific channel, the framework
needs to write the command in the appropriate location in the Xmt ping-pong buffer. If no
command is to be sent out, then the value of the command should be set to zero since it is not
desired to write a random value to the control register timing slot and inadvertently change it.

8.4.1 Run-Time Control Functions

The sample source file dsk5416_aic20evm_ctrl.c contains a group of ready-to-use wrapper
functions that modify control register contents in the channel configuration array using
convenient-to-use high-level APIs called by the framework. The channel configuration array can
be treated as shadow registers of the actual AIC20 device registers. The framework only needs
to call the functions on the correct channels by writing to the appropriate control register timing
slot(s) in the Xmt ping-pong buffer.

SLAA166

TMS320C54x DSP Reference Framework & Device Driver for the TLV320AIC20 HPA Data Converter
35

DSK5416_AIC20EVM_gBufferXmtPing[MST_CHAN1_C] =
DSK5416_AIC20EVM_enableFIR(hDevice, MST_CHAN1);

DSK5416_AIC20EVM_gBufferXmtPing[MST_CHAN2_C] =
DSK5416_AIC20EVM_muteHandset(hDevice, MST_CHAN2, DSK5416_AIC20EVM_ENABLE);

DSK5416_AIC20EVM_gBufferXmtPing[SLV_CHAN1_C] =
DSK5416_AIC20EVM_setSpeakerGain(hDevice, SLV_CHAN1, SPKG_DB02);

DSK5416_AIC20EVM_gBufferXmtPing[SLV_CHAN2_C] =
DSK5416_AIC20EVM_setSidetoneGains(hDevice, SLV_CHAN2, SIDETONEMUTE, STG_NDB27);

In the above example, by just writing to the appropriate control register timing slots into the Xmt
buffer of the device driver, the following configuration parameters are changed within the same
FS period:

• Master channel #1 FIR filter is ENABLED (IIR filter is disabled automatically)

• Master channel #2 handset output is MUTED

• Slave channel #1 speaker gain is set to +2 dB

• Slave channel #2 sidetone gains are set (Analog is MUTED & Digital = –27dB)

Whenever no control register changes are needed, it is strongly recommended to write 0’s for
the control register timing slots to avoid inadvertently writing out random control data.

DSK5416_AIC20EVM_gBufferXmtPong[MST_CHAN1_C] = 0; // Master Chan 1 ctrl
DSK5416_AIC20EVM_gBufferXmtPong[MST_CHAN2_C] = 0; // Master Chan 2 ctrl
DSK5416_AIC20EVM_gBufferXmtPong[SLV_CHAN1_C] = 0; // Slave Chan 1 ctrl
DSK5416_AIC20EVM_gBufferXmtPong[SLV_CHAN2_C] = 0; // Slave Chan 2 ctrl

The following is a complete list of the run-time AIC20 control functions supplied with the existing
DSK5416_AIC20EVM driver module (also found in the header file <dsk5416_aic20evm.h>:

Control Register #1
Uint16 DSK5416_AIC20EVM_enableFIR(DSK5416_AIC20EVM_DeviceHandle hDevice,

DSK5416_AIC20EVM_Channel chan);
Uint16 DSK5416_AIC20EVM_enableIIR(DSK5416_AIC20EVM_DeviceHandle hDevice,

DSK5416_AIC20EVM_Channel chan);
Uint16 DSK5416_AIC20EVM_setAnalogLoopback(DSK5416_AIC20EVM_DeviceHandle hDevice,

DSK5416_AIC20EVM_Channel chan,
DSK5416_AIC20EVM_Cmd cmd);

Uint16 DSK5416_AIC20EVM_setDigitalLoopback(DSK5416_AIC20EVM_DeviceHandle hDevice,
DSK5416_AIC20EVM_Channel chan,
DSK5416_AIC20EVM_Cmd cmd);

Control Register #2
Uint16 DSK5416_AIC20EVM_setTurboMode(DSK5416_AIC20EVM_DeviceHandle hDevice,

DSK5416_AIC20EVM_Channel chan,
DSK5416_AIC20EVM_Cmd cmd);

Uint16 DSK5416_AIC20EVM_setDIFbypass(DSK5416_AIC20EVM_DeviceHandle hDevice,
DSK5416_AIC20EVM_Channel chan,
DSK5416_AIC20EVM_Cmd cmd);

SLAA166

36 TMS320C54x DSP Reference Framework & Device Driver for the TLV320AIC20 HPA Data Converter

Control Register #3A
Uint16 DSK5416_AIC20EVM_powerdownADC(DSK5416_AIC20EVM_DeviceHandle hDevice,

DSK5416_AIC20EVM_Channel chan);
Uint16 DSK5416_AIC20EVM_powerdownDAC(DSK5416_AIC20EVM_DeviceHandle hDevice,

DSK5416_AIC20EVM_Channel chan);
Uint16 DSK5416_AIC20EVM_powerdownALL(DSK5416_AIC20EVM_DeviceHandle hDevice,

DSK5416_AIC20EVM_Channel chan);
Uint16 DSK5416_AIC20EVM_reset(DSK5416_AIC20EVM_DeviceHandle hDevice,

DSK5416_AIC20EVM_Channel chan);

Control Register #3B
Uint16 DSK5416_AIC20EVM_set8KBPF(DSK5416_AIC20EVM_DeviceHandle hDevice,

DSK5416_AIC20EVM_Channel chan,
DSK5416_AIC20EVM_Cmd cmd);

Uint16 DSK5416_AIC20EVM_muteHandset(DSK5416_AIC20EVM_DeviceHandle hDevice,
DSK5416_AIC20EVM_Channel chan,
DSK5416_AIC20EVM_Cmd cmd);

Uint16 DSK5416_AIC20EVM_muteHeadset(DSK5416_AIC20EVM_DeviceHandle hDevice,
DSK5416_AIC20EVM_Channel chan,
DSK5416_AIC20EVM_Cmd cmd);

Uint16 DSK5416_AIC20EVM_muteLineOutput(DSK5416_AIC20EVM_DeviceHandle hDevice,
DSK5416_AIC20EVM_Channel chan,
DSK5416_AIC20EVM_Cmd cmd);

Uint16 DSK5416_AIC20EVM_muteSpeaker(DSK5416_AIC20EVM_DeviceHandle hDevice,
DSK5416_AIC20EVM_Cmd cmd,
DSK5416_AIC20EVM_Channel chan);

NOTE: Control registers #4A and #4B are used to set the M, N, P values for configuring the
sampling frequency. It is not advisable to reconfigure the sampling frequencies during run-time,
especially since those values may depend on reconfiguring the DSP speed and CLKOUT
frequencies as well. Hence, no run-time control functions are supplied for these registers.

Control Register #5A
typedef enum DSK5416_AIC20EVM_A2DGain { /* e.g. DB07_5 = +7.5 dB A/D Gain */

A2DMUTE, DB54_0, DB48_0, DB42_0, DB40_5, DB39_0, DB37_5, DB36_0, DB34_5, DB33_0,
DB31_5, DB30_0, DB28_5, DB27_0, DB25_5, DB24_0, DB22_5, DB21_0, DB19_5, DB18_0,
DB16_5, DB15_0, DB13_5, DB12_0, DB10_5, DB09_0, DB07_5, DB06_0, DB04_5, DB03_0,
DB01_5, DB00_0

} DSK5416_AIC20EVM_A2DGain;

Uint16 DSK5416_AIC20EVM_setADPGA(DSK5416_AIC20EVM_DeviceHandle hDevice,
DSK5416_AIC20EVM_Channel chan,
DSK5416_AIC20EVM_A2DGain gain);

Control Register #5B
typedef enum DSK5416_AIC20EVM_D2AGain { /* e.g. NDB07_5 = -7.5 dB D/A Gain */

D2AMUTE, NDB54_0, NDB48_0, NDB42_0, NDB40_5, NDB39_0, NDB37_5, NDB36_0, NDB34_5,
NDB33_0, NDB31_5, NDB30_0, NDB28_5, NDB27_0, NDB25_5, NDB24_0, NDB22_5, NDB21_0,
NDB19_5, NDB18_0, NDB16_5, NDB15_0, NDB13_5, NDB12_0, NDB10_5, NDB09_0, NDB07_5,
NDB06_0, NDB04_5, NDB03_0, NDB01_5, NDB00_0
} DSK5416_AIC20EVM_D2AGain;

SLAA166

TMS320C54x DSP Reference Framework & Device Driver for the TLV320AIC20 HPA Data Converter
37

Uint16 DSK5416_AIC20EVM_setDAPGA(DSK5416_AIC20EVM_DeviceHandle hDevice,
DSK5416_AIC20EVM_Channel chan,
DSK5416_AIC20EVM_D2AGain gain);

Control Register #5C
typedef enum DSK5416_AIC20EVM_SidetoneGain { /* e.g. STG_NDB24 = -24 dB s/t gain */

SIDETONEMUTE, STG_NDB27, STG_NDB24, STG_NDB21, STG_NDB18, STG_NDB15, STG_NDB12,
STG_NDB09
} DSK5416_AIC20EVM_SidetoneGain;

Uint16 DSK5416_AIC20EVM_setSidetoneGains(DSK5416_AIC20EVM_DeviceHandle hDevice,
DSK5416_AIC20EVM_Channel chan,
DSK5416_AIC20EVM_SidetoneGain gainAnalog,
DSK5416_AIC20EVM_SidetoneGain gainDigital);

Control Register #5D
typedef enum DSK5416_AIC20EVM_SpeakerGain { /* e.g. SPKG_DB01 = +1 dB speaker gain */

SPKG_DB00, SPKG_DB01, SPKG_DB02, SPKG_DB03
} DSK5416_AIC20EVM_SpeakerGain;

Uint16 DSK5416_AIC20EVM_setSpeakerGain(DSK5416_AIC20EVM_DeviceHandle hDevice,
DSK5416_AIC20EVM_Channel chan,
DSK5416_AIC20EVM_SpeakerGain gain);

Control Register #6A
Uint16 DSK5416_AIC20EVM_setHeadsetIO(DSK5416_AIC20EVM_DeviceHandle hDevice,

DSK5416_AIC20EVM_Channel chan,
DSK5416_AIC20EVM_Cmd cmd);

Uint16 DSK5416_AIC20EVM_setHandsetIO(DSK5416_AIC20EVM_DeviceHandle hDevice,
DSK5416_AIC20EVM_Channel chan,
DSK5416_AIC20EVM_Cmd cmd);

Uint16 DSK5416_AIC20EVM_setCallerID(DSK5416_AIC20EVM_DeviceHandle hDevice,
DSK5416_AIC20EVM_Channel chan,
DSK5416_AIC20EVM_Cmd cmd);

Uint16 DSK5416_AIC20EVM_setLineInput(DSK5416_AIC20EVM_DeviceHandle hDevice,
DSK5416_AIC20EVM_Channel chan,
DSK5416_AIC20EVM_Cmd cmd);

Uint16 DSK5416_AIC20EVM_setMicInput(DSK5416_AIC20EVM_DeviceHandle hDevice,
DSK5416_AIC20EVM_Channel chan,
DSK5416_AIC20EVM_Cmd cmd);

Uint16 DSK5416_AIC20EVM_setHandsetInput(DSK5416_AIC20EVM_DeviceHandle hDevice,
DSK5416_AIC20EVM_Channel chan,
DSK5416_AIC20EVM_Cmd cmd);

Uint16 DSK5416_AIC20EVM_setHeadsetInput(DSK5416_AIC20EVM_DeviceHandle hDevice,
DSK5416_AIC20EVM_Channel chan,
DSK5416_AIC20EVM_Cmd cmd);

SLAA166

38 TMS320C54x DSP Reference Framework & Device Driver for the TLV320AIC20 HPA Data Converter

Control Register #6B
Uint16 DSK5416_AIC20EVM_setAnalogSidetoneHeadset(DSK5416_AIC20EVM_DeviceHandle hDevice,

DSK5416_AIC20EVM_Channel chan,
DSK5416_AIC20EVM_Cmd cmd);

Uint16 DSK5416_AIC20EVM_setAnalogSidetoneHandset(DSK5416_AIC20EVM_DeviceHandle hDevice,
DSK5416_AIC20EVM_Channel chan,
DSK5416_AIC20EVM_Cmd cmd);

Uint16 DSK5416_AIC20EVM_setSpeakerOutput(DSK5416_AIC20EVM_DeviceHandle hDevice,
DSK5416_AIC20EVM_Channel chan,
DSK5416_AIC20EVM_Cmd cmd);

Uint16 DSK5416_AIC20EVM_setLineOutput(DSK5416_AIC20EVM_DeviceHandle hDevice,
DSK5416_AIC20EVM_Channel chan,
DSK5416_AIC20EVM_Cmd cmd);

Uint16 DSK5416_AIC20EVM_setHandsetOutput(DSK5416_AIC20EVM_DeviceHandle hDevice,
DSK5416_AIC20EVM_Channel chan,
DSK5416_AIC20EVM_Cmd cmd);

Uint16 DSK5416_AIC20EVM_setHeadsetOutput(DSK5416_AIC20EVM_DeviceHandle,
DSK5416_AIC20EVM_Channel chan,
DSK5416_AIC20EVM_Cmd cmd);

8.4.2 Run-Time Control Thread

A program on the host PC could be created to control each AIC20 channel during run-time of the
system. This program could simply send a high-level command to the target via RTDX™ and
then the framework would just need to write the command to the appropriate channel’s control
register time slot. The device driver sends out the control register command in the correct time
slot like it does with the normal audio sample data that is transmitted to the DIN line of the AIC20
device, as shown in the above code samples.

In this reference framework example, a control thread is provided as a simple example of how
the host program can send commands to the target to change its configuration such as
algorithm and device parameters. The control thread is a periodic ISR which is run every 20
timer ticks in its current DSP/BIOS configuration. So if each timer tick is 1 ms (i.e. the default
setting for DSP/BIOS), then the control thread is scheduled to run every 20 ms. The ISR
accesses a global array of data words which represents something like a device I/O area. The
array contains a specific location where if the value is nonzero, then that serves as a flag for the
control thread to take the appropriate action based on the other values in the device I/O area.

The device I/O area array is set up to contain the gain percentage for each of the VOL_TI
algorithm instances that belong to each data channel. So if the control thread sees that the host
has just modified the device I/O area (by checking if the first word in the device I/O area array is
non-zero), then the control thread ISR simply reads each new gain percentage value and
changes the corresponding channel’s VOL_TI algorithm object accordingly.

SLAA166

TMS320C54x DSP Reference Framework & Device Driver for the TLV320AIC20 HPA Data Converter
39

Int deviceControlsIOArea[] = {
FALSE, /* initially, no user action */
0, /* available for future use */
100, /* default volume gain % for channel #1 */
100, /* default volume gain % for channel #2 */
100, /* default volume gain % for channel #3 */
100, /* default volume gain % for channel #4 */

};

The purpose of the control thread is to detect hardware events such as a user pressing on the
device's buttons and other controls, and applying them to data processing. (For example,
changing the volume, modifying filter parameters, canceling a channel etc.). The mechanism is
the following: a hardware event such as a button press triggers an interrupt, serviced by the
following thrControlIsr() function.

Void thrControlIsr(Void) {
Int i;
static Uns activationCount = 0;

/* We are really called from the CLK object upon every timer interrupt
* whereas user's action would occur after relatively long intervals,
* so we try to simulate that, too. Since interrupts occur every
* 1ms (so is the CDB configured), we arbitrarily decide to actually
* do anything in this procedure every 20 interrupts, i.e. every 20 ms.
* If the if() clause below is removed, then the response to the user's
* action could happen in one millisecond. That would be the case with
* control ISR activated by a separate interrupt line. Such ISR would
* not need the if() clause below.
*/

if (++activationCount < 20) /* 20 ms */
return;

else
activationCount = 0;

/* now proceed with regular "I/O memory" reading actions */

/* check if there has been any unread user input */
if (deviceControlsIOArea[0] == FALSE)

return; /* there has not; return */

/* Read "volume" value for all channels and store
* the information in control thread's data structure. Interpretation
* is trivial in this case, we just copy host's data to control thread's
* data structure.
*/

for (i = 0; i < DSK5416_AIC20EVM_NUMCHANS; i++)
/* read "slider" for volume */
thrControl.outputVolume[i] = deviceControlsIOArea[2 + i];

/* now post the control thread */
SWI_post(&swiControl);

/* and clear the "user input" flag */
deviceControlsIOArea[0] = FALSE;

}

SLAA166

40 TMS320C54x DSP Reference Framework & Device Driver for the TLV320AIC20 HPA Data Converter

This procedure quickly reads the hardware parameters, interprets them, stores the result of the
interpretation in thrControl thread's data structure, posts the swiControl thread, and exits. It does
not modify any of the data processing parameters itself.

The swiControl thread is a SWI like the processing SWIs, and has exactly the same priority; it
executes thread function thrControlRun(). Function thrControlRun(), based on the data
presented by thrControlIsr(), modifies processing thread's data and/or XDAIS algorithms'
parameters. The reason the encapsulate processing parameters modification logic is in a
separate SWI thread is twofold:

• To keep the time spent in a hardware interrupt at a minimum;

• thrControlIsr() most likely interrupted a data processing thread; Do not modify
processing parameters in the middle of processing activity.

By having swiControl have the same priority as the processing threads, we ensure that it does
not prevent them, nor gets starved by them, so it has a low latency. The swiControl thread has
the priority of the lowest-priority thread whose data parameters it modifies.

An alternative approach may be to check the device controls every certain period (for example,
20 ms), if there is no interrupt that would inform us about the hardware event. This choice
depends on the application and the device.

In our example, the host writes into an area of memory that simulates I/O area where the
buttons and other controls are located. There is a clkControl CLK object that runs the
thrControlIsr() function; that is a timer interrupt which simulates a device control interrupt.
This is used when developing and testing applications on a board, such as DSK5416, where no
buttons are connected to any interrupt lines. Each channel’s volume gain can be changed by
accessing the GEL sliders found in the GEL column of the CCS Toolbar (GEL ! Application
Control ! Set_channel_<x>_volume). More sliders can be added by modifying the provided
app.gel file.

Figure 19. Host CCS GEL Sliders for Changing Channel Volumes

SLAA166

TMS320C54x DSP Reference Framework & Device Driver for the TLV320AIC20 HPA Data Converter
41

This reference framework example currently only allows the VOL_TI algorithm’s gain percentage
to be changed permanently during runtime, however, it should be easy for the developer to build
additional functionality into the control thread to perform device-specific changes such as mute
certain outputs of a channel, enable/disable the built-in HW audio filters, or increase/decrease
the speaker gain of a specific channel. The control thread could simply write the commands
directly into the control register timing slots of the Xmt ping-pong buffers so that the control data
is sent out to the device by the device driver during normal operation. An example of this
functionality is shown in the code example at the beginning of this section.

Figure 20. DSP/BIOS Timer ISR and Control Thread Configuration

The clkControl and swiControl threads are preconfigured in the provided reference framework’s
DSP/BIOS configuration (*.CDB) file. Every CLK object has an associated function which runs
in the context of the timer ISR that has a period set in the clock manager properties
(microseconds/Int). The thrControlISR() function is associated with the clkControl CLK
object which is executed on each timer interrupt which occurs every 1000 µs (i.e. 1 ms).

SLAA166

42 TMS320C54x DSP Reference Framework & Device Driver for the TLV320AIC20 HPA Data Converter

8.5 Development of System-Specific AIC20 Device Drivers

The provided AIC20 device driver code can be completely reused to develop AIC20 device
drivers for just about any specific target hardware platform. The best method would be to make
a copy of the Code Composer Studio project that accompanies this application note, modify it for
a specific target hardware platform, and then build a specific application on top of the provided
framework. There is also a small CCS project file (dsk5416_aic20evm_l54f.pjt) located in the
drivers subdirectory that can be used to rebuild the device driver library file. Use this project file
to build your own custom AIC20-based driver libraries and follow the same naming conventions
(i.e. <BOARD>_<DEVICE> prefixes for all file names, code labels, and global symbols).

9 Conclusion

Writing device driver code from scratch can be a tricky, tedious, and time-consuming process. It
involves the lowest level of understanding details with respect to the host processor peripherals
that connect to the device itself, and the precise timings must be understood on both sides to
determine the correct interactions between host and device.

A reference framework with a reusable, portable, configurable, modular, production quality, and
ready-to-run device driver has been developed to aid the DSP system designer who is
evaluating or using a TMS320C54x-based processor and the TLV320AIC20 HPA voice-band
data converter in the system design. The provided production-quality C source code, along with
the plethora of software components and development tools offered through TI’s eXpressDSPTM

software strategy, allow the designer to get started quickly and even use the baseline code for
actual production purposes to get to market faster. The sample framework is also useful for
rapid prototyping, as well as evaluating various DSP algorithms working in conjunction with the
TLV320AIC20 dual-channel voice-band codec on a TMS320C54xTM DSP platform, TI’s most
popular family of digital signal processors.

10 References

1. Codec Evaluation System (SLAA141)
2. Demo/Test Codec Systems with TLV320AIC20/21/24/25 EVM (SLAA153)
3. TLV320AIC20, Low Power, Highly-Integrated Programmable 16-Bit 26-KSPS Dual Channel

Codec (SLAS363)
4. TLV320AIC20, TLV320AIC21, TLV320AIC24, TLV320AIC25 EVM (SLAU088)
5. DSP-Codec Development Platform (SLAU090)
6. TMS320VC5416 Fixed-Point Digital Signal Processor (SPRS095)
7. Reference Frameworks for eXpressDSP Software: RF1, A Compact Static System

(SPRA791)
8. Reference Frameworks for eXpressDSP Software: RF3, A Flexible, Multi-Channel, Multi-

Algorithm, Static System (SPRA793)
9. Reference Frameworks for eXpressDSP Software: RF5, An Extensive, High-Density System

(SPRA795)
10. TMS320C54x DSP/BIOS Users Guide (SPRU326)
11. TMS320C5000 DSP/BIOS API Reference (SPRU404)
12. DSP/BIOS by Degrees: Using DSP/BIOS Features in an Existing Application (SPRA591)
13. Writing DSP/BIOS Device Drivers for Block I/O (SPRA802)

SLAA166

TMS320C54x DSP Reference Framework & Device Driver for the TLV320AIC20 HPA Data Converter
43

14. TMS320 DSP Algorithm Standard Rules and Guidelines (SPRU352)
15. TMS320 DSP Algorithm Standard API Reference Guide (SPRU360)
16. TMS320C54x DSP Reference Set, CPU and Peripherals, Volume 1 (SPRU131)
17. TMS320C54x DSP Reference Set, Enhanced Peripherals, Volume 5 (SPRU302)
18. TMS320C54x, Chip Support Library API Reference Guide (SPRU420)
19. TMS320C54x Code Composer Studio Tutorial (SPRU327)
20. Real-Time Data Exchange: A White Paper (SPRY012)
21. How to Write an RTDX Host Application Using MATLAB (SPRA386)

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third–party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:

Texas Instruments
Post Office Box 655303
Dallas, Texas 75265

Copyright  2003, Texas Instruments Incorporated

