
Intel® XScale™ Microarchitecture
Programmers Reference Manual

February 2001

Order Number: 273436-001

2 Intel® XScaleTM Microarchitecture Programmers Reference Manual

Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or otherwise, to any intellectual
property rights is granted by this document. Except as provided in Intel's Terms and Conditions of Sale for such products, Intel assumes no liability
whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to
fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not
intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The Intel® XScale™ microarchitecture may contain design defects or errors known as errata which may cause the product to deviate from published
specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature may be obtained by calling
1-800-548-4725 or by visiting Intel's website at http://www.intel.com.

Copyright © Intel Corporation, 2001

*Other names and brands may be claimed as the property of others.

Intel® XScale™ Microarchitecture Programmers Reference Manual 3

Contents
1 Introduction ...9

1.1 Product Overview ..9
1.1.1 Features and Benefits of Intel® XScale™ Microarchitecture ...10

1.2 About This Manual...11
1.3 Related Information ...11

2 Programming Model ...13

2.1 ARM Architecture Compatibility ...13
2.2 ARM Architecture Implementation Options ...13

2.2.1 Big Endian versus Little Endian ..13
2.2.2 26-Bit Code ...13
2.2.3 Thumb...13
2.2.4 ARM DSP-Enhanced Instruction Set ..14
2.2.5 Base Register Update...14

2.3 Extensions to ARM* Architecture ..15
2.3.1 DSP Coprocessor 0 (CP0)..15

2.3.1.1 Multiply With Internal Accumulate Format ..16
2.3.1.2 Internal Accumulator Access Format..19

2.3.2 New Page Attributes ...21
2.3.3 Additions to CP15 Functionality ..23
2.3.4 Event Architecture...24

2.3.4.1 Exception Summary ...24
2.3.4.2 Event Priority ..24
2.3.4.3 Prefetch Aborts...25
2.3.4.4 Data Aborts...26
2.3.4.5 Events from Preload Instructions..28

2.4 Performance Considerations ...29
2.4.1 Interrupt Latency ...29
2.4.2 Branch Prediction..30
2.4.3 Addressing Modes ..31
2.4.4 Instruction Latencies ...31

2.4.4.1 Performance Terms..31
2.4.4.2 Branch Instruction Timings ...33
2.4.4.3 Data Processing Instruction Timings ..34

2.4.5 Multiply Instruction Timings...35
2.4.5.1 Saturated Arithmetic Instructions..37
2.4.5.2 Status Register Access Instructions ...37
2.4.5.3 Load/Store Instructions...37
2.4.5.4 Semaphore Instructions..38
2.4.5.5 Coprocessor Instructions..38
2.4.5.6 Miscellaneous Instruction Timing ...38
2.4.5.7 Thumb Instructions ...38

4 Intel® XScale™ Microarchitecture Programmers Reference Manual

3 Optimization Techniques ... 39

3.1 The StrongARM* Pipeline.. 39
3.1.1 General Pipeline Characteristics .. 39

3.1.1.1 Number of Pipeline Stages... 39
3.1.1.2 Intel® XScale™ Microarchitecture Pipeline Organization ... 40
3.1.1.3 Out-Of-Order Completion ... 40
3.1.1.4 Register Scoreboarding.. 41
3.1.1.5 Use of Bypassing ... 41

3.1.2 Instruction Flow Through the Pipeline ..41
3.1.2.1 ARM* v5 Instruction Execution...41
3.1.2.2 Pipeline Stalls...41

3.1.3 Main Execution Pipeline ... 42
3.1.3.1 F1 / F2 (Instruction Fetch) Pipestages ...42
3.1.3.2 ID (Instruction Decode) Pipestage ... 42
3.1.3.3 RF (Register File / Shifter) Pipestage... 42
3.1.3.4 X1 (Execute) Pipestages.. 43
3.1.3.5 X2 (Execute 2) Pipestage... 43
3.1.3.6 WB (Write back) ... 43

3.1.4 Memory Pipeline ...43
3.1.4.1 D1 and D2 Pipestage ...43

3.1.5 Multiply/Multiply Accumulate (MAC) Pipeline.. 44
3.1.5.1 Behavioral Description ... 44

3.2 Basic Optimization... 45
3.2.1 Conditional Instructions .. 45

3.2.1.1 Optimizing Condition Checks ...46
3.2.1.2 Optimizing Branches .. 47
3.2.1.3 Optimizing Complex Expressions... 49

3.2.2 Bit-Field Manipulation ... 50
3.2.3 Optimizing the Use of Immediate (Constant) Values.. 50
3.2.4 Optimizing Integer Multiply and Divide..51
3.2.5 Effective Use of Addressing Modes.. 51

3.3 Cache and Prefetch Optimizations.. 52
3.3.1 Instruction Cache.. 52

3.3.1.1 Cache Miss Cost ..52
3.3.1.2 Round-Robin Replacement Cache Policy ..52
3.3.1.3 Code Placement to Reduce Cache Misses..52
3.3.1.4 Locking Code into the Instruction Cache.. 53

3.3.2 Data and Mini-Cache ..54
3.3.2.1 Non-Cacheable Regions .. 54
3.3.2.2 Write-through and Write-back Cached Memory Regions... 54
3.3.2.3 Read Allocate and Read-write Allocate Memory Regions.. 54
3.3.2.4 Creating On-chip RAM ... 55
3.3.2.5 Mini-Data Cache... 56
3.3.2.6 Data Alignment... 57
3.3.2.7 Literal Pools.. 58

3.3.3 Cache Considerations .. 58
3.3.3.1 Cache Conflicts, Pollution, and Pressure ... 58

Intel® XScale™ Microarchitecture Programmers Reference Manual 5

3.3.4 Memory Page Thrashing...58
3.3.5 Prefetch Considerations..59

3.3.5.1 Prefetch Distances in the Intel® XScale™ Core..59
3.3.5.2 Prefetch Loop Scheduling ..61
3.3.5.3 Prefetch Loop Limitations ...61
3.3.5.4 Compute vs. Data Bus Bound ..61
3.3.5.5 Low Number of Iterations ...61
3.3.5.6 Bandwidth Limitations...62
3.3.5.7 Cache Memory Considerations ..63
3.3.5.8 Cache Blocking...65
3.3.5.9 Prefetch Unrolling ...66
3.3.5.10 Pointer Prefetch..67
3.3.5.11 Loop Interchange..68
3.3.5.12 Loop Fusion..69
3.3.5.13 Prefetch to Reduce Register Pressure ...70

3.4 Instruction Scheduling ...71
3.4.1 Scheduling Loads ...71

3.4.1.1 Scheduling Load and Store Double (LDRD/STRD)..73
3.4.1.2 Scheduling Load and Store Multiple (LDM/STM) ...74

3.4.2 Scheduling Data Processing Instructions ...75
3.4.3 Scheduling Multiply Instructions..76
3.4.4 Scheduling SWP and SWPB Instructions ...77
3.4.5 Scheduling the MRA and MAR Instructions (MRRC/MCRR)..78
3.4.6 Scheduling the MIA and MIAPH Instructions ..79
3.4.7 Scheduling MRS and MSR Instructions..80
3.4.8 Scheduling CP15 Coprocessor Instructions ...81

3.5 Optimizing C Libraries ...82
3.6 Optimizing for Size ..82

3.6.1 Space/Performance Trade Off ..82
3.6.1.1 Multiple Word Load and Store ..82
3.6.1.2 Use of Conditional Instructions...82
3.6.1.3 Use of PLD Instructions..82

A For OS Developers..83

A.1 Introduction..83
A.1.1 Intended Audience ..83

A.2 Document Organization...83
A.2.1 Related Documents ..83

A.3 Salient Features of the Intel® XScale™ Core MegaCell ..84
A.4 Enabling the Caches ...84
A.5 Using the PID Register ..85
A.6 Exception Vector Remapping ..85
A.7 Instruction Stream Barrier Code ..85
A.8 Memory Management Concerns ...86
A.9 Locking TLB Entries ..87
A.10 DSP Coprocessor 0...87
A.11 Instruction Cache Invalidation ...87
A.12 Data Cache Flushing ...88

6 Intel® XScale™ Microarchitecture Programmers Reference Manual

A.13 Locking and Unlocking the Caches ... 89
A.14 Locking Code in the Instruction Cache.. 89
A.15 Unlocking the Instruction Cache.. 89
A.16 Locking Data in the Data Cache.. 89
A.17 Unlocking the Data Cache... 90
A.18 Branch Target Buffer (BTB)... 90
A.19 Exception Model.. 90
A.20 Power Management .. 90
A.21 Assembly Language Considerations... 90

B ARM Glossary ...91

Intel® XScale™ Microarchitecture Programmers Reference Manual 7

Figures

3-1 Intel® XScale™ Microarchitecture RISC Superpipeline ..40

Tables

2-1 Multiply with Internal Accumulate Format ...16
2-2 MIA{<cond>} acc0, Rm, Rs ..17
2-3 MIAPH{<cond>} acc0, Rm, Rs ...17
2-4 MIAxy{<cond>} acc0, Rm, Rs...18
2-5 Internal Accumulator Access Format..19
2-6 MAR{<cond>} acc0, RdLo, RdHi ..20
2-7 MRA{<cond>} RdLo, RdHi, acc0 ..20
2-9 Second-level Descriptors for Coarse Page Table...22
2-10 Second-level Descriptors for Fine Page Table ...22
2-8 First-level Descriptors ...22
2-11 Exception Summary..24
2-12 Event Priority ..24
2-13 Intel® XScale™ Microarchitecture Encoding of Fault Status for Prefetch Aborts25
2-14 Intel® XScale™ Microarchitecture Encoding of Fault Status for Data Aborts..............................26
2-15 Minimum Interrupt Latency ...29
2-16 Branch Latency Penalty..30
2-17 Latency Example ..32
2-18 Branch Instruction Timings ...33
2-19 Data Processing Instruction Timings ..34
2-20 Multiply Instruction Timings ..35
2-21 Multiply Implicit Accumulate Instruction Timings ..36
2-22 Implicit Accumulator Access Instruction Timings..36
2-23 Saturated Data Processing Instruction Timings..37
2-24 Status Register Access Instruction Timings ...37
2-25 Load and Store Instruction Timings ..37
2-26 Load and Store Multiple Instruction Timings...37
2-27 Semaphore Instruction Timings ..38
2-28 CP15 Register Access Instruction Timings...38
2-29 CP14 Register Access Instruction Timings...38
2-30 SWI Instruction Timings..38
2-31 Count Leading Zeros Instruction Timings ...38
3-1 Pipelines and Pipe Stages..40
A-1 Cache Control Attributes...86

Programmers Reference Manual 9

Introduction 1

This Programmers Reference Manual documents all programming issues that are common to
Intel® XScale™ core (ARM* architecture compliant) for the second-generation core of the ARM
microprocessor family.

Intel Corporation assumes no responsibility for any errors that may appear in this document nor
does it make a commitment to update the information contained herein.

Intel retains the right to make changes to these specifications at any time, without notice. In particular,
feature, timings, and pin-out descriptions do not imply a commitment to implement them.

This chapter presents the following information:
• Product Overview: Presents a brief product description.
• About This Manual: Provides a list of all chapters, including chapter descriptions.
• Features and Benefits of the Intel® XScale™ microarchitecture: Summarizes the features and

benefits of Intel® XScale™ microarchitecture.
• Related Information: Presents a list of all other related information including related

documents, both hardcopy and online.

1.1 Product Overview

The Intel® XScale™ core is based on ARM processor family second-generation core and consists
of innovative custom circuits, a proprietary design, and proprietary process techniques. This unique
core enables ASSPs to operate on very low current while in Run and Low-power modes.

Designed to enable high performance, low power consumption, and systems integration, the Intel®

XScale™ core empowers OEMs to develop smaller, more cost-effective, hand-held devices with
longer battery life, while still providing the performance to run MIPS-intensive multimedia
applications such as audio encode/decode, video compression, and speech.

The Intel® XScale™ microarchitecture extends to set-top boxes, networking, intelligent I/O, and
remote-access servers. This unique processor engine design affords a substantial leadership
position in the hand-held device market segment where high performance, low power, and
integration-per-cost effectiveness are all critical factors.

The Intel® XScale™ core targets the portable information device segment, which consists of
feature-rich hand-held devices such as (but not limited to) the following:

• Smart phones/3G+ multimedia phones
• PC companions
• Palm-size devices
• Vertical application devices

The processor is also packaged in a “smaller footprint, lower cost” version focused on palms and
smart phones, and a “higher performance, higher cost” version for the PC companion and vertical
application device segments. In addition to hand-held segments, the Intel® XScale™ core also
provides a market entry to tethered applications such as screen phones, low-end settop boxes, web
terminals, and other Internet appliances.

10 Programmers Reference Manual

Intel® XScale™ Microarchitecture
Introduction

1.1.1 Features and Benefits of Intel® XScale™ Microarchitecture

• Superpipelined RISC Technology — Achieve high speed and ultra-low power with a 7-stage
integer/8-stage memory superpipelined core.

• Dynamic Voltage Management — Obtain the right blend of performance and power with
dynamic voltage and frequency scaling “on the fly.”

• Media Processing Technology — Achieve efficient media processing with a
multiply-accumulate coprocessor that performs two simultaneous 16-bit SIMD multiplies with
40-bit accumulation.

• Power Management Unit — Save power with idle, sleep, and quick wake-up modes.

• 128-entry Branch Target Buffer — Maintain pipeline capacity with statistically correct branch
choices

• 32 KB Instruction Cache — Achieve high performance and low power consumption levels by
keeping a local copy of important instructions.

• 2 KB Data Cache — Avoid “thrashing” of the Data cache for frequently changing data
streams.

• 32-Entry Instruction Memory Management Unit — Enable logical-to-physical address
translation, access permissions, and instruction-cache attributes.

• Four Entry Fill and Pend Buffers — Obtain core efficiency by allowing non-blocking and
“hit-under-miss” operation with Data caches.

• Performance Monitoring Unit — Analyze hit rates with two 32-bit event counters and one
32-bit cycle counter.

• Debug Unit — Debug programs with hardware breakpoints and a 256-entry trace-history
buffer (for flow change messages).

• 32-bit Coprocessor Interface — Achieve a high-performance interface between the core and
coprocessors.

• 64-bit Core Memory Bus with Simultaneous 32-bit Input Path and 32-bit Output Path —
Obtain up to 4.8 GBytes/sec @ 600 MHz bandwidth for internal accesses.

• 8-Entry Write Buffer — Provides continuous core execution while data is written to memory.

• Thumb* Instruction Set Supported — Select the 16-bit Thumb instruction set from the current
Program Status register.

Programmers Reference Manual 11

Intel® XScale™ Microarchitecture
Introduction

1.2 About This Manual

The following chapters are provided in this manual:

• Chapter 1, “Introduction” – Introduces the processor and the manual contents.

• Chapter 2, “Programming Model” — Defines and describes the Intel® XScale™

microarchitecture programming model.

• Chapter 3, “Optimization Techniques” – Provides easy-to-use procedures on how to optimize
your system including the optimization of Cache and Prefetch memories, your C library, and
instruction-scheduling routines.

• Appendix A, “For OS Developers” — Describes features and implementation details that
drive the operating systems issues.

1.3 Related Information

• ARM ArchitectureReference Manual — http://www.arm.com/Documentation/TRM/

• Intel® XScale™ Microarchitecture Product Brief —
http://developer.intel.com/design/intelxscale/xscaleproductbriefweb.pdf

• Intel® XScale™ Microarchitecture Technical Summary —
http://developer.intel.com/design/intelxscale/XScaleDatasheet4.htm

• Intel® XScale™ Core Benchmarks —
http://developer.intel.com/design/intelxscale/benchmarks.htm

Programmers Reference Manual 13

Programming Model 2

This chapter describes the programming model of Intel® XScale™ microarchitecture (ARM*
architecture compliant), namely the implementation options and extensions to the ARM
Version 5TE ISA programming model. The Intel® XScale™ core handles 8-, 16-, and 32-bit data
types, and operates in one of seven processor modes (User, System, Supervisor, Abort, Undefined
instruction, Fast interrupt, and Normal interrupt). The microarchitecture provides 16 general 32-bit
registers (R0-R15), where R13 is the Stack pointer (SP), R14 is the Link register (LR), and R15 is
the Program counter (PC). It also supplements the 16 registers (in addition to a Current Program
Status register, CPSR) with 20 mode-dependent “shadow” registers.

2.1 ARM Architecture Compatibility

The Intel® XScale™ microarchitecture implements the integer instruction set architecture specified
in ARM Version 5TE. “T” refers to the Thumb instruction set, and “E” refers to the DSP-enhanced
instruction set.

ARM Version 5 introduces a few more architecture features over Version 4, specifically the
addition of tiny pages (1 Kbyte), a new instruction (CLZ) that counts the leading zeroes in a data
value, enhanced ARM-Thumb transfer instructions, and a modification of the system-control
coprocessor, CP15.

2.2 ARM Architecture Implementation Options

2.2.1 Big Endian versus Little Endian

The Intel® XScale™ microarchitecture supports both Big- and Little-Endian data representation.
The B-bit of the Control register (Coprocessor 15, register 1, bit 7) selects Big- and Little-Endian
mode. To run in Big-Endian mode, the B-bit must be set before attempting any sub-word accesses
to memory, or undefined results will occur. Note that this bit takes effect even if the MMU is
disabled.

2.2.2 26-Bit Code

The Intel® XScale™ microarchitecture does not support 26-bit code.

2.2.3 Thumb

The Intel® XScale™ microarchitecture supports the 16-bit V5 Thumb instruction set.

14 Programmers Reference Manual

Intel® XScale™ Microarchitecture
Programming Model

2.2.4 ARM DSP-Enhanced Instruction Set

The Intel® XScale™ microarchitecture implements the ARM DSP-enhanced instruction set, which
is a set of instructions that boosts the performance of signal-processing applications. New Multiply
instructions operate on 16-bit data values, and new Saturation instructions are available as well (see
below).

• SMLAxy 32<=16x16+32

• SMLAWy 32<=32x16+32

• SMLALxy 64<=16x16+64

• SMULxy 32<=16x16

• SMULWy 32<=32x16

• QADD adds two registers and saturates the result if an overflow occurred

• QDADD doubles and saturates one of the input registers then add and saturate

• QSUB subtracts two registers and saturates the result if an overflow occurred

• QDSUB doubles and saturates one of the input registers then subtract and saturate

The Intel® XScale™ microarchitecture also implements LDRD, STRD, and PLD instructions with
the following implementation notes:

• PLD is interpreted as a Read operation by the MMU, and is ignored by the Data-Breakpoint
unit, i.e., PLD will never generate Data-Breakpoint events.

• PLD to a non-cacheable page performs no action. If the targeted cache line is already resident,
this instruction has no affect.

• Both LDRD and STRD instructions will generate an alignment exception when the address
bits [2:0] = 0b100.

MCRR and MRRC are supported in Intel® XScale™ microarchitecture only when directed to
Coprocessor 0, and are used to access the internal accumulator. See Section 2.3.1.2 for more
information. Access to any other coprocessor besides 0x0 is undefined.

2.2.5 Base Register Update

If a Data abort is signalled on a memory instruction that specifies Write-back, the contents of the
Base register will not be updated. This behavior holds for all Load and Store instructions, and
matches that of the first-generation Intel® StrongARM* processor (referred to in the ARM V5
architecture as the Base Restored Abort Model).

Programmers Reference Manual 15

Intel® XScale™ Microarchitecture
Programming Model

2.3 Extensions to ARM* Architecture

The Intel® XScale™ microarchitecture includes a few extensions to the ARM Version 5
architecture to meet the needs of various markets and design requirements. The following is a list
of the extensions that are discussed in the next subsections.

• A DSP coprocessor (CP0) has been added that contains a 40-bit accumulator and eight new
instructions.

• New page attributes were added to the page table descriptors. The C- and B-page attribute
encoding was extended by one additional bit to allow for more encodings: Write-Allocate and
Mini-Data cache. An attribute specifying ECC for 1 MB regions was also added.

• Additional functionality has been added to Coprocessor 15, Coprocessor 14 also added.

• Enhancements were made to the Event architecture, Instruction cache, and Data-cache parity
error exceptions, Breakpoint events, and Imprecise external data aborts.

2.3.1 DSP Coprocessor 0 (CP0)

The Intel® XScale™ microarchitecture adds a DSP coprocessor to the architecture for increasing
the performance and the precision of audio-processing algorithms. This coprocessor contains a
40-bit accumulator and eight new instructions.

The 40-bit accumulator is referenced by several new instructions that were added to the
architecture; MIA, MIAPH, and MIAxy are Multiply/Accumulate instructions that reference the
40-bit accumulator instead of a register-specified accumulator. MAR and MRA read and write the
40-bit accumulator.

Access to CP0 is always allowed in all processor modes when bit 0 of the Coprocessor Access
register is set. Any access to CP0 when this bit is clear will cause an undefined exception. Note that
only privileged software can set this bit in the Coprocessor Access register.

Two new instruction formats were added for coprocessor 0: Multiply with Internal Accumulate
Format, and Internal Accumulate Access Format.

16 Programmers Reference Manual

Intel® XScale™ Microarchitecture
Programming Model

2.3.1.1 Multiply With Internal Accumulate Format

A new multiply format has been created to define operations on 40-bit accumulators. Table 2-1,
“Multiply with Internal Accumulate Format” shows the layout of the new format. The opcode for
this format lies within the Coprocessor Register Transfer Instruction type. These instructions have
their own syntax.

Two new fields were created for this format: acc, and opcode_3. The acc field specifies one of
eight internal accumulators to operate on, and opcode_3 defines the operation for this format. The
Intel® XScale™ microarchitecture defines a single 40-bit accumulator referred to as acc0; future
implementations may define multiple internal accumulators. The Intel® XScale™

microarchitecture uses opcode_3 to define six instructions: MIA, MIAPH, MIABB, MIABT,
MIATB, and MIATT.

Table 2-1. Multiply with Internal Accumulate Format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 1 1 1 0 0 0 1 0 opcode_3 Rs 0 0 0 0 acc 1 Rm

Bits Description Notes

31:28 cond - ARM condition codes -

19:16 opcode_3 - specifies the type of multiply with
internal accumulate

Intel® XScale™ microarchitecture defines the
following:
0b0000 = MIA
0b1000 = MIAPH
0b1100 = MIABB
0b1101 = MIABT
0b1110 = MIATB
0b1111 = MIATT
The effect of all other encodings are
unpredictable.

15:12 Rs - Multiplier

7:5 acc - select 1 of 8 accumulators
Intel® XScale™ microarchitecture only
implements acc0; access to any other acc has
unpredictable effect.

3:0 Rm - Multiplicand -

Programmers Reference Manual 17

Intel® XScale™ Microarchitecture
Programming Model

The MIA instruction operates similarly to MLA except that it uses the 40-bit accumulator. MIA
multiplies the signed value in register Rs (multiplier) by the signed value in register Rm
(multiplicand), and then adds the result to the 40-bit accumulator (acc0).

MIA does not support unsigned multiplication, all values in Rs and Rm will be interpreted as
signed data values. MIA is useful for operating on signed 16-bit data that was loaded into a
General-Purpose register by LDRSH.

The instruction is executed only if the condition specified in the instruction matches the condition
code status.

The MIAPH instruction performs two16-bit signed multiplies on packed half-word data, and
accumulates these to a single 40-bit accumulator. The first signed multiplication is performed on
the lower 16 bits of the value in register Rs with the lower 16 bits of the value in register Rm. The
second signed multiplication is performed on the upper 16 bits of the value in register Rs with the
upper 16 bits of the value in register Rm. Both signed 32-bit products are sign extended, and are
then added to the value in the 40-bit accumulator (acc0).

The instruction is executed only if the condition specified in the instruction matches the Condition-
code status.

Table 2-2. MIA{<cond>} acc0, Rm, Rs

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 1 1 1 0 0 0 1 0 0 0 0 0 Rs 0 0 0 0 0 0 0 1 Rm

Operation: if ConditionPassed(<cond>) then

acc0 = (Rm[31:0] * Rs[31:0])[39:0] + acc0[39:0]

Exceptions:none

Qualifiers Condition Code

No condition code flags are updated

Notes: Early termination is supported.

Specifying R15 for register Rs or Rm has unpredictable results.

acc0 is defined to be 0b000 on IIntel® XScale™ microarchitecture.

Table 2-3. MIAPH{<cond>} acc0, Rm, Rs

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 1 1 1 0 0 0 1 0 1 0 0 0 Rs 0 0 0 0 0 0 0 1 Rm

Operation: if ConditionPassed(<cond>) then

acc0 = sign_extend(Rm[31:16] * Rs[31:16]) +

sign_extend(Rm[15:0] * Rs[15:0]) +

acc0[39:0]

Exceptions:none

Qualifiers Condition Code

S bit is always cleared; no condition code flags are updated

Notes: Specifying R15 for register Rs or Rm has unpredictable results.

acc0 is defined to be 0b000 on Intel® XScale™ microarchitecture

18 Programmers Reference Manual

Intel® XScale™ Microarchitecture
Programming Model

The MIAxy instruction performs one16-bit signed multiply, and accumulates these to a single
40-bit accumulator. The x refers to either the upper half or lower half of register Rm (multiplicand),
and y refers to the upper or lower half of Rs (multiplier). A value of 0x1 will select bits [31:16] of
the register that is specified in the mnemonic as T (for top). A value of 0x0 will select bits [15:0] of
the register that is specified in the mnemonic as B (for bottom).

MIAxy does not support unsigned multiplication—all values in Rs and Rm will be interpreted as
signed data values.

The instruction is executed only if the condition specified in the instruction matches the Condition-
code status.

Table 2-4. MIAxy{<cond>} acc0, Rm, Rs

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 1 1 1 0 0 0 1 0 1 1 x y Rs 0 0 0 0 0 0 0 1 Rm

Operation: if ConditionPassed(<cond>) then

if (bit[17] == 0)

<operand1> = Rm[15:0]

else

<operand1> = Rm[31:16]

if (bit[16] == 0)

<operand2> = Rs[15:0]

else

<operand2> = Rs[31:16]

acc0[39:0] = sign_extend(<operand1> * <operand2>) + acc0[39:0]

Exceptions:none

Qualifiers Condition Code

S bit is always cleared; no condition code flags are updated

Notes: Specifying R15 for register Rs or Rm has unpredictable results.

acc0 is defined to be 0b000 on Intel® XScale™ microarchitecture

Programmers Reference Manual 19

Intel® XScale™ Microarchitecture
Programming Model

2.3.1.2 Internal Accumulator Access Format

The Intel® XScale™ microarchitecture defines a new instruction format for accessing internal
accumulators in CP0. Table 2-5, “Internal Accumulator Access Format” on page 2-19 shows that
the opcode falls into the Coprocessor Register Transfer space.

The RdHi and RdLo fields allow up to 64 bits of data transfer between the registers and an internal
accumulator. The acc field specifies one of eight internal accumulators to transfer data to/from.
The Intel® XScale™ microarchitecture implements a single 40-bit accumulator referred to as acc0;
future implementations can specify multiple internal accumulators of varying sizes, up to 64 bits.
Access to the internal accumulator is allowed in all processor modes (user and privileged) as long
bit 0 of the Coprocessor Access register is set.

The Intel® XScale™ microarchitecture implements two instructions (MAR and MRA) that move
two registers to acc0, and move acc0 to two registers, respectively.

Note: MAR has the same encoding as MCRR (to Coprocessor 0), and MRA has the same encoding as
MRRC (to Coprocessor 0). These instructions move 64-bits of data to/from ARM registers from/to
Coprocessor registers. MCRR and MRRC are defined in the ARM DSP instruction set.

Disassemblers not aware of MAR and MRA will produce the following syntax:

MCRR{<cond>} p0, 0x0, RdLo, RdHi, c0

MRRC{<cond>} p0, 0x0, RdLo, RdHi, c0

Table 2-5. Internal Accumulator Access Format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 1 1 0 0 0 1 0 L RdHi RdLo 0 0 0 0 0 0 0 0 0 acc

Bits Description Notes

31:28 cond - ARM condition codes -

20
L - move to/from internal accumulator
0= move to internal accumulator (MAR)
1= move from internal accumulator (MRA)

-

19:16 RdHi - specifies the high order eight (39:32)
bits of the internal accumulator.

On a read of the acc, this 8-bit high order field
will be sign extended.

On a write to the acc, the lower 8 bits of this
register will be written to acc[39:32]

15:12 RdLo - specifies the low order 32 bits of the
internal accumulator -

7:4 Should be zero

This field could be used in future
implementations to specify the type of
saturation to perform on the read of an internal
accumulator. (e.g., a signed saturation to
16-bits may be useful for some filter
algorithms.)

3 Should be zero -

2:0 acc - specifies 1 of 8 internal accumulators
Intel® XScale™ microarchitecture only
implements acc0; access to any other acc is
unpredictable

20 Programmers Reference Manual

Intel® XScale™ Microarchitecture
Programming Model

The MAR instruction moves the value in register RdLo to bits[31:0] of the 40-bit accumulator
(acc0), and moves bits[7:0] of the value in register RdHi into bits[39:32] of acc0.

The instruction is executed only if the condition specified in the instruction matches the condition-
code status.

This instruction executes in any processor mode.

The MRA instruction moves the 40-bit accumulator value (acc0) into two registers. Bits[31:0] of
the value in acc0 are moved into the register RdLo. Bits[39:32] of the value in acc0 are sign-
extended to 32 bits, and moved into the RdHi register.

The instruction is executed only if the condition specified in the instruction matches the Condition-
code status.

This instruction executes in any processor mode.

Table 2-6. MAR{<cond>} acc0, RdLo, RdHi

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 1 1 0 0 0 1 0 0 RdHi RdLo 0 0 0 0 0 0 0 0 0 0 0 0

Operation: if ConditionPassed(<cond>) then
acc0[39:32] = RdHi[7:0]
acc0[31:0] = RdLo[31:0]

Exceptions:none

Qualifiers Condition Code
No condition code flags are updated

Notes: Specifying R15 as either RdHi or RdLo has unpredictable results.

Table 2-7. MRA{<cond>} RdLo, RdHi, acc0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 1 1 0 0 0 1 0 1 RdHi RdLo 0 0 0 0 0 0 0 0 0 0 0 0

Operation: if ConditionPassed(<cond>) then
RdHi[31:0] = sign_extend(acc0[39:32])
RdLo[31:0] = acc0[31:0]

Exceptions:none

Qualifiers Condition Code
No condition code flags are updated

Notes: Specifying the same register for RdHi and RdLo has unpredictable
results.

Specifying R15 as either RdHi or RdLo has unpredictable results.

Programmers Reference Manual 21

Intel® XScale™ Microarchitecture
Programming Model

2.3.2 New Page Attributes

The Intel® XScale™ microarchitecture extends the page attributes defined by the C- and B-bits in
the page descriptors with an additional X-bit, which allows four more attributes to be encoded
when X=1. These new encodings include allocating data for the Mini-Data cache and
write-allocate caching.

The Intel® XScale™ microarchitecture retains ARM definitions of the C and B encoding when
X=0, which is different than the first-generation Intel® StrongARM products. The memory
attribute for the Mini-Data cache has been moved and replaced with the write-through caching
attribute.

When write-allocate is enabled, a store operation that misses the Data cache (cacheable data only)
will generate a line fill. If disabled, a line fill only occurs when a load operation misses the Data
cache (cacheable data only).

Write-through caching writes all Store operations to memory, whether they are cacheable or not
cacheable. This feature is useful for maintaining data-cache coherency.

The Intel® XScale™ microarchitecture also added a P-bit in the first-level descriptors to identify
which pages of memory are protected with ECC. A descriptor with the P-bit set indicates the
corresponding page in memory is ECC-protected. If the BCU ECC mode is enabled, then writes to
such a page will be accompanied with an ECC, and reads will be validated by an ECC.

Bit 1 in the Control register (Coprocessor 15, register 1, opcode=1) enables ECC protection for
memory accesses made during page-table walks.

These attributes are programmed in the translation table descriptors, which are highlighted in
Table 2-8 “First-Level Descriptors,” Table 2-9, “Second-Level Descriptors for Coarse Page Table,”
and Table 2-10 “Second-Level Descriptors for Fine Page Table,” all on page 14. Two second-level
descriptor formats have been defined for Intel® XScale™ microarchitecture: one is used for the
coarse-page table, and the other is used for the fine-page table.

22 Programmers Reference Manual

Intel® XScale™ Microarchitecture
Programming Model

The P-bit controls ECC.

The TEX (Type Extension) field is present in several of the descriptor types. In Intel® XScale™

microarchitecture, only the LSB (called the X-bit) of this field is used.

A Small-Page descriptor does not have a TEX field. For these descriptors, TEX is implicitly zero;
that is, they operate as if the X-bit had a value of 0.

The X-bit, when set, modifies the meaning of the C- and B-bits.

Table 2-8. First-level Descriptors

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SBZ 0 0

Coarse page table base address P Domain SBZ 0 1

Section base address SBZ TEX AP P Domain 0 C B 1 0

Fine page table base address SBZ P Domain SBZ 1 1

Table 2-9. Second-level Descriptors for Coarse Page Table

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SBZ 0 0

Large page base address TEX AP3 AP2 AP1 AP0 C B 0 1

Small page base address AP3 AP2 AP1 AP0 C B 1 0

Extended small page base address SBZ TEX AP C B 1 1

Table 2-10. Second-level Descriptors for Fine Page Table

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SBZ 0 0

Large page base address TEX AP3 AP2 AP1 AP0 C B 0 1

Small page base address AP3 AP2 AP1 AP0 C B 1 0

Tiny Page Base Address TEX AP C B 1 1

Programmers Reference Manual 23

Intel® XScale™ Microarchitecture
Programming Model

2.3.3 Additions to CP15 Functionality

To accommodate the functionality in Intel® XScale™ microarchitecture, registers in CP15 and
CP14 have been added or augmented.

At times, it is necessary to guarantee exactly when a CP15 update takes effect. For example, when
enabling memory-address translation (turning on the MMU), it is vital to know when the MMU is
actually guaranteed to be in operation. To address this need, a processor-specific code sequence is
defined for each Intel® StrongARM processor. For the Intel® XScale™ microarchitecture, the
sequence—called CPWAIT — is shown in Example 2-1 on page 2-23.

When setting multiple CP15 registers, system software may opt to delay the assurance of their
update, which is achieved by executing CPWAIT only after the sequence of MCR instructions.

The CPWAIT sequence guarantees that CP15 side effects are complete by the time the CPWAIT is
complete. It is possible, however, that the CP15 side effect will occur before CPWAIT completes or
is issued. Programmers should ensure that this does not affect the correctness of their code.

Example 2-1. CPWAIT: Canonical Method to Wait for CP15 Update

;; The following macro should be used when software needs to be

;; assured that a CP15 update has taken effect.

;; It may only be used while in a privileged mode, because it

;; accesses CP15.

MACRO CPWAIT

MRC P15, 0, R0, C2, C0, 0 ; arbitrary read of CP15 register

MOV R0, R0 ; wait for it

SUB PC, PC, #4 ; branch to next instruction

; At this point, any previous CP15 writes are

; guaranteed to have taken effect.

ENDM

24 Programmers Reference Manual

Intel® XScale™ Microarchitecture
Programming Model

2.3.4 Event Architecture

2.3.4.1 Exception Summary

Table 2-11 shows all the exceptions that the Intel® XScale™ microarchitecture may generate, and
the attributes of each. Subsequent sections provide details on each exception.

2.3.4.2 Event Priority

The Intel® XScale™ microarchitecture follows the exception priority specified in the ARM
Architecture Reference Manual. The processor has additional exceptions that might be generated
while debugging.

Table 2-11. Exception Summary

Exception Description Exception Typea

a. Exception types are those described in the ARM, section 2.5.

Precise? Updates FAR?

Reset Reset N N

FIQ FIQ N N

IRQ IRQ N N

External Instruction Prefetch Y N

Instruction MMU Prefetch Y N

Instruction Cache Parity Prefetch Y N

Lock Abort Data Y N

MMU Data Data Y Y

External Data Data N N

Data Cache Parity Data N N

Software Interrupt Software Interrupt Y N

Undefined Instruction Undefined Instruction Y N

Debug events varies varies N

Table 2-12. Event Priority

Exception Priority

Reset 1 (Highest)

Data Abort (Precise & Imprecise) 2

FIQ 3

IRQ 4

Prefetch Abort 5

Undefined Instruction, SWI 6 (Lowest)

Programmers Reference Manual 25

Intel® XScale™ Microarchitecture
Programming Model

2.3.4.3 Prefetch Aborts

The Intel® XScale™ microarchitecture detects three types of Prefetch aborts: Instruction MMU
Abort, External Abort on an Instruction access, and an Instruction Cache Parity Error. These aborts
are described in Table 2-13.

When a Prefetch abort occurs, hardware reports the highest priority one in the Extended Status
field of the Fault Status register. The value placed in R14_ABORT (the Link register in Abort
mode) is the address of the aborted instruction + 4.

Table 2-13. Intel® XScale™ Microarchitecture Encoding of Fault Status for Prefetch Aborts

Priority Sources FS[10,3:0]a

a. All other encodings not listed in the table are reserved.

Domain FAR

Highest

Instruction MMU Exception

Several exceptions can generate this encoding:
- translation faults
- domain faults, and
- permission faults

It is up to software to figure out which one occurred.

0b10000 invalid invalid

External Instruction Error Exception

This exception occurs when the external memory system
reports an error on an instruction cache fetch.

0b10110 invalid invalid

Lowest Instruction Cache Parity Error Exception 0b11000 invalid invalid

26 Programmers Reference Manual

Intel® XScale™ Microarchitecture
Programming Model

2.3.4.4 Data Aborts

Two types of Data aborts exist in Intel® XScale™ microarchitecture: precise and imprecise. A
precise Data abort is defined as one where R14_ABORT always contains the PC (+8) of the
instruction that caused the exception. An imprecise Data abort is one where R14_ABORT contains
the PC (+4) of the next instruction to execute and not the address of the instruction that caused the
abort. In other words, instruction execution will have advanced beyond the instruction that caused
the Data abort.

On the Intel® XScale™ microarchitecture, precise Data aborts are recoverable; imprecise Data
aborts are not.

• Precise Data Aborts

— A Lock abort is a precise Data abort; the extended Status field of the Fault Status register
is set to 0xb10100. This abort occurs when a lock operation directed to the MMU
(instruction or data) or Instruction cache causes an exception due to a Translation fault,
Access-Permission fault, or External-Bus fault.

The Fault Address register is undefined, and R14_ABORT is the address of the aborted
instruction + 8.

— A Data MMU abort is precise due to an Alignment fault, Translation fault, Domain fault,
Permission fault, or External Data abort on an MMU translation. The Status field is set to
a predetermined ARM definition, which is shown in Table 2-14, “Intel® XScale™

microarchitecture Encoding of Fault Status for Data Aborts”

The Fault Address register is set to the effective instruction data address, and
R14_ABORT is the address of the aborted instruction + 8.

Table 2-14. Intel® XScale™ Microarchitecture Encoding of Fault Status for Data Aborts

Priority Sources FS[10,3:0]a

a. All other encodings not listed in the table are reserved.

Domain FAR

Highest Alignment 0b000x1 invalid valid

External Abort on Translation First level
Second level

0b01100
0b01110

invalid
valid

valid
valid

Translation Section
Page

0b00101
0b00111

invalid
valid

valid
valid

Domain Section
Page

0b01001
0b01011

valid
valid

valid
valid

Permission Section
Page

0b01101
0b01111

valid
valid

valid
valid

Lock Abort

This data abort occurs on an MMU lock operation (data or
instruction TLB) or on an Instruction Cache lock operation.

0b10100 invalid invalid

Imprecise External Data Abort 0b10110 invalid invalid

Lowest Data Cache Parity Error Exception 0b11000 invalid invalid

Programmers Reference Manual 27

Intel® XScale™ Microarchitecture
Programming Model

• Imprecise Data Aborts

— A Data Cache Parity error is imprecise; the extended Status field of the Fault Status
register is set to 0xb11000.

— All external Data aborts, except those generated on data MMU translation, are imprecise.

The Fault Address register for all imprecise Data aborts is undefined, and R14_ABORT is the
address of the next instruction to execute + 4, which is the same for both ARM and Thumb mode.

The Intel® XScale™ microarchitecture generates external Data aborts on multibit ECC errors, and
when the Abort pin is asserted on memory transactions. An external Data abort can occur on
non-cacheable loads, Reads into the cache, cache evictions, or Stores to external memory.

Although Intel® XScale™ microarchitecture guarantees the Base Restored Abort Model for precise
Data aborts, it cannot do so in the case of imprecise Data aborts. A Data-Abort handler may
encounter an updated Base register if it is invoked because of an imprecise Data abort.

Imprecise Data aborts may create scenarios that are difficult for an Abort handler to recover. Both
external Data aborts and Data Cache Parity errors may result in corrupted data in targeted registers.
Because these faults are imprecise, it is possible the corrupted data is used before the Data Abort
Fault handler is invoked. Therefore, software should treat imprecise Data aborts as unrecoverable.

Note: Even memory accesses marked as “stall until complete” can result in imprecise Data aborts. For these
types of accesses, the fault is somewhat less imprecise than general case: it is guaranteed to be raised
within three instructions of instruction that caused it. In other words, if a “stall-until-complete” LD or
ST instruction triggers an imprecise fault, the program sees that fault within three instructions.

With this knowledge, it is possible to write code that accesses “stall-until-complete” memory with
exemption. Place several NOP instructions after such an access. If an imprecise fault occurs, it does
so during NOPs; the Data-Abort handler sees identical register and memory states as it would with
a precise exception, and so should recover. An example is shown in Example 2-2 on page 2-27.

Of course, if a system design precludes events that could cause external aborts, then such
precautions are not necessary.

• Multiple Data Aborts

Multiple Data aborts may be detected by hardware, but only the highest priority one is
reported. If reported Data abort is precise, software can correct cause of abort and re-execute
the aborted instruction. If the lower priority Data abort still exists, it will be reported. Software
can handle each Data abort separately until the instruction successfully executes.

If the reported Data abort is imprecise, software needs to check the SPSR to determine if the
previous context was executing in Abort mode. If such is the case, the link back to the current
process has been lost and the Data abort is unrecoverable.

Example 2-2. Shielding Code from Potential Imprecise Aborts

;; Example of code that maintains architectural state through the

;; window where an imprecise fault might occur.

LD R0, [R1] ; R1 points to stall-until-complete

; region of memory

NOP

NOP

NOP

; Code beyond this point is guaranteed not to see any aborts

; from the LD.

28 Programmers Reference Manual

Intel® XScale™ Microarchitecture
Programming Model

2.3.4.5 Events from Preload Instructions

A PLD instruction will never cause the Data MMU to fault for any of the following reasons:

• Domain Fault

• Permission Fault

• Translation Fault

If execution of the PLD would cause one of the above faults, the PLD has no effect.

This feature allows software to issue PLDs speculatively. For example, Example 2-3 places a PLD
instruction early in the loop. This PLD fetches data for the next loop iteration. In this example, the
list is terminated with a node that has a Null pointer. When execution reaches the end of the list, the
PLD on address 0x0 will not cause a fault. Rather, it will be ignored and the loop will terminate
normally.

Example 2-3. Speculatively issuing PLD

;; R0 points to a node in a linked list. A node has the following layout:

;; Offset Contents

;;----------------------------------

;; 0 data

;; 4 pointer to next node

;; This code computes the sum of all nodes in a list. The sum is placed into R9.

;;

MOV R9, #0 ; Clear accumulator

sumList:

LDR R1, [R0, #4] ; R1 gets pointer to next node

LDR R3, [R0] ; R3 gets data from current node

PLD [R1] ; Speculatively start load of next node

ADD R9, R9, R3 ; Add into accumulator

MOVS R0, R1 ; Advance to next node. At end of list?

BNE sumList ; If not then loop

Programmers Reference Manual 29

Intel® XScale™ Microarchitecture
Programming Model

2.4 Performance Considerations

The following subsections describe relevant performance considerations that compiler writers,
application programmers, and system designers need to be aware of to efficiently use Intel®

XScale™ microarchitecture. Performance numbers discussed here include Interrupt latency,
Branch prediction, and Instruction latencies.

2.4.1 Interrupt Latency

Table 2-15 shows the minimum Interrupt latency for Intel® XScale™ microarchitecture, which is
the minimum number of cycles from the assertion of any Interrupt signal (IRQ or FIQ) to the
execution of the instruction at the vector for that Interrupt.

Note: This number assumes that the Interrupt vector resides in the Instruction cache. Program control can
lock the vector, translation information, and the Interrupt service routine into the Instruction cache.

Many parameters can affect this best-case performance:

• Instruction currently executing: could be as bad as a 16-register LDM

• Fault status: processor could fault just when the interrupt arrives

• Stalls: processor could be waiting for data from a load, doing a page table walk, etc.

• Bus ratio: the best case assumes a 3:1 core:bus ratio. Higher ratios would slightly improve
performance

Table 2-15. Minimum Interrupt Latency

MCLK Clock Cycles Description

3 Minimum Interrupt Latency. This is measured from the assertion of IRQ or FIQ
interrupt pin to the execution of the first instruction of the interrupt event handler.

30 Programmers Reference Manual

Intel® XScale™ Microarchitecture
Programming Model

2.4.2 Branch Prediction

The Intel® XScale™ microarchitecture implements dynamic Branch prediction for the ARM*
instructions B and BL, and for the Thumb instruction, B. Any instruction that specifies the PC as
the destination is predicted as Not Taken. For example, an LDR or a MOV that loads or moves
directly to the PC will be predicted Not Taken and incur a Branch-latency penalty.

These instructions (ARM B, ARM BL and Thumb B) enter into the Branch target buffer when they
are “taken” for the first time. (A “taken” branch refers to when they are evaluated to be true.) Once
in the Branch target buffer, the Intel® XScale™ microarchitecture dynamically predicts the
outcome of these instructions based on previous outcomes. Table 2-16 shows the Branch latency
penalty when these instructions are correctly predicted and when they are not. A penalty of “zero”
for correct prediction means that the Intel® XScale™ microarchitecture can execute the next
instruction in the program flow in the cycle following the Branch.

Table 2-16. Branch Latency Penalty

Core Clock Cycles
Description

ARM* Thumb

+0 + 0 Predicted Correctly. The instruction is in the Branch target cache and is
correctly predicted.

+4 + 5

Mispredicted. There are three occurrences of Branch misprediction, all of which
incur a 4-cycle Branch delay penalty.
1. The instruction is in the Branch target buffer and is predicted Not Taken, but

is actually Taken.
2. The instruction is in the Branch target buffer and is predicted Taken, but is

actually Not Taken
3. The instruction is not in the Branch target buffer and is a Taken Branch.

Programmers Reference Manual 31

Intel® XScale™ Microarchitecture
Programming Model

2.4.3 Addressing Modes

The Load-and-Store Addressing mode implemented in Intel® XScale™ microarchitecture does add
to the instruction latencies numbers.

2.4.4 Instruction Latencies

The latencies for all the instructions are shown in the following subsections regarding their
functional groups:

• Branch

• Data processing, Multiply

• Status register access

• Load/Store, Semaphore

• Coprocessor

The following subsection explains how to read these tables.

2.4.4.1 Performance Terms

• Issue Clock (cycle 0)

The first cycle when an instruction is decoded and allowed to proceed to further stages in the
execution pipeline (i.e., when the instruction is actually issued).

• Cycle Distance from A to B

The cycle distance from cycle A to cycle B is (B-A) -- that is, the number of cycles from the
start of cycle A to the start of cycle B. Example: the cycle distance from cycle 3 to cycle 4 is
one cycle.

• Issue Latency

The cycle distance from the first issue clock of the current instruction to the issue clock of the
next instruction. The actual number of cycles can be influenced by cache misses,
resource-dependency stalls, and resource-availability conflicts.

• Result Latency

The cycle distance from the first issue clock of the current instruction to the issue clock of the
first instruction that can use the result without incurring a resource-dependency stall. The
actual number of cycles can be influenced by cache misses, resource-dependency stalls, and
resource-availability conflicts

• Minimum Issue Latency (without Branch Misprediction)

The minimum cycle distance from the issue clock of the current instruction to the first possible
issue clock of the next instruction assuming best-case conditions (i.e., that the issuing of the
next instruction is not stalled due to a resource-dependency stall; the next instruction is
immediately available from the cache or memory interface; the current instruction does not
incur resource-dependency stalls during execution that can not be detected at issue time; and if
the instruction uses dynamic Branch prediction, correct prediction is assumed).

32 Programmers Reference Manual

Intel® XScale™ Microarchitecture
Programming Model

• Minimum Result Latency

The required minimum cycle distance from the issue clock of the current instruction to the
issue clock of the first instruction that can use the result without incurring a resource-
dependency stall assuming best-case conditions (i.e., that the issuing of the next instruction is
not stalled due to a resource-dependency stall; the next instruction is immediately available
from the cache or memory interface; and the current instruction does not incur resource-
dependency stalls during execution that can not be detected at issue time).

• Minimum Issue Latency (with Branch Misprediction)

The minimum cycle distance from the issue clock of the current branching instruction to the
first possible issue clock of the next instruction. This definition is identical to Minimum Issue
Latency except that the Branching instruction has been mispredicted. It is calculated by adding
Minimum Issue Latency (without Branch Misprediction) to the Minimum Branch-Latency
penalty number from Table 2-16, which is four cycles.

• Minimum Resource Latency

The minimum cycle distance from the issue clock of the current Multiply instruction to the
issue clock of the next Multiply instruction, assuming the second Multiply does not incur a
data dependency and is immediately available from the Instruction cache or Memory interface.

For the following code fragment, here is an example of computing latencies:

Table 2-17 shows how to calculate Issue latency and Result latency for each instruction. Looking at
the issue column, the UMLAL instruction starts to issue on cycle 0 and the next instruction, ADD,
issues on cycle 2, so the Issue latency for UMLAL is two. From the code fragment, there is a result
dependency between the UMLAL instruction and the SUB instruction. In Table 2-17, UMLAL
starts to issue at cycle 0, and the SUB issues at cycle 5. Thus, the Result latency is five.

Example 2-4. Computing Latencies

UMLALr6,r8,r0,r1

ADD r9,r10,r11

SUB r2,r8,r9

MOV r0,r1

Table 2-17. Latency Example

Cycle Issue Executing

0 umlal (1st cycle) --

1 umlal (2nd cycle) umlal

2 add umlal

3 sub (stalled) umlal & add

4 sub (stalled) umlal

5 sub umlal

6 mov sub

7 -- mov

Programmers Reference Manual 33

Intel® XScale™ Microarchitecture
Programming Model

2.4.4.2 Branch Instruction Timings

Table 2-18. Branch Instruction Timings

Mnemonic Minimum Issue Latency with Correct
Branch Predictions

Minimum Issue Latency with Branch
Misprediction

B 1 5

BL 1 5

BLX N/A 5

BX N/A 5

MOV PC,<> N/A 5

LDR PC,<> N/A 8

LDM SP,{PC} N/A Specifying PC in register list adds five cycles
to latency of LDM.

34 Programmers Reference Manual

Intel® XScale™ Microarchitecture
Programming Model

2.4.4.3 Data Processing Instruction Timings

Table 2-19. Data Processing Instruction Timings

Mnemonic

<shifter operand> is NOT a Shift/Rotate
by Register

<shifter operand> is a Shift/Rotate by
Register OR

<shifter operand> is RRX

Minimum Issue
Latency

Minimum Result
Latencya

a. If the next instruction needs to use the result of the data processing for a shift by immediate or as Rn in a QDADD or QDSUB,
one extra cycle of result latency is added to the number listed.

Minimum Issue
Latency

Minimum Result
Latencya

ADC 1 1 2 2

ADD 1 1 2 2

AND 1 1 2 2

BIC 1 1 2 2

CMN 1 1 2 2

CMP 1 1 2 2

EOR 1 1 2 2

MOV 1 1 2 2

MVN 1 1 2 2

ORR 1 1 2 2

RSB 1 1 2 2

RSC 1 1 2 2

SBC 1 1 2 2

SUB 1 1 2 2

TEQ 1 1 2 2

TST 1 1 2 2

Programmers Reference Manual 35

Intel® XScale™ Microarchitecture
Programming Model

2.4.5 Multiply Instruction Timings

Table 2-20. Multiply Instruction Timings (Sheet 1 of 2)

Mnemonic Rs Value
(Early Termination)

S-Bit
Value

Minimum
Issue Latency

Minimum Result
Latencya

Minimum Resource
Latency (Throughput)

MLA

Rs[31:15] = 0x00000
or

Rs[31:15] = 0x1FFFF

0 1 2 1

1 2 2 2

Rs[31:27] = 0x00
or

Rs[31:27] = 0x1F

0 1 3 2

1 3 3 3

all others
0 1 4 3

1 4 4 4

MUL

Rs[31:15] = 0x00000
or

Rs[31:15] = 0x1FFFF

0 1 2 1

1 2 2 2

Rs[31:27] = 0x00
or

Rs[31:27] = 0x1F

0 1 3 2

1 3 3 3

all others
0 1 4 3

1 4 4 4

SMLAL

Rs[31:15] = 0x00000
or

Rs[31:15] = 0x1FFFF

0 2 RdLo = 2; RdHi = 3 2

1 3 3 3

Rs[31:27] = 0x00
or

Rs[31:27] = 0x1F

0 2 RdLo = 3; RdHi = 4 3

1 4 4 4

all others
0 2 RdLo = 4; RdHi = 5 4

1 5 5 5

SMLALxy N/A N/A 2 RdLo = 2; RdHi = 3 2

SMLAWy N/A N/A 1 3 2

SMLAxy N/A N/A 1 2 1

SMULL

Rs[31:15] = 0x00000
or

Rs[31:15] = 0x1FFFF

0 1 RdLo = 2; RdHi = 3 2

1 3 3 3

Rs[31:27] = 0x00
or

Rs[31:27] = 0x1F

0 1 RdLo = 3; RdHi = 4 3

1 4 4 4

all others
0 1 RdLo = 4; RdHi = 5 4

1 5 5 5

SMULWy N/A N/A 1 3 2

SMULxy N/A N/A 1 2 1

36 Programmers Reference Manual

Intel® XScale™ Microarchitecture
Programming Model

UMLAL

Rs[31:15] = 0x00000
0 2 RdLo = 2; RdHi = 3 2

1 3 3 3

Rs[31:27] = 0x00
0 2 RdLo = 3; RdHi = 4 3

1 4 4 4

all others
0 2 RdLo = 4; RdHi = 5 4

1 5 5 5

UMULL

Rs[31:15] = 0x00000
0 1 RdLo = 2; RdHi = 3 2

1 3 3 3

Rs[31:27] = 0x00
0 1 RdLo = 3; RdHi = 4 3

1 4 4 4

all others
0 1 RdLo = 4; RdHi = 5 4

1 5 5 5

a. If the next instruction needs to use the result of the multiply for a shift by immediate or as Rn in a QDADD or QDSUB, one
extra cycle of Result latency is added to the number listed.

Table 2-21. Multiply Implicit Accumulate Instruction Timings

Mnemonic Rs Value (Early
Termination)

Minimum Issue
Latency

Minimum Result
Latency

Minimum Resource
Latency

(Throughput)

MIA

Rs[31:16] = 0x0000
or

Rs[31:16] = 0xFFFF
1 1 1

Rs[31:28] = 0x0
or

Rs[31:28] = 0xF
1 2 2

all others 1 3 3

MIAxy N/A 1 1 1

MIAPH N/A 1 2 2

Table 2-22. Implicit Accumulator Access Instruction Timings

Mnemonic Minimum Issue Latency Minimum Result Latency Minimum Resource Latency
(Throughput)

MAR 2 2 2

MRA 1 (RdLo = 2; RdHi = 3)a

a. If the next instruction needs to use the result of the MRA for a shift by immediate or as Rn in a QDADD or QDSUB, one extra
cycle of Result latency is added to the number listed.

2

Table 2-20. Multiply Instruction Timings (Sheet 2 of 2)

Mnemonic Rs Value
(Early Termination)

S-Bit
Value

Minimum
Issue Latency

Minimum Result
Latencya

Minimum Resource
Latency (Throughput)

Programmers Reference Manual 37

Intel® XScale™ Microarchitecture
Programming Model

2.4.5.1 Saturated Arithmetic Instructions
h

2.4.5.2 Status Register Access Instructions

2.4.5.3 Load/Store Instructions

Table 2-23. Saturated Data Processing Instruction Timings

Mnemonic Minimum Issue Latency Minimum Result Latency

QADD 1 2

QSUB 1 2

QDADD 1 2

QDSUB 1 2

Table 2-24. Status Register Access Instruction Timings

Mnemonic Minimum Issue Latency Minimum Result Latency

MRS 1 2

MSR 2 (6 if updating mode bits) 1

Table 2-25. Load and Store Instruction Timings

Mnemonic Minimum Issue Latency Minimum Result Latency

LDR 1 3 for load data; 1 for writeback of base

LDRB 1 3 for load data; 1 for writeback of base

LDRBT 1 3 for load data; 1 for writeback of base

LDRD 1 (+1 if Rd is R12) 3 for Rd; 4 for Rd+1; 2 for writeback of base

LDRH 1 3 for load data; 1 for writeback of base

LDRSB 1 3 for load data; 1 for writeback of base

LDRSH 1 3 for load data; 1 for writeback of base

LDRT 1 3 for load data; 1 for writeback of base

PLD 1 N/A

STR 1 1 for writeback of base

STRB 1 1 for writeback of base

STRBT 1 1 for writeback of base

STRD 2 1 for writeback of base

STRH 1 1 for writeback of base

STRT 1 1 for writeback of base

Table 2-26. Load and Store Multiple Instruction Timings

Mnemonic Minimum Issue Latencya

a. LDM issue latency is 7 + N if R15 is in the register list and 2 + N if it is not. STM issue latency is calculated as 2 + N. N is
the number of registers to load or store.

Minimum Result Latency

LDM 3 - 23 1-3 for load data; 1 for writeback of base

STM 3 - 18 1 for writeback of base

38 Programmers Reference Manual

Intel® XScale™ Microarchitecture
Programming Model

2.4.5.4 Semaphore Instructions

2.4.5.5 Coprocessor Instructions

2.4.5.6 Miscellaneous Instruction Timing

2.4.5.7 Thumb Instructions

The timing of Thumb instructions is the same as their equivalent ARM instructions. This mapping
can be found in the ARM Architecture Reference Manual. The only exception is the Thumb BL
instruction when H = 0; the timing in this case would be the same as an ARM data-processing
instruction.

Table 2-27. Semaphore Instruction Timings

Mnemonic Minimum Issue Latency Minimum Result Latency

SWP 5 5

SWPB 5 5

Table 2-28. CP15 Register Access Instruction Timings

Mnemonic Minimum Issue Latency Minimum Result Latency

MRC 4 4

MCR 2 N/A

Table 2-29. CP14 Register Access Instruction Timings

Mnemonic Minimum Issue Latency Minimum Result Latency

MRC 7 7

MCR 7 N/A

LDC 10 N/A

STC 7 N/A

Table 2-30. SWI Instruction Timings

Mnemonic Minimum latency to first instruction of SWI exception handler

SWI 6

Table 2-31. Count Leading Zeros Instruction Timings

Mnemonic Minimum Issue Latency Minimum Result Latency

CLZ 1 1

Programmers Reference Manual 39

Optimization Techniques 3

3.1 The StrongARM* Pipeline

One of the biggest differences between the Intel® XScale™ core (ARM* architecture compliant)
and first-generation Intel® StrongARM* processors is the pipeline. Many of the differences are
summarized in Figure 3-1. This section provides a brief description of the structure and behavior of
the Intel® XScale™ microarchitecture pipeline.

3.1.1 General Pipeline Characteristics

While the Intel® XScale™ microarchitecture pipeline is scalar and single issue, instructions may
occupy all three pipelines at once. Out-of-order completion is possible. The following sections
discuss general pipeline characteristics. For additional information, refer to the StrongARM
Architecture Reference Manual.

3.1.1.1 Number of Pipeline Stages

The Intel® XScale™ microarchitecture has a longer pipeline (seven stages versus five stages) that
operates at a much higher frequency than its predecessors for greater overall performance.
However, the longer Intel® XScale™ microarchitecture pipeline does offer some potential
tradeoffs.

• Larger Branch misprediction penalty (four cycles in the Intel® XScale™ microarchitecture
instead of one in the Intel® StrongARM* architecture) is mitigated by dynamic Branch
prediction.

• Larger load use delay (LUD) - LUDs arise from load-use dependencies. A load-use
dependency gives rise to a LUD if the result of the Load instruction cannot be made available
by the pipeline in due time for the subsequent instruction. An optimizing compiler should find
independent instructions to fill the slot following the load.

• Certain instructions incur a few extra delay cycles on the Intel® XScale™ core compared to the
first-generation Intel® StrongARM* processors (LDM, STM).

• Decode and register-file lookups are spread out over two cycles in the Intel® XScale™

microarchitecture instead of one cycle.

40 Programmers Reference Manual

Intel® XScale™ Microarchitecture
Optimization Techniques

3.1.1.2 Intel® XScale™ Microarchitecture Pipeline Organization

The Intel® XScale™ microarchitecture single-issue superpipeline consists of a main execution
pipeline, MAC pipeline, and a memory-access pipeline, as shown in Figure 3-1, with the main
execution pipeline shaded.

3.1.1.3 Out-Of-Order Completion

Sequential consistency of instruction execution relates to two aspects: first, to the order in which
the instructions are completed; and second, to the order in which memory is accessed due to Load
and Store instructions. The Intel® XScale™ microarchitecture preserves a weak processor
consistency because instructions may complete out of order, provided that no data dependencies
exist.

While instructions are issued in order, the main execution pipeline, memory, and MAC pipelines
are not lock-stepped, and therefore have different execution times, causing instructions to finish out
of program order. Short “younger” instructions may be finished earlier than long “older” ones.
(The term to finish is used here to indicate that the operation has completed and the result has been
written back to the register file.)

Figure 3-1. Intel® XScale™ Microarchitecture RISC Superpipeline

Table 3-1. Pipelines and Pipe Stages

Pipe / Pipe Stage Description Covered In

Main Execution Pipeline Handles data processing instructions Section 3.1.3

IF1/IF2 Instruction Fetch Section 3.1.3

ID Instruction Decode Section 3.1.3

RF Register File / Operand Shifter Section 3.1.3

X1 ALU Execute Section 3.1.3

X2 State Execute Section 3.1.3

XWB Write-back Section 3.1.3

Memory Pipeline Handles load/store instructions Section 3.1.4

D1/D2 Data Cache Access Section 3.1.4

DWB Data cache writeback Section 3.1.4

MAC Pipeline Handles all multiply instructions Section 3.1.5

M1-M5 Multiplier stages Section 3.1.5

MWB (not shown) MAC write-back - may occur during M2-M5 Section 3.1.5

F1 F2 ID RF X1 X2 XWB

M1 M2 Mx

D1 D2 DWB

Main execution pipeline

MAC pipeline

Memory pipeline

Programmers Reference Manual 41

Intel® XScale™ Microarchitecture
Optimization Techniques

3.1.1.4 Register Scoreboarding

In certain situations, register dependencies between instructions may cause the pipeline to stall. A
register dependency occurs when a previous MAC or Load instruction is about to modify a register
value that has not been returned to the register file, and the current instruction needs access to the
same register. Only the destination of MAC operations and memory loads are scoreboarded;
destinations of ALU instructions are not.

If no register dependencies exist, the pipeline will not be stalled. For example, if a Load operation
has missed the Data cache, subsequent instructions that do not depend on the Load can complete
independently.

3.1.1.5 Use of Bypassing

To minimize data hazards, the Intel® XScale™ microarchitecture pipeline makes extensive use of
bypassing, which allows results-forwarding from multiple sources, eliminating pipeline stalls.

3.1.2 Instruction Flow Through the Pipeline

The Intel® XScale™ microarchitecture pipeline issues a single instruction per clock cycle.
Instruction execution begins at the F1 pipestage and completes at the WB pipestage.

Although a single instruction may be issued per clock cycle, all three pipelines (MAC, Memory,
and Main execution) may be processing instructions simultaneously. If there are no data hazards,
each instruction can complete processing independently of the others.

Each pipestage takes a single clock cycle or machine cycle to perform its subtask with the
exception of the MAC unit.

3.1.2.1 ARM* v5 Instruction Execution

Figure 3-2 uses arrows to show the possible flow of instructions in the pipeline. Instruction
execution flows from the F1 pipestage to the RF pipestage. The RF pipestage may issue a single
instruction to either the X1 pipestage or the MAC unit (Multiply instructions go to the MAC, while
all others continue to X1), causing M1 or X1 to be idle.

All Load/Store instructions are routed to the Memory pipeline after the effective addresses have
been calculated in X1.

The ARM v5 bx (Branch and Exchange) instruction, which is used to branch between ARM and
THUMB code, flushes the entire pipeline (the bx instruction is not dynamically predicted by the
BTB). If the processor is in Thumb mode, the ID pipestage dynamically expands each THUMB
instruction into a normal ARM v5 RISC instruction, and execution resumes as usual.

3.1.2.2 Pipeline Stalls

The progress of an instruction can stall anywhere in the pipeline, and several pipestages may stall
for various reasons. It is important to understand when and how hazards occur in the Intel®

XScale™ microarchitecture pipeline as performance degradation can be significant if pipeline stalls
are not minimized.

42 Programmers Reference Manual

Intel® XScale™ Microarchitecture
Optimization Techniques

3.1.3 Main Execution Pipeline

3.1.3.1 F1 / F2 (Instruction Fetch) Pipestages

The job of the Instruction Fetch stages F1 and F2 is to present the next instruction to be executed to
the Instruction Decode (ID) stage. Several important functional units reside within the F1 and F2
stages, including the Branch target buffer (BTB) and the Instruction Fetch unit (IFU).

An understanding of the BTB and IFU are important for performance considerations. A summary
of operation is provided here so that readers can understand their role in the F1 pipestage.

• BTB: The BTB predicts the outcome of Branch-type instructions. Once a Branch-type
instruction reaches the X1 pipestage, its target address is known. If this address is different
from the address that the BTB predicted, the pipeline is flushed, execution starts at the new
target address, and the Branch’s history is updated in the BTB.

• IFU: The IFU is responsible for delivering instructions to the ID pipestage. An instruction
could come from one of two sources: instruction cache or Fill buffers. One instruction word is
delivered each cycle (if possible) to the ID.

3.1.3.2 ID (Instruction Decode) Pipestage

The ID pipestage accepts an Instruction word from the IFU and sends register-decode information
to the RF pipestage. The ID accepts a new Instruction word from the IFU on every clock cycle in
which there is no stall. The ID pipestage is responsible for the following:

• General instruction decoding (extracting opcode, operand addresses, destination addresses,
and offset)

• Detecting undefined instructions and generating an exception

• Dynamic expansion of complex instructions into a sequence of simple instructions (complex
instructions are defined as those that require more than one clock cycle to issue, such as LDM,
STM, and SWP)

3.1.3.3 RF (Register File / Shifter) Pipestage

The main function of the RF pipestage is to read and write to the Register File unit (RFU), which
provides source data to the following:

• EX for ALU operations

• MAC for Multiply operations

• Data cache for Memory Writes

• Coprocessor interface

The ID unit decodes the instruction and specifies which registers are accessed in the RFU. Based
on this information, the RFU determines if it needs to stall the pipeline due to a register
dependency. A register dependency occurs when a previous instruction is about to modify a
register value that has not been returned to the RFU, and the current instruction needs to access that
same register. If no dependencies exist, the RFU will select the appropriate data from the register
file and forward it to the next pipestage. When a register dependency does exist, the RFU will keep
track of which register is unavailable. When the result is returned, the RFU will stop the pipe stall.

The ARM architecture specifies one of the data-processing instruction operands as the Shifter
operand, where a 32-bit shift can be performed before it is used as an input to the ALU. This
Shifter is located in the second half of the RF pipestage.

Programmers Reference Manual 43

Intel® XScale™ Microarchitecture
Optimization Techniques

3.1.3.4 X1 (Execute) Pipestages

The X1 pipestage performs the following functions:

• ALU calculations - the ALU performs arithmetic and logic operations, as required for data
processing instructions and Load/Store index calculations.

• Determines conditional instruction execution - The instruction’s condition is compared to the
CPSR prior to execution of each instruction. Any instruction with a false condition is
cancelled, and will not cause any architectural state changes, including modifications of
registers, memory, and PSR.

• Branch target determination - If a branch was mispredicted by the BTB, the X1 pipestage
flushes all of the instructions in the previous pipestages and sends the Branch Target address to
the BTB, which will restart the pipeline.

3.1.3.5 X2 (Execute 2) Pipestage

The X2 pipestage contains the program status registers (PSRs). This pipestage selects what is going
to be written to the RFU in the WB cycle: PSRs (MRS instruction), ALU output, or other items.

3.1.3.6 WB (Write back)

When an instruction reaches the Write-back stage, it is considered complete. Changes are written to
the RFU.

3.1.4 Memory Pipeline

The Memory pipeline consists of two stages, D1 and D2. The Data cache unit (DCU) consists of
the Data-cache array, Mini-Data cache, Fill buffers, and Write buffers. The Memory pipeline
handles Load/Store instructions.

3.1.4.1 D1 and D2 Pipestage

Operation begins in D1 after the X1 pipestage has calculated the effective address for Load/Stores.
The Data cache and Mini-Data cache return the Destination data in the D2 pipestage. Before data is
returned in the D2 pipestage, Sign extension and Byte alignment occurs for byte and half-word
loads.

44 Programmers Reference Manual

Intel® XScale™ Microarchitecture
Optimization Techniques

3.1.5 Multiply/Multiply Accumulate (MAC) Pipeline

The Multiply-Accumulate (MAC) unit executes the Multiply and Multiply-Accumulate
instructions supported by the Intel® XScale™ core. The MAC implements the 40-bit Intel®

XScale™ microarchitecture Accumulator register, acc0, and handles the instructions that transfer
its value to and from General-Purpose ARM registers.

The following are important characteristics about the MAC:

• The MAC is not truly pipelined, as the processing of a single instruction may require use of the
same datapath resources for several cycles before a new instruction can be accepted. The type
of instruction and source arguments determines the number of cycles required.

• No more than two instructions can occupy the MAC pipeline concurrently.

• When the MAC is processing an instruction, another instruction may not enter M1 unless the
original instruction completes in the next cycle.

• The MAC unit can operate on 16-bit packed signed data, which reduces register pressure and
memory traffic size. Two 16-bit data items can be loaded into a register with one LDR.

• The MAC can achieve throughput of one multiply per cycle when performing a 16- by 32-bit
multiply.

3.1.5.1 Behavioral Description

The execution of the MAC unit starts at the beginning of the M1 pipestage, where it receives two
32-bit source operands. Results are completed N cycles later (where N depends on the operand
size) and returned to the register file.

An instruction that occupies the M1 or M2 pipestages will also occupy the X1 and X2 pipestages,
respectively. Every cycle, a MAC operation progresses for M1 to M5, and a MAC operation may
complete anywhere from M2-M5. If a MAC operation enters M3-M5, it is considered committed
because it will modify the architectural state regardless of subsequent events.

Programmers Reference Manual 45

Intel® XScale™ Microarchitecture
Optimization Techniques

3.2 Basic Optimization

This section outlines optimizations specific to the ARM architecture that have been modified for
the Intel® XScale™ microarchitecture.

3.2.1 Conditional Instructions

The Intel® XScale™ microarchitecture executes instructions conditionally. This feature, combined
with the ability of the Intel® XScale™ microarchitecture instructions to modify the condition
codes, makes possible a wide array of optimizations.

46 Programmers Reference Manual

Intel® XScale™ Microarchitecture
Optimization Techniques

3.2.1.1 Optimizing Condition Checks

The Intel® XScale™ microarchitecture instructions can selectively modify the state of the
condition codes. When generating code for if-else and loop conditions, it helps to use this feature to
set condition codes, thereby eliminating the need for a subsequent Compare instruction.

Consider the C code segment below.

if (a + b)

Code generated for the if condition without using an add instruction to set Condition codes is

;Assume r0 contains the value a, and r1 contains the value b
add r0,r0,r1
cmp r0, #0

However, code can be optimized as follows by making use of the add instruction to set Condition
codes:

;Assume r0 contains the value a, and r1 contains the value b
adds r0,r0,r1

The instructions that increment or decrement the loop counter can also modify the Condition codes,
which eliminates the need for a subsequent Compare instruction. A conditional Branch instruction
can then be used to exit or continue with the next loop iteration.

Consider the following C code segment.

for (i = 10; i != 0; i--)
{

do something;
}

The optimized code generated for the above code segment would appear as

L6:
.
.

subs r3, r3, #1
bne L6

It also helps to rewrite loops whenever possible so as to make the Loop Exit conditions check
against the value 0. For example, the code generated for the code segment below will need a
Compare instruction to check for the Loop Exit condition.

for (i = 0; i < 10; i++)
{

do something;
}

If the loop can be rewritten as follows, the code generated eliminates the Compare instruction to
check for the Loop Exit condition (not all loops can be written this way).

for (i = 9; i >= 0; i--)
{

do something;
}

Programmers Reference Manual 47

Intel® XScale™ Microarchitecture
Optimization Techniques

3.2.1.2 Optimizing Branches

Branches decrease application performance by indirectly causing pipeline stalls. Branch prediction
improves the performance by decreasing the delay inherent in fetching a new instruction stream.
The number of branches that can accurately be predicted is limited by the size of the Branch target
buffer. Because the total number of branches executed in a program is relatively large compared to
the size of the Branch target buffer; it is often helps to minimize the number of branches in a
program.

Consider the following C code segment:
int foo(int a)
{

if (a > 10)
return 0;

else
return 1;

}

The code generated for the if-else portion of this code segment using branches is

cmp r0, #10
ble L1
mov r0, #0
b L2

L1:
mov r0, #1

L2:

The code generated above requires three cycles to execute the else portion and four cycles for the
if, assuming best-case conditions and no Branch misprediction penalties. In the case of the Intel®

XScale™ core, a Branch misprediction incurs a penalty of four cycles. If the branch is mispredicted
50 percent of the time, and if we assume that both the if portion and the else portion are equally
likely to be taken, on an average, the code above requires 5.5 cycles to execute.

.

If we were to use the Intel® XScale™ core to execute instructions conditionally, the code generated
for the above if-else statement is

cmp r0, #10
movgt r0, #0
movle r0, #1

The above code segment would not incur any Branch misprediction penalties and would require
three cycles to execute, assuming best-case conditions. As can be seen, using conditional
instructions significantly speeds up execution. However, the use of Conditional instructions should
be carefully considered to ensure that performance does improve. To determine when to use
Conditional instructions over branches, consider the following hypothetical code segment:

if (cond)
if_stmt

else
else_stmt

Assume that we have the following data:

N1B Number of cycles to execute the if_stmt assuming the use of Branch instructions

N2B Number of cycles to execute the else_stmt assuming the use of Branch instructions

50
100
--------- 4

3 4+
2

------------+×

 5.5= cycles

48 Programmers Reference Manual

Intel® XScale™ Microarchitecture
Optimization Techniques

P1 Percentage of times the if_stmt is likely to be executed

P2 Percentage of times we are likely to incur a Branch misprediction penalty

N1C Number of cycles to execute the if-else portion using Conditional instructions assuming
the if condition to be true

N2C Number of cycles to execute the if-else portion using Conditional instructions assuming
the if condition to be false

Once we have the above data, use Conditional instructions when

The following example illustrates a situation where we are better off using branches over
Conditional instructions.

cmp r0, #0
bne L1
add r0, r0, #1
add r1, r1, #1
add r2, r2, #1
add r3, r3, #1
add r4, r4, #1
b L2

L1:
sub r0, r0, #1
sub r1, r1, #1
sub r2, r2, #1
sub r3, r3, #1
sub r4, r4, #1

L2:

In the above code sample, the cmp instruction requires one cycle to execute, the if portion requires
seven cycles to execute, and the else portion requires six cycles to execute. If we were to change
the code above to eliminate the Branch instructions by making use of Conditional instructions, the
if-else portion would always require 10 cycles to complete.

If we assume that both paths are equally likely to be taken, and that branches are mispredicted 50
percent of the time, the cost of using conditional execution versus using branches can be computed
as follows:

Cost of using branches:

We get better performance by using branch instructions in the above example.

N1C
P1
100
---------×

 N2C

100 P1–
100

----------------------×

 N1B

P1
100
---------×

 N2B

100 P1–
100

----------------------×

 P2

100
--------- 4×

 + +≤+

1
50

100
--------- 10×

 50

100
--------- 10×

 + + 11= cycles

1
50

100
--------- 7×

 50

100
--------- 6×

 50

100
--------- 4×

 + + + 9.5= cycles

Programmers Reference Manual 49

Intel® XScale™ Microarchitecture
Optimization Techniques

3.2.1.3 Optimizing Complex Expressions

Conditional instructions also should be used to improve the code generated for complex
expressions, such as the C shortcut evaluation feature.

Consider the following C code segment:
int foo(int a, int b)
{

if (a != 0 && b != 0)
return 0;

else
return 1;

}

The optimized code for the if condition is
cmp r0, #0
cmpne r1, #0

Similarly, the code generated for the following C segment
int foo(int a, int b)
{

if (a != 0 || b != 0)
return 0;

else
return 1;

}

is:
cmp r0, #0
cmpeq r1, #0

The use of Conditional instructions in the above manner improves performance by minimizing the
number of branches, thereby minimizing the penalties caused by Branch mispredictions. This
approach also reduces the use of Branch prediction resources.

50 Programmers Reference Manual

Intel® XScale™ Microarchitecture
Optimization Techniques

3.2.2 Bit-Field Manipulation

The Intel® XScale™ microarchitecture Shift and Logical operations provide a useful way of
manipulating bit fields. Bit field operations can be optimized as follows:
;Set the bit number specified by r1 in register r0

mov r2, #1
orr r0, r0, r2, asl r1

;Clear the bit number specified by r1 in register r0
mov r2, #1
bic r0, r0, r2, asl r1

;Extract the bit-value of the bit number specified by r1 of the
;value in r0 storing the value in r0

mov r1, r0, asr r1
and r0, r1, #1

;Extract the higher order 8 bits of the value in r0 storing
;the result in r1

mov r1, r0, lsr #24

3.2.3 Optimizing the Use of Immediate (Constant) Values

Use the Intel® XScale™ core MOV or MVN instruction when loading an immediate (constant)
value into a register. Refer to the ARM Architecture Reference Manual for the set of immediate
values that can be used in a MOV or MVN instruction. It is also possible to generate a whole set of
constant values using a combination of MOV, MVN, ORR, BIC, and ADD instructions. The code
samples below illustrate cases when a combination of the above instructions can be used to set a
register to a constant value:

;Set the value of r0 to 127
mov r0, #127

;Set the value of r0 to 0xfffffefb.
mvn r0, #260

;Set the value of r0 to 257
mov r0, #1
orr r0, r0, #256

;Set the value of r0 to 0x51f
mov r0, #0x1f
orr r0, r0, #0x500

;Set the value of r0 to 0xf100ffff
mvn r0, #0xff, 16
bic r0, r0, #0xe, 8

; Set the value of r0 to 0x12341234
mov r0, #0x8d, 30
orr r0, r0, #0x1, 20
add r0, r0, r0, LSL #16 ; shifter delay of 1 cycle

Note that it is possible to load any 32-bit value into a register using a sequence of no more than four
instructions.

Programmers Reference Manual 51

Intel® XScale™ Microarchitecture
Optimization Techniques

3.2.4 Optimizing Integer Multiply and Divide

Optimize multiplication by an integer constant to make use of the shift operation whenever
possible.

;Multiplication of R0 by 2n

mov r0, r0, LSL #n
;Multiplication of R0 by 2n+1

add r0, r0, r0, LSL #n

Multiplication by an integer constant that can be expressed as can similarly be
optimized as:

;Multiplication of r0 by an integer constant that can be
;expressed as (2n+1)*(2m)

add r0, r0, r0, LSL #n
mov r0, r0, LSL #m

Note: Only use the above optimization in cases where the multiply operation cannot be advanced far
enough to prevent pipeline stalls.

Dividing an unsigned integer by an integer constant should be optimized to make use of the shift
operation whenever possible.

;Dividing r0 containing an unsigned value by an integer constant
;that can be represented as 2n

mov r0, r0, LSR #n

Dividing a signed integer by an integer constant should be optimized to make use of the shift
operation whenever possible.

;Dividing r0 containing a signed value by an integer constant
;that can be represented as 2n

mov r1, r0, ASR #31
add r0, r0, r1, LSR #(32 - n)
mov r0, r0, ASR #n

In the above example, the Add instruction would stall for one cycle. To prevent such a stall, fill in
another instruction before Add.

3.2.5 Effective Use of Addressing Modes

The Intel® XScale™ microarchitecture provides a variety of addressing modes that make indexing
an array of objects highly efficient. For a detailed description of these addressing modes, refer to
the ARM Architecture Reference Manual. The following code samples illustrate how to optimize
various kinds of array operations to make use of these addressing modes:
;Set the contents of the word pointed to by r0 to the value
;contained in r1 and make r0 point to the next word

str r1,[r0], #4
;Increment the contents of r0 to make it point to the next word
;and set the contents of the word pointed to the value contained
;in r1

str r1, [r0, #4]!
;Set the contents of the word pointed to by r0 to the value
;contained in r1 and make r0 point to the previous word

str r1,[r0], #-4
;Decrement the contents of r0 to make it point to the previous
;word and set the contents of the word pointed to the value
;contained in r1

str r1,[r0, #-4]!

2
n

1+()
·

2
m()⋅

52 Programmers Reference Manual

Intel® XScale™ Microarchitecture
Optimization Techniques

3.3 Cache and Prefetch Optimizations

This section considers how to use the various cache memories in all their modes, and then
examines when and how to use prefetch to improve execution efficiencies.

3.3.1 Instruction Cache

The Intel® XScale™ microarchitecture has separate Instruction and Data caches. Some data may
reside in the Instruction cache even though both data and instructions may reside within the same
memory space with each other. Functionally, the Instruction cache is either enabled or disabled.
Using the I-cache provides no performance benefit. The one exception is that code, which locks
code into the Instruction cache, must itself execute from non-cached memory.

3.3.1.1 Cache Miss Cost

The Intel® XScale™ microarchitecture performance depends highly on reducing the cache-miss
rate. When an Instruction cache miss occurs, the timing to retrieve the next instruction is the same
as that for retrieving data for the Data cache. Using the same assumptions as those for Data caches,
the result is 60 to 90 core cycles to retrieve the first instruction. Once the first 4-byte word is read,
it takes another six core cycles to read in the next two instructions, or a total of 78 to 108 clocks to
fill a cache line. If the new instructions each execute in one core cycle, the processor stalls for four
cycles, waiting for the next pair of instructions. Further, if the next pair of instructions each execute
in one cycle each, the processor again stalls for four more cycles. From this it is clear that
executing non-cached instructions severely curtails processor performance. It is very important to
do everything possible to minimize cache misses.

3.3.1.2 Round-Robin Replacement Cache Policy

Both the Data and the Instruction caches use a round-robin replacement policy to evict a cache line.
The simple consequence of this is that at sometime every line will be evicted, assuming a
non-trivial program. The less obvious consequence is the difficulty of predicting when (and over
which cache lines) evictions occur. This information must be obtained by experimentation using
performance profiling.

3.3.1.3 Code Placement to Reduce Cache Misses

Code placement can greatly affect cache misses. One way to view the cache is to think of it as 32
sets of 32 bytes, which span an address range of 1024 bytes. When running, the code maps into 32
blocks modula 1024 of cache space. Any overused sets will thrash the cache. The ideal situation is
for the software tools to distribute the code on a temporal evenness over this space.

Such a task is very difficult if not impossible for a compiler to do. Most of the input needed to best
estimate how to distribute the code will come from profiling followed by compiler-based two-pass
optimizations.

Programmers Reference Manual 53

Intel® XScale™ Microarchitecture
Optimization Techniques

3.3.1.4 Locking Code into the Instruction Cache

One very important instruction cache feature is the ability to lock code into the Instruction cache.
There are two reasons for locking critical code. First, once locked into the Instruction cache, the
code is always available for fast execution. Second, with the round-robin replacement policy,
eventually the code will be evicted, even if it is a very frequently executed function.

Key code components to consider for locking include the following:

• Interrupt handlers

• Real-time clock handlers

• OS critical code

• Time-critical application code

The disadvantage to locking code into the cache is that it reduces the cache size for the rest of the
program. How much code to lock is very application dependent, and requires experimentation to
optimize.

Code placed into the Instruction cache should be aligned on a 1024-byte boundary and placed
sequentially together as tightly as possible so as not to waste precious memory space. Making the
code sequential also ensures even distribution across all cache ways. Though it is possible to
choose randomly located functions for cache locking, this approach runs the risk of landing
multiple cache ways in one set and few or none in another set.

54 Programmers Reference Manual

Intel® XScale™ Microarchitecture
Optimization Techniques

3.3.2 Data and Mini-Cache

The Intel® XScale™ microarchitecture lets you define memory regions whose cache policies you
can set. Supported policies and configurations include the following:

• Non-cacheable with no coalescing of Memory Writes

• Non-cacheable with coalescing of Memory Writes

• Mini-Data cache with Write coalescing, Read allocate, and Write-back caching

• Mini-Data cache with Write coalescing, Read allocate, and Write-through caching

• Mini-Data cache with Write coalescing, Read-write allocate, and Write-back caching

• Data cache with Write coalescing, Read allocate, and Write-back caching

• Data cache with Write coalescing, Read allocate, and Write-through caching

• Data cache with Write coalescing, Read-write allocate, and Write-back caching

The performance of your application code depends on what cache policy you are using for data
objects. A description of when to use a particular policy is described below.

If the application is running under an OS, then the OS may restrict you from using certain cache
policies.

3.3.2.1 Non-Cacheable Regions

Non-cached memory (X=0, C=0, and B=0) should be used only if necessary as is often true for I/O
devices. Accessing non-cacheable memory is likely to cause frequent processor stalls due to the
long latency of memory Reads.

3.3.2.2 Write-through and Write-back Cached Memory Regions

Write-through memory regions generate more data traffic on the bus. Therefore, it is recommended
that the Write-back policy must be used whenever possible.

However, in a multiprocessor environment, it will be necessary to use a Write-through policy if
data is shared across multiple processors. In such a situation, all shared memory regions should use
the Write-through policy. Memory regions that are private to a particular processor should use the
Write-back policy.

3.3.2.3 Read Allocate and Read-write Allocate Memory Regions

Most of the regular data and the stack for your application should be allocated to a Read-Write
Allocate region, which causes the cache line to be loaded on first reference. It is expected that you
will be writing and reading from them often.

Data that is Write only (or data that is written to and subsequently not used for a long time) should
be placed in a Read-Allocate region. Under the Read-Allocate policy, if a cache write miss occurs,
a new cache line will not be allocated, and hence, will not evict critical data from the Data cache.

Programmers Reference Manual 55

Intel® XScale™ Microarchitecture
Optimization Techniques

3.3.2.4 Creating On-chip RAM

Part of the Data cache can be converted into fast on-chip RAM. Access to objects in the on-chip
RAM will not incur cache-miss penalties, thereby reducing the number of processor stalls.
Improved application performance can occur by converting a part of the cache into on-chip RAM
and allocating frequently allocated variables to it. Due to the Intel® XScale™ microarchitecture
round-robin replacement policy, all data will eventually be evicted unless locked. Therefore, to
prevent critical or frequently used data from being evicted, it should be allocated to on-chip RAM.

The following variables are good candidates for allocating to the on-chip RAM:

• Frequently used global data used for storing context for context switching.

• Global variables that are accessed in time-critical functions such as Interrupt service routines.

The on-chip RAM is created by locking a memory region into the Data cache. If the data in the
on-chip RAM is to be initialized to zero, the locking process can be accelerated by using the CP15
“prefetch zero” function. This function does not generate external memory references.

When creating the on-chip RAM, ensure that all sets in the on-chip RAM area of the Data cache
have approximately the same number of ways locked; otherwise, some sets will have more ways
locked than the others. This uneven allocation will increase the thrashing level in some sets and
leave other sets underutilized.

For example, consider three arrays arr1, arr2, and arr3 of size 64 bytes each that are being
allocated to the on-chip RAM, and assume that the address of arr1 is 0, address of arr2 is 1024,
and the address of arr3 is 2048. All three arrays will be within the same sets, i.e.. set0 and set2, as
a result three ways in both sets set0 and set1, will be locked, leaving 28 ways for use by other
variables.

This can be overcome by allocating on-chip RAM data in sequential order. In the above example,
allocating arr2 to address 64, and arr3 to address 128 allows the three arrays to use only one way in
sets 0 through 8.

56 Programmers Reference Manual

Intel® XScale™ Microarchitecture
Optimization Techniques

3.3.2.5 Mini-Data Cache

The Mini-Data cache is best used for data structures having short temporal lives and/or cover vast
amounts of data space. Addressing these types of data spaces from the Data cache would corrupt
much if not all of the Data cache by evicting valuable data, which will reduce performance. Placing
this data in Mini-Data cache memory region instead would prevent Data-cache corruption while
providing the benefits of cached accesses.

A prime example of using the Mini-Data cache would be for caching the Procedure Call stack. The
stack can be allocated to the Mini-Data cache so that its use does not trash the main Data cache.
This allocation would keep local variables from global data.

Following are examples of data that could be assigned to the Mini-Data cache:

• The stack space of a frequently occurring interrupt, the stack is used only during the duration
of the interrupt, which is usually very small.

• Video buffers, these are usual large and can occupy the whole cache.

Overuse of the Mini-Data cache will thrash the cache. This is easy to do because the Mini-Data
cache has just two ways per set. For example, a loop that uses a simple statement such as

for (i=0; I< IMAX; i++)
{

A[i] = B[i] + C[i];
}

Where A, B, and C reside in a Mini-Data cache memory region and each array is aligned on a 1-K
boundary will quickly thrash the cache.

Programmers Reference Manual 57

Intel® XScale™ Microarchitecture
Optimization Techniques

3.3.2.6 Data Alignment

Cache lines begin on 32-byte address boundaries. To maximize cache-line use and minimize cache
pollution, data structures should be aligned on 32-byte boundaries and sized to multiple cache-line
sizes. Aligning data structures on cache-address boundaries simplifies later addition of Prefetch
instructions to optimize performance.

Not aligning data on cache lines has the disadvantage of moving the Prefetch address
correspondingly to the misalignment. Consider the following example:

struct {
long ia;
long ib;
long ic;
long id;

} tdata[IMAX];

for (i=0, i<IMAX; i++)
{

PREFETCH(tdata[i+1]);
tdata[i].ia = tdata[i].ib + tdata[i].ic _tdata[i].id];
....
tdata[i].id = 0;

}

In this case, if tdata[] is not aligned to a cache line, the Prefetch using the address of tdata[i+1].ia
may not include element, id. If the array was aligned on a cache line + 12 bytes, then the Prefetch
would have to be placed on &tdata[i+1].id.

If the structure is not sized to a multiple of the cache-line size, the Prefetch address must be
advanced appropriately and will require extra Prefetch instructions. Consider the following
example:
struct {

long ia;
long ib;
long ic;
long id;
long ie;

} tdata[IMAX];

ADDRESS preadd = tdata

for (i=0, i<IMAX; i++)
{

PREFETCH(predata+=16);
tdata[I].ia = tdata[I].ib + tdata[I].ic _tdata[I].id] +
tdata[I].ie;
....
tdata[I].ie = 0;

}

In this case, the Prefetch address was advanced by size of half a cache line and every other Prefetch
instruction is ignored. Further, an additional register is required to track the next Prefetch address.

Generally, not aligning and sizing data will add extra computational overhead.

Additional Prefetch considerations are discussed in greater detail in following sections.

58 Programmers Reference Manual

Intel® XScale™ Microarchitecture
Optimization Techniques

3.3.2.7 Literal Pools

The Intel® XScale™ microarchitecture does not have a single instruction that can move all Literals
(a constant or address) to a register. One technique for loading registers with Literals in the Intel®

XScale™ microarchitecture is by loading the Literal from a memory location that has been
initialized with the constant or address. These blocks of constants are referred to as Literal pools.
Refer to the ARM Architecture Reference Manual, Section B, for details on Literal pools. It is
advantageous to place all the Literals together in a Literal pool. These data blocks are located in the
text or code address space so that they can be loaded using PC-relative addressing. However,
references to the Literal pool area load the data into the Data cache instead of the Instruction cache.
Therefore, it is possible that the Literal may be present in both the Data and Instruction caches,
resulting in wasted space.

For maximum efficiency, the compiler should align all Literal pools on cache boundaries and size
each pool to a multiple of 32 bytes (the size of a cache line). One additional optimization would be
to group highly used Literal pool references into the same cache line. The advantage is that once
one of the Literals has been loaded, the other seven will be available immediately from the Data
cache.

3.3.3 Cache Considerations

3.3.3.1 Cache Conflicts, Pollution, and Pressure

Cache pollution occurs when unused data is loaded in the cache, and cache pressure occurs when
data that is not temporal to the current process is loaded into the cache. For an example, refer to
Section 3.3.5.2, “Prefetch Loop Scheduling”.

3.3.4 Memory Page Thrashing

Memory-page thrashing occurs because of the nature of SDRAM. SDRAMs are typically divided
into four banks, where each bank can have one selected page where a page address size for current
memory components is often defined as 4k. Memory lookup time or latency time for a selected
page address is currently two to three bus clocks. Thrashing occurs when subsequent memory
accesses within the same memory bank access different pages. The memory page change adds
three to four bus clock cycles to Memory latency. This added delay extends the Prefetch distance
correspondingly making it more difficult to hide Memory-Access latencies. This type of thrashing
can be resolved by placing the conflicting data structures into different memory banks, or by
paralleling the data structures such that the data resides within the same memory page. Instruction
and data sections must reside in different memory banks, or they will continually thrash the
memory page selection.

Programmers Reference Manual 59

Intel® XScale™ Microarchitecture
Optimization Techniques

3.3.5 Prefetch Considerations

The Intel® XScale™ microarchitecture has a true Prefetch Load instruction (PLD). This instruction
preloads data into the Data and Mini-Data caches. Data prefetching hides Memory Transfer latency
while the processor continues to execute instructions. The prefetch is important to compiler and
assembly code because judicious use of the Prefetch instruction can enormously improve
throughput performance of the Intel® XScale™ core. Data prefetch can be applied not only to loops
but to any data references within a block of code. Prefetch also applies to data writing when the
memory type is enabled as Write-Allocate.

The Intel® XScale™ microarchitecture Prefetch Load instruction is a true Prefetch instruction
because the load destination is the Data or Mini-Data cache and not a register. Compilers for
processors that have Data caches but do not support prefetch sometimes use a load instruction to
preload the Data cache. This technique has the disadvantages of using a register to load data and
requiring additional registers for subsequent preloads, thus increasing register pressure. By
contrast, the Intel Intel® XScale™ core prefetch reduces register pressure instead of increasing it.

The Intel® XScale™ core Prefetch load is a Hint instruction and does not guarantee that the data
will be loaded. Whenever the load would cause a fault or a Table walk, the processor will ignore
the Prefetch instruction and continue processing the next instruction. This operation is particularly
advantageous in the case where a Null pointer terminates a linked list or recursive data structure. A
prefetch of the Null pointer will not fault program flow.

3.3.5.1 Prefetch Distances in the Intel® XScale™ Core

Scheduling the Prefetch instruction requires an understanding of system latency times and system
resources that affect when to use the Prefetch instruction. This section considers three timing
elements.

1. Ncwf critical word first

2. Nclxfer full cache line transfer time

3. Nsubissue subsequent Prefetch issue time to insure uninterrupted transfers

The Memory Latency times presented here assume typical SDRAM that is currently available and
working with the Intel® XScale™ microarchitecture. It is assumed that the SDRAM supports
“critical word first” transfers (when a cache line is being transferred, the first word transferred
corresponds to the one the processor needs immediately, as opposed to transferring the data from
lowest address first).

The cycle times assume that the core is running six times a fast as the Memory-Transfer bus.
Further, the example values presented here apply to the current processor implementation. The
Intel® XScale™ microarchitecture is different for future implementations.

Ncwf is the number of core cycles required to transfer the first critical word of a Prefetch or Load
operation:

Where:

Nlookup The number of core clocks required for the processor to issue a Memory-Transfer request
to the SDRAM plus the time the SDRAM requires to locate the data.

Ncwf Nlookup Ncwfxfer+=

Nlookup Nprocessor Nmemwait Nmempagewait+ +=

60 Programmers Reference Manual

Intel® XScale™ Microarchitecture
Optimization Techniques

The Intel® XScale™ microarchitecture needs seven bus clocks to process a memory request to the
SDRAM (Nprocessor). Typical SDRAM needs two to three bus clocks to select the memory
locations, provided the current SDRAM memory page is selected (Nmemwait). If the current
SDRAM memory page is not selected, then an additional three to four bus cycles are needed to
look up the memory data locations (Nmempagewait). Thus, the look-up time can range from nine to
14 bus clock cycles. Translating this to core cycles at a ratio of six to one means between 54 and 84
core clocks.

Ncwfxfer This is the number of core clocks needed to transfer the first critical word of a Cache
line-fill operation. It takes one bus clock to transfer the first word if the data is in the lower
word address of the transfer, and one additional core clock if the word is in the upper word
address range of the transfer. Thus, for the examples presented here, this translates to six
or seven core clock cycles.

Ncwf For the Intel® XScale™ microarchitecture, this works out to be 60 instructions, assuming
two wait- state SDRAM and that the current SDRAM memory page is selected. The second
64 bits of data will be available at the next bus cycle or six core clocks.

Nclxfer The minimal number of cycles to prefetch ahead for an entire cache line:

Where:

Nlinexfer The number of core clocks required to transfer one complete cache line. The Intel®

XScale™ microarchitecture requires four bus cycles to transfer four 64-bit words of a full
cache line. Given the six-to-one core-to-bus clock ratio, this translates to 24 core clock
cycles.

Nclxfer Works out to be about 78 cycles for the Intel® XScale™ microarchitecture when using a
Two-Bus-Cycle Wait state.

Nsubissue This is the maximum number of core clocks that a subsequent bus-transfer request must be
made to guarantee that transfer occurs immediately after the previous request has
completed its transfer. If a transfer is not made within this time, idle bus cycles will occur,
thereby reducing efficiency. If the previous transfer was for a full Cache-Line Read or
Write, it would require 24 core cycles at a six-to-one ratio between core and bus clocks. If
the previous operation was for a Half Cache line, it would require 12 core clocks.

Consider the following code sample:
add r1, r1, #1

; Sequence of instructions that use r2.
ldr r2, [r3]
add r3, r3, #4
mov r4, r3
sub r2, r2, #1

The sub instruction above would stall if the data being loaded misses the cache. These stalls can be
avoided by using a pld instruction well ahead of the sub instruction, as shown below. The number
of instructions required to ensure a stall does not occur is proportional to Ncwf for a given system.

pld [r3]
add r1, r1, #1

; Sequence of instructions that use r2. These instructions leave r3 unchanged.
ldr r2, [r3]
add r3, r3, #4
mov r4, r3
sub r2, r2, #1

Nclxfer Nlookup Nlinexfer+=

Programmers Reference Manual 61

Intel® XScale™ Microarchitecture
Optimization Techniques

3.3.5.2 Prefetch Loop Scheduling

When adding prefetch to a loop that operates on arrays, it’s a good idea to prefetch ahead one, two,
or more iterations. The data for future iterations is located in memory by a fixed offset from the
data for the current iteration. This arrangement makes it easy to predict where to fetch the data. The
number of iterations to prefetch ahead is refered to as the prefetch scheduling distance, or PSD. For
the Intel® XScale™ microarchitecture, this PSD can be calculated as

Where:

Npref The number of cache lines to be prefetched for both reading and writing

Nevict The number of first-time half-line evictions mentioned

Ninst The number of instructions executed in one iteration of the loop

Nhwlinexfer The number of core clocks required to write half a cache line as if only one of the cache
line dirty bits were set when a line eviction occurred. For the Intel® XScale™

microarchitecture, this process requires two bus clocks or 12 core clocks.

CPI The average number of core clocks per instruction

The PSD number in the above equation provides is a good starting point, but may not be the most
ideal consideration. Estimating Nevict is very difficult from static code; however, if the operational
data uses the Mini-Data cache, and if the loop operations should overflow the Mini-Data cache, a
first-order estimate of Nevict would be the number of bytes written pre-loop iteration divided by a
half cache line size of 16 bytes. Cache overflow can be estimated by the number of cache lines
transferred each iteration and the number of expected loop iterations. Nevict and CPI can be
estimated by profiling the code using the performance monitor “Cache Write-back” Event count.

3.3.5.3 Prefetch Loop Limitations

It is not always advantageous to add Prefetch to a loop. Loop characteristics that limit the use value
of Prefetch are discussed below.

3.3.5.4 Compute vs. Data Bus Bound

At the extreme, a Data Bus Bound loop will not benefit from Prefetch because all the system
resources for transferring data are quickly allocated, and there are no instructions that can be
profitably executed. On the other end of the scale, Compute Bound loops completely hide all Data
Transfer latencies.

3.3.5.5 Low Number of Iterations

Loops with very low iteration counts may have the advantages of Prefetch completely mitigated. A
loop with a small fixed number of iterations may be faster if the loop is completely unrolled rather
than using scheduled Prefetch instructions.

PSD floor
Nlookup Nlinexfer Npref× Nhwlinexfer Nevict×+ +()

CPI Ninst×()--

 =

62 Programmers Reference Manual

Intel® XScale™ Microarchitecture
Optimization Techniques

3.3.5.6 Bandwidth Limitations

Prefetch overuse can usurp resources and degrade performance because once bus-traffic requests
exceed the system resource capacity, the processor stalls. The Intel® XScale™ microarchitecture
data-transfer resources are the following:

• 4 Fill buffers

• 4 Pending buffers

• 8 Half-Cache Line Write buffer

SDRAM resources are typically:

• 4 Memory banks

• 1 Page buffer per bank referencing a 4K address range

• 4 Transfer-Request buffers

Consider how these resources all work together. A Fill buffer is allocated for each Cache-Read
miss. A Fill buffer is also allocated for each Cache-Write miss if the memory space is
Write-Allocate along with a Pending buffer. A subsequent Read to the same cache line does not
require a new Fill buffer, but does require a Pending buffer, and a subsequent Write will also
require a new Pending buffer. A Fill buffer is also allocated for each Read to a non-cached memory,
and a Write buffer is required for each memory Write to non-cached memory that is
non-coalescing. Consequently, an STM instruction listing eight registers and referencing
non-cached memory will use eight Write buffers (assuming they don’t coalesce) and two Write
buffers (if they do). A cache eviction requires a Write buffer for each dirty bit set in the cache line.
The Prefetch instruction requires a Fill buffer for each cache line, and 0, 1, or 2 Write buffers for an
eviction.

When adding Prefetch instructions, ensure that the combination of Prefetch and Instruction bus
requests does not exceed the system resource capacity described above or performance will
degrade instead of improve. It’s important to spread Prefetch operations over calculations so as to
allow bus traffic to flow free, and to minimize the number of necessary prefetches.

Programmers Reference Manual 63

Intel® XScale™ Microarchitecture
Optimization Techniques

3.3.5.7 Cache Memory Considerations

Stride—the way data structures are walked through—can affect temporal data quality and reduce
or increase cache conflicts. The Intel® XScale™ microarchitecture Data cache and Mini-Data
caches each have 32 sets of 32 bytes, which means that each cache line in a set is on a modular
1K-address boundary. Be careful to choose data structure sizes and stride requirements that do not
overwhelm a given set that could cause conflicts and increased register pressure. Register pressure
can be increased because additional registers are needed to track Prefetch addresses. These effects
can be minimized by rearranging data structure components to use more parallel access to search
and compare elements. Similarly, rearranging often-written sections of data structures so that they
fit in the same half cache line (16 bytes for the Intel® XScale™ microarchitecture) can reduce
Cache Eviction write-backs. On a global scale, techniques such as Array merging can enhance the
spatial locality of the data.

As an example of Array merging, consider the following code:

int a_array[NMAX];
int b_array[NMAX];
int ix;

for (i=0; i<NMAX]; i++)
{

ix = b[i];
if (a[i] != 0)

ix = a[i];
do_other calculations;

}

In the above code, data is read from both arrays a and b, but a and b are not spatially close. Array
merging can place a and b spatially close.

struct {
int a;
int b;

} c_arrays;

int ix;

for (i=0; i<NMAX]; i++)
{

ix = c[i].b;
if (c[i].a != 0)

ix = c[i].a;
do_other_calculations;

}

As an example of rearranging written-to-often sections in a structure, consider the code sample:

struct employee {
struct employee *prev;
struct employee *next;
float Year2DatePay;
float Year2DateTax;
int ssno;
int empid;
float Year2Date401KDed;
float Year2DateOtherDed;

};

In the data structure shown above, the fields Year2DatePay, Year2DateTax, Year2Date401KDed,
and Year2DateOtherDed are likely to change with each pay check. The remaining fields, however,
rarely change. If the fields are laid out as shown in the above example—assuming that the structure
is aligned on a 32-byte boundary—modifications to the Year2Date fields is likely to use two Write

64 Programmers Reference Manual

Intel® XScale™ Microarchitecture
Optimization Techniques

buffers when the data is written out to memory. However, we can restrict the number of Write
buffers that are commonly used to one by rearranging the fields in the above data structure as
shown below:

struct employee {
struct employee *prev;
struct employee *next;
int ssno;
int empid;
float Year2DatePay;
float Year2DateTax;
float Year2Date401KDed;
float Year2DateOtherDed;

};

Programmers Reference Manual 65

Intel® XScale™ Microarchitecture
Optimization Techniques

3.3.5.8 Cache Blocking

Cache-blocking techniques, such as Strip mining, are used to improve temporal locality of data.
Given a large data set that can be reused across multiple passes of a loop, data blocking divides the
data into smaller chunks that can be loaded into the cache during the first loop, and then be
available for processing on subsequence loops, thus minimizing cache misses and reducing bus
traffic.

As an example of cache blocking, consider the following code:
for(i=0; i<10000; i++)

for(j=0; j<10000; j++)
for(k=0; k<10000; k++)

C[j][k] += A[i][k] * B[j][i];

The variable A[i][k] is completely reused. However, accessing C[j][k] in the j and k loops can
displace A[i][j] from the cache. Using blocking, the code becomes:
for(i=0; i<10000; i++)

for(j1=0; j<100; j++)
for(k1=0; k<100; k++)

for(j2=0; j<100; j++)
for(k2=0; k<100; k++)
{

j = j1 * 100 + j2;
k = k1 * 100 + k2;
C[j][k] += A[i][k] * B[j][i];

}

66 Programmers Reference Manual

Intel® XScale™ Microarchitecture
Optimization Techniques

3.3.5.9 Prefetch Unrolling

When iterating through a loop, Data Transfer latency can be hidden by prefetching ahead one or
more iterations. The solution incurs several unwanted side effects: the final interactions of a Loop
load useless data into the cache, pollute the cache, increase bus traffic, and possibly evict valuable
temporal data. This problem can be resolved by Prefetch unrolling. For example, consider the
following:
for(i=0; i<NMAX; i++)
{

prefetch(data[i+2]);
sum += data[i];

}

Interactions i-1 and i, will prefetch superfluous data. Unrolling the end of the loop avoids this
problem.
for(i=0; i<NMAX-2; i++)
{

prefetch(data[i+2]);
sum += data[i];

}
sum += data[NMAX-2];
sum += data[NMAX-1];

Unfortunately, Prefetch Loop unrolling does not work on loops with indeterminate iterations.

Programmers Reference Manual 67

Intel® XScale™ Microarchitecture
Optimization Techniques

3.3.5.10 Pointer Prefetch

Not all looping constructs contain induction variables. However, Prefetching techniques can still be
applied. Consider the following Linked-List traversal example:
while(p) {

do_something(p->data);
p = p->next;

}

The Pointer variable p becomes a pseudo- induction variable, and the data pointed to by p->next
can be prefetched to reduce Data-Transfer latency for the next loop iteration. Linked lists should be
converted to arrays as often as possible.
while(p) {

prefetch(p->next);
do_something(p->data);
p = p->next;

}

Recursive Data-Structure traversal, which is similar to Linked-List traveral, is another construct
where prefetching can be applied. Consider the following Pre-order traversal of a binary tree:
preorder(treeNode *t) {

if(t) {
process(t->data);
preorder(t->left);
preorder(t->right);

}
}

The Pointer variable t becomes the pseudo-induction variable in a recursive loop. The data
structures pointed to by the values t->left and t->right can be prefetched for the next loop iteration.
preorder(treeNode *t) {

if(t) {
prefetch(t->right);
prefetch(t->left);
process(t->data);
preorder(t->left);
preorder(t->right);

}
}

Note the order reversal of the prefetches in relationship to the use. If a cache conflict causes data to
be evicted from the cache, only the data from the first Prefetch is lost.

68 Programmers Reference Manual

Intel® XScale™ Microarchitecture
Optimization Techniques

3.3.5.11 Loop Interchange

As mentioned earlier, the sequence in which data is accessed affects Cache thrashing. Usually, it is
best to access data in a spatially contiguous address range. However, Data arrays may have been
laid out such that indexed elements are not physically adjacent. Consider the following C code that
places Array elements in row-major order.
for(j=0; j<NMAX; j++)

for(i=0; i<NMAX; i++)
{

prefetch(A[i+1][j]);
sum += A[i][j];

}

In the above example, A[i][j] and A[i+1][j] are not sequentially adjacent. This situation increases
bus traffic when prefetching loop data. In some cases where the loop mathematics are unaffected,
the problem can be resolved by Induction-Variable interchange. The above example then becomes

for(i=0; i<NMAX; i++)
for(j=0; j<NMAX; j++)
{

prefetch(A[i][j+1]);
sum += A[i][j];

}

Programmers Reference Manual 69

Intel® XScale™ Microarchitecture
Optimization Techniques

3.3.5.12 Loop Fusion

Loop fusion is a process of combining multiple loops, which reuse the same data, in to one loop.
The advantage of this is that the reused data is immediately accessible from the Data cache.
Consider the following example:
for(i=0; i<NMAX; i++)
{

prefetch(A[i+1], c[i+1], c[i+1]);
A[i] = b[i] + c[i];

}
for(i=0; i<NMAX; i++)
{

prefetch(D[i+1], c[i+1], A[i+1]);
D[i] = A[i] + c[i];

}

The second loop reuses the data elements A[i] and c[i]. Fusing the loops together produces

for(i=0; i<NMAX; i++)
{

prefetch(D[i+1], A[i+1], c[i+1], b[i+1]);
ai = b[i] + c[i];
A[i] = ai;
D[i] = ai + c[i];

}

70 Programmers Reference Manual

Intel® XScale™ Microarchitecture
Optimization Techniques

3.3.5.13 Prefetch to Reduce Register Pressure

Prefetch can reduce register pressure. When data is needed for an operation, the load is scheduled
far enough in advance to hide the Load latency. However, the load ties up the Receiving register
until the data can be used. For example

ldr r2, [r0]
; Process code { not yet cached latency > 60 core clocks }

add r1, r1, r2

In the above case, r2 is unavailable for processing until the add statement. Prefetching the Data
load frees the register for use. The example code then becomes

pld [r0] ;prefetch the data keeping r2 available for use
; Process code

ldr r2, [r0]
; Process code { ldr result latency is 3 core clocks }

add r1, r1, r2

With the added Prefetch, register r2 can be used for other operations until just before it is needed.

Programmers Reference Manual 71

Intel® XScale™ Microarchitecture
Optimization Techniques

3.4 Instruction Scheduling

This section discusses Instruction-Scheduling optimizations. Instruction scheduling refers to the
rearrangement of a sequence of instructions for minimizing pipeline stalls, which improves
application performance. While making this rearrangement, ensure that the rearranged sequence of
instructions has the same effect as the original sequence of instructions.

3.4.1 Scheduling Loads

With the Intel® XScale™ core, an LDR instruction has a three-cycle Result latency, assuming the
data being loaded resides in the Data cache. If the instruction after the LDR needs to use the Load
result, then it would stall for two cycles. If possible, the instructions surrounding the LDR
instruction should be rearranged to avoid this stall. Consider the following example:

add r1, r2, r3
ldr r0, [r5]
add r6, r0, r1
sub r8, r2, r3
mul r9, r2, r3

In the code shown above, the ADD instruction following the LDR would stall for two cycles
because it uses the Load result. The code can be rearranged as follows to prevent the stalls:

ldr r0, [r5]
add r1, r2, r3
sub r8, r2, r3
add r6, r0, r1
mul r9, r2, r3

Note that this rearrangement may not be always possible. Consider the following example:
cmp r1, #0
addne r4, r5, #4
subeq r4, r5, #4
ldr r0, [r4]
cmp r0, #10

In the example above, the LDR instruction cannot be moved before the ADDNE or the SUBEQ
instructions because the LDR instruction depends on the result of these instructions. Rewrite the
above code to make it run faster at the expense of increasing code size:

cmp r1, #0
ldrne r0, [r5, #4]
ldreq r0, [r5, #-4]
addne r4, r5, #4
subeq r4, r5, #4
cmp r0, #10

The optimized code requires six cycles to execute, compared to the seven cycles taken by the
unoptimized version.

The Result latency for an LDR instruction is significantly higher if the data being loaded is not in the
Data cache. To minimize the number of pipeline stalls in such a situation, the LDR instruction should
be moved as far away as possible from the instruction that uses the load result. Note that this may at
times cause certain register values to be spilled over to memory due to the increase in register
pressure. In such cases, use a Preload instruction or a Preload hint to ensure that the data access in the
LDR instruction hits the cache when it executes. A Preload hint should be used in cases where there is
a question as to whether the Load instruction would be executed. A Preload instruction should be
used in cases where there is no question that the Load instruction would be executed.

72 Programmers Reference Manual

Intel® XScale™ Microarchitecture
Optimization Techniques

Consider the following code sample:
; all other registers are in use

sub r1, r6, r7
mul r3,r6, r2
mov r2, r2, LSL #2
orr r9, r9, #0xf
add r0,r4, r5
ldr r6, [r0]
add r8, r6, r8
add r8, r8, #4
orr r8,r8, #0xf

; The value in register r6 is not used after this

In the code sample above, ADD and LDR instructions can be moved before the MOV instruction.
Note that this would prevent pipeline stalls if the load hits the Data cache. However, if load is likely to
miss the Data cache, move the LDR instruction so that it executes as early as possible—before the
SUB instruction. However, moving the LDR instruction before the SUB instruction would change the
program semantics. It is possible to move the ADD and the LDR instructions before the SUB
instruction if the contents of the register r6 can be spilled and restored from the stack as shown below:
; all other registers are in use

str r6,[sp, #-4]!
add r0,r4,r5
ldr r6, [r0]
mov r2, r2, LSL #2
orr r9, r9, #0xf
add r8, r6, r8
ldr r6, [sp], #4
add r8, r8, #4
orr r8,r8, #0xf
sub r1, r6, r7
mul r3,r6, r2

; The value in register r6 is not used after this

As can be seen above, the register r6 contents have been spilled to the stack and subsequently
loaded back to register r6 to retain the program semantics. Another way to optimize the code above
is with the use of the Preload instruction, as shown below.
; all other registers are in use

add r0,r4, r5
pld [r0]
sub r1, r6, r7
mul r3,r6, r2
mov r2, r2, LSL #2
orr r9, r9, #0xf
ldr r6, [r0]
add r8, r6, r8
add r8, r8, #4
orr r8,r8, #0xf

; The value in register r6 is not used after this

Intel® XScale™ microarchitecture has four Fill buffers that fetch data from external memory when a
Data-Cache miss occurs. The Intel® XScale™ microarchitecture stalls when all Fill buffers are in use.
This happens when more than four loads are outstanding and are being fetched from memory. As a
result, the code written should ensure that no more than four loads are outstanding at the same time.
For example, the number of loads issued sequentially should not exceed four. Also note that a Preload
instruction may cause a Fill buffer to be used. As a result, the number of Preload instructions
outstanding should also be considered to arrive at the number of loads that are outstanding.

Similarly, the number of Write buffers also limits the number of successive Writes that can be
issued before the processor stalls. No more than eight Stores can be issued. Also note that if the
Data caches are using the Write-Allocate with Write-back policy, a Load operation may cause
Stores to the external memory if the Read operation evicts a cache line that is dirty (modified). The
number of sequential Stores may be limited by this fact.

Programmers Reference Manual 73

Intel® XScale™ Microarchitecture
Optimization Techniques

3.4.1.1 Scheduling Load and Store Double (LDRD/STRD)

The Intel® XScale™ microarchitecture introduces two new double-word instructions: LDRD and
STRD. LDRD loads 64-bits of data from an effective address into two consecutive registers;
conversely, STRD stores 64-bits from two consecutive registers to an effective address. Two
important restrictions exist on how these instructions can be used.

• The effective address must be aligned on an 8-byte boundary

• The specified register must be even (r0, r2, etc.)

If this situation occurs, using LDRD/STRD instead of LDM/STM to do the same thing is more
efficient because LDRD/STRD issues in only one/two clock cycle(s), as opposed to LDM/STM,
which issues in four clock cycles. Avoid LDRDs targeting R12 because it incurs an extra cycle of
Issue latency.

The LDRD instruction has a Result latency of three or four cycles, depending on the Destination
register being accessed (assuming the data being loaded is in the Data cache).

add r6, r7, r8
sub r5, r6, r9

; The following ldrd instruction would load values
; into registers r0 and r1

ldrd r0, [r3]
orr r8, r1, #0xf
mul r7, r0, r7

In the code example above, the ORR instruction would stall for three cycles because of the
four-cycle Result latency for the second Destination register of an LDRD instruction. The code
shown above can be rearranged to remove the pipeline stalls.

; The following ldrd instruction would load values
; into registers r0 and r1

ldrd r0, [r3]
add r6, r7, r8
sub r5, r6, r9
mul r7, r0, r7
orr r8, r1, #0xf

Any memory operation following a LDRD instruction (LDR, LDRD, STR and so on) would stall
for one cycle.

; The str instruction below would stall for 1 cycle
ldrd r0, [r3]
str r4, [r5]

74 Programmers Reference Manual

Intel® XScale™ Microarchitecture
Optimization Techniques

3.4.1.2 Scheduling Load and Store Multiple (LDM/STM)

LDM and STM instructions have an Issue latency of 2-20 cycles, depending on the number of
registers being loaded or stored. The Issue latency is typically two cycles plus an additional cycle
for each of the registers being loaded or stored, assuming a Data cache hit. The instruction
following an LDM would stall whether or not this instruction depends on the Load results. A
LDRD or STRD instruction does not suffer from this drawback (except when followed by a
Memory operation), and should be used where possible.

Consider the task of adding two 64-bit integer values. Assume that the addresses of these values are
aligned on an 8-byte boundary. This addition can be achieved using the LDM instructions as shown
below:
; r0 contains the address of the value being copied
; r1 contains the address of the destination location

ldm r0, {r2, r3}
ldm r1, {r4, r5}
adds r0, r2, r4
adc r1,r3, r5

If the code were written as shown above, assuming all the accesses hit the cache, the code would
require 11 cycles to complete. Rewriting the code as shown below using LDRD instruction would
need only seven cycles to complete. The performance would increase further if we can fill in other
instructions after LDRD to reduce the stalls due to the Result latencies of the LDRD instructions.
; r0 contains the address of the value being copied
; r1 contains the address of the destination location

ldrd r2, [r0]
ldrd r4, [r1]
adds r0, r2, r4
adc r1,r3, r5

Similarly, the code sequence shown below takes five cycles to complete.
stm r0, {r2, r3}
add r1, r1, #1

The alternative version (shown below) would only take three cycles to complete.
strd r2, [r0]
add r1, r1, #1

Programmers Reference Manual 75

Intel® XScale™ Microarchitecture
Optimization Techniques

3.4.2 Scheduling Data Processing Instructions

Most Intel® XScale™ microarchitecture data-processing instructions have a one-cycle Result
latency, which means that the current instruction can use the result from the previous
data-processing instruction. However, the Result latency is two cycles if the current instruction
needs to use the result of the previous data-processing instruction for a Shift by Immediate. As a
result, the following code segment would incur a one-cycle stall for the mov instruction:

sub r6, r7, r8
add r1, r2, r3
mov r4, r1, LSL #2

The code above can be rearranged as follows to remove the one-cycle stall:
add r1, r2, r3
sub r6, r7, r8
mov r4, r1, LSL #2

All data-processing instructions incur a two-cycle Issue penalty and a two-cycle Result penalty
when the Shifter operand is a Shift/Rotate by a register or the Shifter operand is RRX. Because the
next instruction would always incur a two-cycle Issue penalty, there is no way to avoid such a stall
except by rewriting the Assembler instruction.

Consider the following segment of code:
mov r3, #10
mul r4, r2, r3
add r5, r6, r2, LSL r3
sub r7, r8, r2

The Subtract instruction would incur a one-cycle stall due to the Issue latency of the Add
instruction as the Shifter operand is shifted by a register. The Issue latency can be avoided by
changing the code as follows:

mov r3, #10
mul r4, r2, r3
add r5, r6, r2, LSL #10
sub r7, r8, r2

76 Programmers Reference Manual

Intel® XScale™ Microarchitecture
Optimization Techniques

3.4.3 Scheduling Multiply Instructions

Multiply instructions can cause pipeline stalls due to either resource conflicts or Result latencies.
The following code segment would incur a stall of zero to three cycles, depending on the values in
registers r1, r2, r4, and r5 due to resource conflicts.

mul r0, r1, r2
mul r3, r4, r5

The following code segment would incur a stall of one to three cycles, depending on the values in
registers r1 and r2 due to Result latency.

mul r0, r1, r2
mov r4, r0

Note that a Multiply instruction that sets the Condition codes blocks the entire pipeline. A
four-cycle Multiply operation that sets the Condition codes behaves the same as a four-cycle Issue
operation.

Consider the following code segment:

muls r0, r1, r2
add r3, r3, #1
sub r4, r4, #1
sub r5, r5, #1

The Add operation above would stall for three cycles if the Multiply takes four cycles to complete.
It is better to replace the code segment above with the following sequence:

mul r0, r1, r2
add r3, r3, #1
sub r4, r4, #1
sub r5, r5, #1
cmp r0, #0

Refer to “Instruction Latencies” in the ARM Architecture Reference Manual to get the Instruction
latencies for various Multiply instructions. The Multiply instructions should be scheduled taking
into consideration these Instruction latencies.

Programmers Reference Manual 77

Intel® XScale™ Microarchitecture
Optimization Techniques

3.4.4 Scheduling SWP and SWPB Instructions

The SWP and SWPB instructions have a five-cycle Issue latency. As a result of this latency, the
instruction following the SWP/SWPB instruction would stall for four cycles. SWP and SWPB
instructions should, therefore, be used only where absolutely needed.

For example, the following code may be used to swap the contents of two memory locations:
; Swap the contents of memory locations pointed to by r0 and r1

ldr r2, [r0]
swp r2, [r1]
str r2, [r1]

The code above requires nine cycles to complete. The rewritten code below needs only six cycles
to execute:
; Swap the contents of memory locations pointed to by r0 and r1

ldr r2, [r0]
ldr r3, [r1]
str r2, [r1]
str r3, [r0]

78 Programmers Reference Manual

Intel® XScale™ Microarchitecture
Optimization Techniques

3.4.5 Scheduling the MRA and MAR Instructions (MRRC/MCRR)

The MRA (MRRC) instruction has a one-cycle Issue latency, a two-to-three cycle Result latency
(depending on the Destination register value being accessed), and a two-cycle Resource latency.

Consider the code sample:
mra r6, r7, acc0
mra r8, r9, acc0
add r1, r1, #1

The code shown above would incur a one-cycle stall due to the two-cycle Resource latency of an
MRA instruction. The code can be rearranged as shown below to prevent this stall.

mra r6, r7, acc0
add r1, r1, #1
mra r8, r9, acc0

Similarly, the code shown below would incur a two-cycle penalty due to the three-cycle Result
latency for the second Destination register.

mra r6, r7, acc0
mov r1, r7
mov r0, r6
add r2, r2, #1

The stalls incurred by the code shown above can be prevented by rearranging the code:
mra r6, r7, acc0
add r2, r2, #1
mov r0, r6
mov r1, r7

The MAR (MCRR) instruction has an Issue latency, a Result latency, and a Resource latency of
two cycles. Due to the two-cycle Issue latency, the pipeline would always stall for one cycle
following a MAR instruction. Therefore, the MAR instruction should be used only where
absolutely necessary.

Programmers Reference Manual 79

Intel® XScale™ Microarchitecture
Optimization Techniques

3.4.6 Scheduling the MIA and MIAPH Instructions

The MIA instruction has an Issue latency of one cycle. The Result and Resource latency can vary
from one to three cycles, depending on the values in the Source register.

Consider the following code sample:
mia acc0, r2, r3
mia acc0, r4, r5

The second MIA instruction above can stall from zero to two cycles, depending on the values in the
registers r2 and r3 due to the one-to-three-cycle Resource latency.

Similarly, consider the following code sample:
mia acc0, r2, r3
mra r4, r5, acc0

The MRA instruction above can stall from zero to two cycles, depending on the values in the
registers r2 and r3 due to the one-to-three-cycle Result latency.

The MIAPH instruction has an Issue latency of one cycle, Result latency of two cycles, and a
Resource latency of two cycles.

Consider the code sample shown below:
add r1, r2, r3
miaph acc0, r3, r4
miaph acc0, r5, r6
mra r6, r7, acc0
sub r8, r3, r4

The second MIAPH instruction would stall for one cycle due to a two-cycle Resource latency. The
MRA instruction would stall for one cycle due to a two-cycle Result latency. These stalls can be
avoided by rearranging the code as follows:

miaph acc0, r3, r4
add r1, r2, r3
miaph acc0, r5, r6
sub r8, r3, r4
mra r6, r7, acc0

80 Programmers Reference Manual

Intel® XScale™ Microarchitecture
Optimization Techniques

3.4.7 Scheduling MRS and MSR Instructions

The MRS instruction has an Issue latency of one cycle and a Result latency of two cycles. The
MSR instruction has an Issue latency of two cycles (six, if updating the mode bits), and a Result
latency of one cycle.

Consider the code sample:
mrs r0, cpsr
orr r0, r0, #1
add r1, r2, r3

The ORR instruction above would incur a one-cycle stall due to the two-cycle Result latency of the
MRS instruction. In the code example above, the ADD instruction can be moved before the ORR
instruction to prevent this stall.

Programmers Reference Manual 81

Intel® XScale™ Microarchitecture
Optimization Techniques

3.4.8 Scheduling CP15 Coprocessor Instructions

The MRC instruction has an Issue latency of one cycle and a Result latency of three cycles. The
MCR instruction has an Issue latency of one cycle.

Consider the code sample:
add r1, r2, r3
mrc p15, 0, r7, C1, C0, 0
mov r0, r7
add r1, r1, #1

The MOV instruction above would incur a two-cycle latency due to the three-cycle Result latency
of the MRC instruction. The code shown above can be rearranged as follows to avoid these stalls:

mrc p15, 0, r7, C1, C0, 0
add r1, r2, r3
add r1, r1, #1
mov r0, r7

82 Programmers Reference Manual

Intel® XScale™ Microarchitecture
Optimization Techniques

3.5 Optimizing C Libraries

Many of the standard C library routines can benefit greatly by being optimized for the Intel®

XScale™ microarchitecture technology. The following string and memory-manipulation routines
should be tuned to obtain the best performance from the Intel® XScale™ microarchitecture
(Instruction selection, Cache usage, and Data prefetch):

strcat, strchr, strcmp, strcoll, strcpy, strcspn, strlen, strncat, strncmp, strpbrk, strrchr, strspn, strstr,
strtok, strxfrm, memchr, memcmp, memcpy, memmove, memset

3.6 Optimizing for Size

For applications such as cell-phone software, the code must be optimized for improved
performance while minimizing code size. Optimizing for smaller code size will, in general, lower
the performance of your application. This section contains techniques for code-size optimization
using the Intel® XScale™ microarchitecture instruction set.

3.6.1 Space/Performance Trade Off

Many optimizations mentioned in the previous sections improve ARM code; however, using these
instructions will result in increased code size. Use the following optimizations to reduce the
application code space requirements.

3.6.1.1 Multiple Word Load and Store

The LDM/STM instructions are one word long and simultaneously load or store multiple registers.
Use the LDM/STM instructions instead of a sequence of Loads/Stores to consecutive addresses in
memory whenever possible.

3.6.1.2 Use of Conditional Instructions

Using conditional instructions to expand If-Then-Else statements will result in increasing the size
of the generated code. Therefore, do not use Conditional instructions if application code space
requirements are an issue.

3.6.1.3 Use of PLD Instructions

The Preload instruction PLD is only a hint; it does not change the processor architectural state.
Using or not using them will not change code behavior; therefore, avoid using these instructions
when optimizing for space.

Programmers Reference Manual 83

For OS Developers A

A.1 Introduction

A.1.1 Intended Audience

This document is a compendium of information of specific interest to operating systems or
firmware developers. It is not intended for use by application developers.

Readers should be familiar with the definition of the ARM* V5TE architecture, with the Intel®

XScale™ Microarchitecture Developers Manual (ARM* architecture compliant), and with the
Intel® XScale™ Microarchitecture Programmers Reference Manual. Some familiarity with the
Intel® StrongARM* 11x0 processors is helpful, but not essential.

A.2 Document Organization

A.2.1 Related Documents

• ARM V5TE definition from ARM (ARM* Architecture Reference Manual)

• Intel® XScale™ Microarchitecture Technical Summary

• Intel® XScale™ Microarchitecture Product Brief

84 Programmers Reference Manual

Intel® XScale™ Microarchitecture
For OS Developers

A.3 Salient Features of the Intel® XScale™ Core
MegaCell

This section describes those features and implementation details of the Intel® XScale™

microarchitecture that drive the operating systems issues addressed in the remainder of this
appendix. Some of these features are mandated by the ARM V5TE architecture; others are
implementation options. The Intel® XScale™ microarchitecture offers the following:

• Implementation of a Harvard (split) L1 cache, providing a 32 Kbyte Instruction cache and a
32 Kbyte Data cache

• Caches that use virtual address indices (or tags)

• 2 Kbyte Mini-Data cache, separate from the Data cache

• Locked entries in the TLBs

• Locked cache lines in the caches

• Instruction sequence that acts as a synchronization barrier when modifying registers in
Coprocessor 15

• Implements the PID register in Coprocessor 15

• Vector re-map capability in Coprocessor 15

• Extends the Exception model to include some imprecise Data and Prefetch aborts

• Extends Coprocessor 15 to provide access control to other implemented coprocessors

• Expands the set of supported cache-control options, using the X-bit in the implementation-
dependent TEX field of both 1st- and 2nd-level descriptors

• Defines a Branch target buffer for Dynamic Branch prediction

A.4 Enabling the Caches

Any StrongARM-based chip is intended to perform best with both caches enabled and in Virtual
mode. While the Instruction cache can be enabled while running in Physical mode, enabling the
Data cache (and the Mini-Data cache) requires that Address translation be enabled. There is a
significant performance gain from enabling the Instruction cache. The recommended temporal
sequence is as follows:

1. Enable the Instruction cache

2. Enable translation

3. Drain the Write buffer

4. Enable the Data cache

These operations should not be combined.

Programmers Reference Manual 85

Intel® XScale™ Microarchitecture
For OS Developers

A.5 Using the PID Register

The PID register, register 13 in Coprocessor 15, alleviates the need for cache flushes on Context
switches. If a memory reference is made to a virtual address in which bits [31:25] are zeroes, the
access is actually made with a modified virtual address, which is constructed by ORing the address
with the value contained in the PID register. As a result, use of the PID register and process or
thread execution in the virtual-address range [0:0x1ffffff] limits the size of that process or thread
virtual address range to 32 Mbytes. The virtual-address range of a thread or process can grow
beyond 32 Mbytes by allowing access to addresses outside this range.

In SA1 implementations, bit 31 was not defined in the PID register.

Using the PID register eliminates the need for many cache flushes until such time as the PID value
rolls over, or a PID value is reused, or the processor is placed in Sleep mode.

Addresses used in Coprocessor 15 actions, such as flushing a single cache line, are not modified by
the value of the PID register.

A.6 Exception Vector Remapping

Effective use of the PID register depends on re-mapping the Exception vectors from 0x0 to
0xFFFF0000. This is accomplished by setting bit 13 of register 1 in Coprocessor 15. Failure to do
so would require every process virtual-address range to contain the Exception vectors located at
0x0.

A.7 Instruction Stream Barrier Code

Intel® XScale™ microarchitecture gets its speed from (among other implementation details) its
ability to speculatively execute instructions out of order, although it cannot retire instructions out
of order. However, for certain operations, it is imperative that the code knows with certainty that all
instructions earlier in the instruction stream have completed and that no instructions later in the
instruction stream have been dispatched. An example of this is the effect of enabling (or disabling)
virtual-to-physical address translation, when it is necessary to know which instructions were
fetched before the address range switch took effect, and which instructions will be fetched after the
address range switch takes effect.

The following code is guaranteed to execute before the switch and no instruction following this
code will be fetched until the switch has occurred. This code sequence is called the CPWAIT
sequence. It is privileged code.
MACRO CPWAIT

MRC P15, 0, Rx, Cj, C0, 0 ; read some register in CP15

MOV Rx, Rx ; wait for the read to complete

SUB PC, PC, #4 ; branch to the next instruction,

; flushing the instruction pipeline

MEND

At this point in the execution, all prior writes to registers in Coprocessor 15 are guaranteed to have
completed.

86 Programmers Reference Manual

Intel® XScale™ Microarchitecture
For OS Developers

A.8 Memory Management Concerns

ARM V5 introduces the concept of tiny (1 Kbyte) pages, while continuing to support coarse
(4 Kbyte and 64 Kbyte) pages and segments (1 Mbyte).

Pages of any supported size can be mixed and matched within a 2nd-level page table. The 1st-level
descriptor type indicates whether the 2nd-level table defines coarse pages or fine (tiny) pages.

In a coarse 2nd-level table, each page is assumed to be 4 Kbyte long. Defining a 64-Kbyte page
requires that the same descriptor appear 16 times to cover the range.

In a fine-page table, it is assumed each page is 1 Kbyte in size. Consequently, a fine-page table is four
times the size of a coarse-page table. Defining a 4 Kbyte page requires four copies of the descriptor to
cover the range; defining a 64 Kbyte page requires 64 copies of the descriptor to cover the range.

Regardless, a 2nd-level page table should be aligned on a 1-Kbyte boundary.

Intel® XScale™ microarchitecture has extended the set of cache control attributes in the descriptors.
In addition to the C and B bits, the X bit in the TEX field plays a role in the definition of the cache
attributes of the virtual range. When the X bit is clear, the semantics of the C- and B-bits are as
specified by the ARM architecture. This differs from SA1-based chips, in which the use of the
Mini-Data cache overloaded the semantics of the B-bit. When the X-bit is set, the additional
semantics are defined, including use of the Mini-Data cache and Write Allocation of cache lines. This
is all summarized in Table A-1:

Note: * See details of the Auxiliary Control Register, Coprocessor 15.

It is not possible to define a page as Write Allocate/Write Through.

The Mini-Data cache does not support per-descriptor characteristics. Cache behavior is selected
with the MD bit field in the Auxiliary Control register in Coprocessor 15.

The Intel® XScale™ microarchitecture Cache Control extensions provide several types of
functionality. Some define genuine new possibilities (such as Cache Line Allocate on Write
Access), some refine and control unusual functionality (such as the Mini-Data cache), and some
provide a finer granularity of control (such as precluding coalescing in the Write buffer).

If and how these capabilities are used in a system are part of the design and implementation details
of the operating system.

Table A-1. Cache Control Attributes

X C B Cacheable? Bufferable? Write Policy Notes

0 0 0 N N Stall until complete

0 0 1 N Y

0 1 0 Y Y Write Thru

0 1 1 Y Y Write Back

1 0 0 Do not use

1 0 1 N Y No coalescing

1 1 0 Mini Data cache*

1 1 1 Y Y Write Back Read/Write Allocate

Programmers Reference Manual 87

Intel® XScale™ Microarchitecture
For OS Developers

The Intel® XScale™ core defines a set of events that cause Prefetch aborts. This is an extension to
the architecture that can be used by the Prefetch Abort handler as needed. A Prefetch abort is
signaled only when the instruction is required, or when the cache line containing the required
instruction must be fetched.

The Intel® XScale™ core extends the set of events causing Data aborts and introduces several
imprecise exceptions. Those causes that are specific to the Intel® XScale™ core are tagged by
setting bit 10 in the Fault Status register. Imprecise exceptions should be considered
unrecoverable. Recognizing and responding to the additional causes of precise Data aborts
requires enhancement of the Data Abort handler.

A.9 Locking TLB Entries

The Intel® XScale™ microarchitecture allows individual entries to be locked in the TLBs. Each
locked TLB entry reduces the number of TLB entries available to hold other translation
information. The entries one would expect to lock in the TLBs are those used during access to
locked cache lines.

A TLB Global Invalidate does not affect locked entries.

A.10 DSP Coprocessor 0

The Intel® XScale™ core has defined a DSP coprocessor containing a 40-bit accumulator and 8
instructions to manipulate it, as a performance boost for audio processing algorithms. CP0 is
accessible in User mode. Saving and restoring the contents of the accumulator must be addressed
during context switch.

Because the amount of data residing in CP0 is small, it is not unreasonable to simply add the
contents of the accumulator to the context definition. The “double width” memory referencing
instructions LDRD and STRD are defined in the extended instruction set for this purpose.

Support for an alternative implementation is provided. In CP15, register 15 (the CP Access
register) can be used to grant/prohibit User mode access to CP0. Any User mode access attempt to
use the coprocessor while access is prohibited results in an undefined exception, which allows the
operating system to implement late Save/Restore of the accumulator contents by implementing the
notion of “CP0 owner,” in a manner analogous to “floating point registers owner.”

A.11 Instruction Cache Invalidation

The Intel® XScale™ core implements both single cache line and entire cache invalidation. Either
operation requires only one instruction using register 7 of Coprocessor 15. Invalidating the entire
cache invalidates the Branch Target buffer automatically. It is strongly recommended that if a
single cache line is invalidated, the Branch Target buffer also be invalidated.

88 Programmers Reference Manual

Intel® XScale™ Microarchitecture
For OS Developers

A.12 Data Cache Flushing

The Intel® XScale™ core provides cache functions to force a cache line Write back if dirty, to
invalidate a single cache line, and to invalidate the entire Data cache.

Completely flushing Data cache, to cause all dirty data to be written out, is a costly operation. There
are two considerations here: (1) if possible, data RAM should be used to cause dirty data to be written
back to memory instead of a data region that must be read into the cache from memory; and (2) if
possible, a 32-Kbyte virtual address range should be defined to be used for no other purpose than
flushing the Data cache, since doing so reduces by half the effort required to flush the Data cache.

Assuming both conditions are met, the following algorithm (using data RAM) will cause all dirty
data in the Data cache to be written back to memory.
; set baseaddress as the first virtual address of a 32kbyte range used only

; to flush the Data cache. base address should be aligned on a 32byte

; boundary. if the virtual range beginning with baseaddress is used for any

; purpose other than flushing the Data cache, then cachelinecount must be

; doubled, to 2048.

set cachelinecount, 1024

set cachelinesize, 32

mov r1, #cachelinecount

ldr r0, =baseaddress

l1:

mcr p15, 0, r0, c7, c2, 5; allocate a cache line for [r0]

add r0, r0, #cachelinesize

subsr1, r1, #1

bne l1

Flushing the Mini-Data cache requires the same sort of analysis. If the Mini-Data cache is
configured as Write-through, no further action is required. If a 2-Kbyte virtual-address range can
be defined that is used for no purpose other than flushing the dirty data from the Mini-Data cache,
then that is preferred. If that is not possible, it will be necessary to read a 4-Kbyte virtual-address
range into the Mini-Data cache to guarantee that all dirty data is written back. The Mini-Data
cache, of course, need not be flushed if the operating system provides no mechanism for its use.
; SET BASEADDRESS AS THE FIRST VIRTUAL ADDRESS OF A 2KBYTE RANGE USED ONLY TO

; flush the mini Data cache. baseaddress should be aligned on a 32byte

; boundary. if the virtual range beginning with baseaddress is used for any

; purpose other then flushing the mini Data cache, then cachelinecount must

; be doubled, to 128.

set cachelinecount, 64

set cachelinesize, 32

mov r1, #cachelinecount

ldr r0, =baseaddress

l2:

ldr r2, [r0], #cachelinesize

subsr1, r1, #1

bne L2

Finally, invalidate the Data caches, since the contents are now unpredictable.
; invalidate the data and mini Data caches.

mcr p15, 0, r0, c7, c6, 0

Programmers Reference Manual 89

Intel® XScale™ Microarchitecture
For OS Developers

A.13 Locking and Unlocking the Caches

Cache contents can be incrementally locked on a line-by-line basis. Only global cache unlocking is
supported. To simulate incremental unlocking of cache contents, the operating system must be
prepared to relock the cache lines it does not want unlocked.

A.14 Locking Code in the Instruction Cache

The Intel® XScale™ core allows code to be locked in the Instruction cache. Up to 28 cache lines
can be locked in a set. Any attempt to lock more than 28 cache lines in a set is silently ignored.

There are several requirements that must be met when locking code in the Instruction cache:

1. The Instruction cache must be enabled

2. Translation must be enabled

3. The code that performs the locking must be cache inhibited

4. No Instruction cache-line fill can occur while the locking activity is in progress

This last requirement implies care in the placement of the code that performs the locking; that code
cannot reside too close to a cacheable region from which a prefetch might occur. The locking code
cannot reside within 128 bytes of a cacheable region.

A.15 Unlocking the Instruction Cache

Only global Instruction-cache unlocking is supported. The contents of the cache remain valid after
unlocking.

A.16 Locking Data in the Data Cache

The Intel® XScale™ core allows cache lines to be locked in the Data cache. Up to 28 cache lines
can be locked in a set. Any attempt to lock more than 28 cache lines in a set is silently ignored. The
Mini- Data cache does not support locking cache lines.

There are two distinct ways to lock data in the Data cache. The first, called data locking, requires
that the virtual addresses be backed by physical memory. The second, called data RAM, allows the
definition of a virtual-address range that is not backed by physical memory. While locked data may
be either Write-back or Write-through, data RAM must be Write-back.

Although the virtual range defined as data RAM does not get backed by physical memory, the
page-table descriptors must be completed so that the necessary permissions checking can be
performed.

90 Programmers Reference Manual

Intel® XScale™ Microarchitecture
For OS Developers

A.17 Unlocking the Data Cache

Only global Data cache unlocking is supported. The data RAM must be invalidated, not cleaned,
once the Data cache is unlocked.

A.18 Branch Target Buffer (BTB)

The Intel Intel® XScale™ microarchitecture implements a Dynamic-Branch Prediction scheme to
reduce the penalties associated with program-flow changes. The scheme rests upon the contents of
the Branch-Target buffer, a 128-entry, direct-mapped cache. The BTB is disabled and invalidated
on reset. It is automatically invalidated whenever the PID register (Coprocessor 15, register 13) is
written, and whenever the instruction cache is invalidated. The BTB is enabled manually by
writing a 1 to bit 11 in Coprocessor 15, register 1. The BTB is manually invalidated using a
Coprocessor 15, register 7 function. If the PID register is not being used, the BTB should be
flushed on context switch.

A.19 Exception Model

The Intel® XScale™ core implements the Base Restored Abort Model. If a precise Data abort is
signaled during the execution of a Memory-Referencing instruction, the base register is not
updated. This allows any instruction to be restarted after servicing the Data abort.

The Intel® XScale™ core has extended the list of conditions raising undefined exceptions, Prefetch
aborts, and Data aborts. The Exception handler needs to be prepared to deal with these extensions.

It is strongly recommended that the first task completed in an Exception handler is to “save state.”

A.20 Power Management

The Intel® XScale™ microarchitecture defines three low-power modes: Idle, Drowsy and Sleep.
All state information is lost on entering Sleep mode. The only way to exit Sleep mode is through
the reset sequence. State is retained in Idle and Drowsy modes. Both Idle and Drowsy modes are
exited by interrupt, even if the interrupt is masked. A single Coprocessor 14 register Write is used
to enter any low-power mode.

If the system provides a data repository (a set of registers) that is preserved across Sleep mode, it is
possible to save and recover state. Any support for this is external to the Intel® XScale™

microarchitecture.

A.21 Assembly Language Considerations

Refer to this Programmers Reference Manual for information that describes some performance
implications in assembly language programming.

Programmers Reference Manual 91

ARM Glossary B

Term Description

26-bit architecture Earlier versions of the ARM* architecture (ARMv1, ARMv2, and ARMv2a) that
implement only a 26-bit address space.

32-bit architecture Versions of ARM architecture (version 3 and above) that implement a 32-bit
address space.

Abort Caused by an illegal memory access. Aborts can be caused by the external
memory system or the MMU.

Abort model
Describes what happens to the processor state when a Data Abort exception
occurs. Different abort models behave differently regarding load/store
instructions that specify base register writeback.

Addressing modes

Generally refers to a procedure shared by many different instructions, for
generating values used by the instructions. For four of the ARM addressing
modes, the values generated are memory addresses (which is the traditional role
of an addressing mode). A fifth addressing mode generates values to be used as
operands by data-processing instructions.

AL (always)
Specifies that the instruction is executed irrespective of the value of the condition
code flags. If no condition code is given with an instruction mnemonic, the AL
condition code is used.

ALU Arithmetic Logic Unit

AND Performs a bitwise AND.

Arithmetic_Shift_Right Performs a right shift, repeatedly inserting the original left-most bit (the sign bit) in
the vacated bit positions to the left.

ARM instruction Specifies operation for ARM processor to perform. ARM instructions must be
word-aligned.

Assert statements Used in pseudo-code to indicate that a certain condition has been met.

Assignment Signified by =.

Banked registers Register numbers whose physical register is defined by the current processor
mode. The banked registers are registers R8 to R14.

Base register

A register specified by a load/store instruction that is used as the base value for
the instruction's address calculation. Depending on the instruction and its
addressing mode, an offset can be added to or subtracted from the base register
value to form the virtual address that is sent to memory.

Base register writeback When base register used in address calculation has a modified value written to it.

Big-endian memory
A byte or halfword at a word-aligned address is the most significant byte or
halfword within the word at that address; a byte at a halfword-aligned address is
the most significant byte within the halfword at that address.

Binary numbers Base 2 numbers (0, 1); binary numbers are preceded by 0b.

Boolean AND Signified by the AND operator.

Boolean OR Signified by the OR operator.

BorrowFrom

Returns 1 if subtraction specified as its parameter caused a borrow (the true
result is less than 0, where operands are treated as unsigned integers), and
returns 0 in all other cases. This process delivers additional information about a
subtraction that occurred earlier in the pseudo-code. Subtraction is not repeated.

Branch prediction

Where an ARM implementation chooses a future execution path to prefetch
along (see Prefetching). For example, after a branch instruction, the
implementation can choose to prefetch either the instruction following the branch,
or the instruction at the branch target.

Byte An 8-bit data item.

92 Programmers Reference Manual

Intel® XScale™ Microarchitecture
ARM Glossary

Cache
A block of high-speed memory locations whose addresses are changed
automatically in response to which memory locations the processor is accessing,
and whose purpose is to increase the average speed of a memory access.

Cache contention
When the number of frequently used memory cache lines that use a particular
cache set exceeds the set-associativity of the cache. In this case, main memory
activity goes up and performance drops.

Cache hit A memory access that can be processed at high speed because the data it
addresses is already in the cache.

Cache line

Is basic unit of storage in a cache. Size is always a power of two (usually 4 or 8
words), and is required to be aligned to a suitable memory boundary. A memory
cache line is a block of memory locations with the same size and alignment as a
cache line. Memory cache lines are sometimes loosely just called cache lines.

Cache line index A number associated with each cache line in a cache set. Within each cache set,
the cache lines are numbered from 0 to (set associativity)–1.

Cache lockdown

Alleviates the delays caused by accessing a cache in a worst-case situation.
Cache lockdown allows critical code and data to be loaded into the cache so that
the cache lines containing them are not subsequently re-allocated. This process
ensures that all subsequent accesses to the code and data concerned are cache
hits and therefore complete quickly.

Cache lockdown blocks One line from each cache set. Cache lockdown is performed in units of a cache
lockdown block.

Cache miss A memory access that cannot be processed at high speed because the data it
addresses is not in the cache.

Cache pollution When used data is loaded into the cache.

Cache pressure Data not temporal to the current process is loaded in the cache.

Cache sets Areas of a cache divided up to simplify and shorten the process of determining
whether a cache hit occurs. The number of cache sets is always a power of two.

Callee-save registers

Registers that a called procedure must preserve. To preserve a callee-save
register, the called procedure would normally either not use the register at all, or
store the register to the stack during procedure entry and re-load it from the stack
during procedure exit.

Caller-save registers Registers that a called procedure need not preserve. If the calling procedure
requires the values to be preserved, it must store and reload them itself.

CarryFrom

Returns 1 if the addition specified as its parameter caused a carry (true result is
bigger than 232−1, where the operands are treated as unsigned integers), and
returns 0 in all other cases. This process delivers additional information about an
addition that occurred earlier in the pseudo-code. The addition is not repeated.

case ... endcase statements Indicate a one-of-many execution option. Indentation indicates the range of
statements in each option.

Comments Non-executable information enclosed in /* */.

Condition field A four-bit field in an instruction that specifies a condition under which the
instruction can execute.

Conditional execution
If the condition code flags indicate that the corresponding condition is true when
the instruction starts executing, it executes normally. Otherwise, the instruction
does nothing.

ConditionPassed (cond) Returns TRUE if the state of the N, Z, C and V flags fulfills the condition encoded
in the cond argument, and returns FALSE in all other cases.

Control bits
Are the bottom eight bits of a Program Status Register (PSR). The control bits
change when an exception arises and can be altered by software only when the
processor is in a privileged mode.

CPSR Current Program Status Register

Critical word firs
When a cache line is being transferred, the first word transferred corresponds to
the one needed by the processor immediately, as opposed to transferring the
data from lowest address first.

Term Description

Programmers Reference Manual 93

Intel® XScale™ Microarchitecture
ARM Glossary

CurrentModeHasSPSR()
Returns TRUE: if the current processor mode is not User mode or System mode,

Returns FALSE: if the current mode is User mode or System mode.

Data cache A separate cache used only for processing data loads and stores.

Decode bits Bits[27:20] and bits[7:4] of an ARM instruction, and are the main bits that
determine the type of instruction to be executed.

Digital signal processing
Refers to variety of algorithms used to process signals that have been sampled
and converted to digital form. Saturated arithmetic is often used in such
algorithms.

Direct-mapped cache A one-way set-associative cache. Each cache set consists of a single cache
line, so cache look-up needs only to select and check one cache line.

Direct Memory Access An operation that accesses main memory directly, without the processor
performing any accesses to the data concerned.

Domain
A collection of sections, large pages, and small pages of memory, that can have
their access permissions switched rapidly by writing to the Domain Access
Control Register (CP15 register 3).

Do-not-modify fields (DNM)

A value that must not be altered by software. DNM fields read as UNPREDICTABLE
values, and can only be written with the same value read from the same field on
the same processor.

In ARM documentation, DNM fields are sometimes followed by RAZ or RAO in
parentheses as a guideline to implementers as to which way the bits should read
for future compatibility; however, programmers must not rely on this behavior.

Double-precision value
Two 32-bit words that must appear consecutively in memory, must both be
word-aligned, and which is interpreted as a basic double-precision floating-point
number according to the IEEE 754-1985 standard.

Doubleword A 64-bit data item. Doublewords are normally at least word-aligned in ARM
systems.

Doubleword-aligned An address that is divisible by 8.

DSP See Digital signal processing

Elements Separated by | in a list of possible values for a variable.

Endianness An aspect of the system memory mapping. See big-endian and little-endian.

EOR Performs a bitwise Exclusive OR.

Exception An event handler. For example, an exception could handle an external interrupt
or an undefined instruction.

Exception modes Privileged modes that are entered when specific exceptions occur.

Exception vector One of a number of fixed addresses in low memory, or in high memory if high
vectors are configured.

External abort An abort that is generated by the external memory system.

Fault An abort that is generated by the MMU.

FCSE (Fast Context Switch Extension)
Modifies the behavior of an ARM memory system to allow multiple programs
running on the ARM processor to use identical address ranges, while ensuring
that the addresses they present to the rest of the memory system differ.

Flat address mapping Where the physical address for every access is equal to its virtual address.

Flush-to-zero mode
A special processing mode that optimizes the performance of some VFP
algorithms by replacing the denormalized operands and intermediate results with
zeros, without significantly affecting the accuracy of the final results.

Floating-point Exception Register

A read/write register, two bits of which provide system-level status and control.
The remaining bits of this register can communicate exception information
between the hardware and software components of the implementation, in an
IMPLEMENTATION DEFINED manner.

Floating-point Status and Control Register A read/write register that provides all user-level status and control of the
floating-point system.

Floating-point System ID Register Rread-only register whose value indicates which VFP implementation is being
used.

Term Description

94 Programmers Reference Manual

Intel® XScale™ Microarchitecture
ARM Glossary

for ... statements Indicate a loop over a numeric range. Indentation is used to indicate the range of
statements in the loop.

FPEXC See Floating-point Exception Register.

FPSCR See Floating-point Status and Control Register.

FPSID See Floating-point System ID Register.

Fully-associative cache Single cache set, consists of the entire cache. See also direct-mapped cache.

General-purpose register
One of the 32-bit general-purpose integer registers, R0 to R15. Note that R15
holds the Program Counter (and the PSR as well in the 26-bit architectures), and
often there are limitations on its use that do not apply to R0 to R14.

Halfword A 16-bit data item. Halfwords are normally halfword-aligned in ARM systems.

Halfword-aligned An address that is divisible by 2.

Hexadecimal numbers Numbers preceded by 0x and are given in a monospaced font.

High registers ARM registers 8 to 15 that can be accessed by some Thumb instructions.

High vectors Alternative locations for exception vectors. The high vector address range is near
the top of the address space, rather than at the bottom.

if ... else if ... else statements Used to signify conditional statements. Indentation indicates the range of
statements in each option.

IGNORE fields (IGN) Must ignore writes.

IMB See Instruction Memory Barrier.

Instruction Memory Barrier
A sequence of operations that can be used in the middle of a self-modifying
code sequence to make it execute reliably. This sequence often depends on the
ARM processor implementation and on the memory system implementation.

Immediate and offset fields Unsigned unless otherwise stated.

Immediate values
Values encoded directly in instruction and used as numeric data when instruction
is executed. Many ARM and Thumb instructions allow small numeric values to be
encoded as immediate values within the instruction that operates on them.

IMP An abbreviation used in diagrams to indicate that the bit or bits concerned have
IMPLEMENTATION DEFINED behavior.

IMPLEMENTATION DEFINED fields Behavior that is not architecturally defined, but should be defined and
documented by individual implementations.

InAPrivilegedMode() Returns TRUE if the current processor mode is not User mode, and returns
FALSE if the current mode is User mode.

Index register

Register specified in some load/store instructions. Value of this register is used
as an offset to be added to or subtracted from the base register value to form the
virtual address, which is sent to memory. Some addressing modes optionally
allow the index register value to be shifted prior to the addition or subtraction.

Inline literals
Inline literals are constant addresses and other data items held in the same area
as the code itself. They are automatically generated by compilers, and can also
appear in assembler code.

Instruction cache A separate cache used only for processing instruction fetches.

Interworking A method of working that allows branches between ARM and Thumb code.

Little-endian memory
A byte or halfword at a word-aligned address is the least significant byte or
halfword within the word at that address; a byte at a halfword-aligned address is
the least significant byte within the halfword at that address.

Load/Store architecture An architecture where data-processing operations only operate on register
contents, not directly on memory contents.

Logical_Shift_Left Performs a left shift, inserting zeros in the vacated bit positions on the right. << is
used as a short form for Logical_Shift_Left.

Logical_Shift_Right Performs a right shift, inserting zeros in the vacated bit positions on the left.

Long branch The use of a load instruction to branch to anywhere in the 4GB address space.

LR (Link Register) Integer register R14.

Term Description

Programmers Reference Manual 95

Intel® XScale™ Microarchitecture
ARM Glossary

Memory[<address>,<size>]

Refers to data item in memory of length <size>, at address <address>,
aligned on a <size> byte boundary. The data item is zero-extended to 32 bits.
Currently defined sizes are:

1 for bytes
2 for halfwords
4 for words

To align on a <size> boundary, halfword accesses ignore <address>[0] and
word accesses ignore <address>[1:0].

Memory coherency

Memory coherency is the problem of ensuring that when a memory location is
read (either by data read or an instruction fetch), the value actually obtained is
always value that was most recently written to the location. This process can be
difficult for multiple possible physical locations, such as main memory, a write
buffer and/or cache(s).

Memory Management Unit Allows detailed control of a memory system. Most of the control is provided via
translation tables held in memory.

Memory-mapped I/O Uses special memory addresses that supply I/O functions when they are loaded
from or stored to.

Modified Virtual Address The address produced by the FCSE that is sent to the rest of the memory system
to be used in place of the normal virtual address.

MMU See Memory Management Unit.

MVA See Modified Virtual Address.

NaN Not a Number; a type of floating-point value.

NOT Performs a bitwise complement.

NotFinished(CP_number)
Returns TRUE if the coprocessor signified by the CP_number argument has
signalled that the current operation is incomplete, and returns FALSE if the
operation is complete.

NumberOfSetBitsIn(bitfield) Performs a population count on (counts the set bits in) the bitfield argument.

Object[from:to] Indicates bit field extracted from Object, starting at bit “from”, ending with bit “to”
(inclusive).

Offset addressing A memory address is formed by adding or subtracting an offset to or from the
base register value.

Optional parts of instructions Surrounded by { and }.

OR Performs a bitwise Inclusive OR.

OverflowFrom

Returns 1 if the addition or subtraction specified as its parameter caused a 32-bit
signed overflow. Addition generates an overflow if both operands have the same
sign (bit[31]), and the sign of the result is different to the sign of both operands.
Subtraction causes an overflow if the operands have different signs, and the first
operand and the result have different signs.

OverflowFrom delivers additional information about an addition or subtraction
that occurred earlier in pseudo-code. The addition or subtraction is not repeated.

PC (Program Counter) Integer register R15 (or bits[25:2] of R15 on 26-bit architectures).

PCB (Process Control Block)
In software systems that support multiple software processes, the PCB is a data
structure associated with each process that holds the process state while it is not
executing.

Physical address Identifies a main memory location.

Predictable subsequent execution

Execution of any instructions that can be reached subsequently by any
combination of normal sequential execution and executing branches with
statically determined targets. Any instruction that branches to a location that
depends on register values (such as MOV PC,LR) terminates predictable
subsequent execution

Post-indexed addressing
The memory address is the base register value, but an offset is added to or
subtracted from the base register value and the result is written back to the base
register.

Term Description

96 Programmers Reference Manual

Intel® XScale™ Microarchitecture
ARM Glossary

Prefetch scheduling distance The number of iterations to prefetch data when adding prefetch to a loop that
operates on relays; to make it easy to predict where to fetch data.

Prefetching
The process of fetching instructions from memory before the instructions that
precede them have finished executing. Prefetching an instruction does not mean
that the instruction has to be executed.

Pre-indexed addressing The memory address is formed in the same way as for offset addressing, but
the memory address is also written back to the base register.

Privileged mode

Any processor mode other than User mode. Memory systems typically check
memory accesses from privileged modes against supervisor access permissions
rather than the more restrictive user access permissions. The use of some
instructions is also restricted to privileged modes.

Process ID In the FCSE, this is a 7-bit number that identifies which process block the current
process is loaded into.

Protection region A memory range whose position, size, and other properties are defined by
Protection Unit registers.

Protection Unit A hardware unit whose registers provide simple control of a limited number of
protection regions in memory.

PSR The CPSR or one of the SPSRs (or bits[31:26] and bits[1:0] of register 15 on
26-bit architectures).

Quiet NaN A NaN that propagates unchanged through most floating-point operations.

Read-allocate cache
A cache in which a cache miss on storing data causes the data to be written to
main memory. Cache lines are only allocated to memory locations when data is
read/loaded, not when it is written/stored.

Read-As-Zero fields (RAZ) Appear as zero when read.

Read-Modify-Write fields (RMW) Read to a general-purpose register, the relevant fields updated in the register,
and the register value written back.

RISC Reduced Instruction Set Computer

Rotate_Right Performs a right rotate, where each bit that is shifted off the right is inserted on
the left.

Rounding error The value of the rounded result of an arithmetic operation minus the exact result
of the operation.

Rounding modes Specify how the exact result of a floating-point operation is rounded to a value
which is representable in the destination format.

Round to Nearest (RN) mode The rounded result is the nearest representable number to the unrounded result.

Round towards Plus Infinity (RP) mode The rounded result is the nearest representable number that is greater than or
equal to the exact result.

Round towards Minus Infinity (RM) mode The rounded result is the nearest representable number that is less than or equal
to the exact result.

Round towards Zero (RZ) mode Results are rounded to the nearest representable number that is no greater in
magnitude than the unrounded result.

Saturated arithmetic

Integer arithmetic in which a result that would be greater than largest representable
number is set to the largest representable number, and a result that would be less
than the smallest representable number is set to the smallest representable
number. Signed saturated arithmetic is often used in DSP algorithms. It contrasts
with the normal signed integer arithmetic used in ARM processors, in which
overflowing results wrap around from +231–1 to –231 or vice versa.

Security hole An illegal mechanism that bypasses system protection.

Self-modifying code Code that writes one or more instructions to memory and then executes them.
This type of code cannot be relied on without the use of an IMB.

Set-associativity The number of cache lines in each of the cache sets in a cache. It can be any
number ≥ 1, and is not restricted to being a power of two.

Shifter operand One of the source operands of an ARM data-processing instruction. It is either an
immediate value or a register.

Term Description

Programmers Reference Manual 97

Intel® XScale™ Microarchitecture
ARM Glossary

Should-Be-One fields (SBO) Should be written as 1 (or all 1s for bit fields) by software. Values other than 1
produce UNPREDICTABLE results.

Should-Be-One-or-Preserved fields (SBOP) Should be written as 1 (or all 1s for bit fields) or preserved by writing the same
value that has been previously read from the same fields on the same processor.

Should-Be-Zero fields (SBZ) Should be written as zero (or all 0s for bit fields) by software. Non-zero values
produce UNPREDICTABLE results.

Should-Be-Zero-or-Preserved fields (SBZP) Should be written as zero (or all 0s for bit fields) or preserved by writing the same
value that has been previously read from the same fields on the same processor.

Signaling NaNs
Causes an Invalid Operation exception whenever any floating-point operation
receives a signaling NaN as an operand. Signaling Nans can be used in
debugging to track down some uses of uninitialized variables.

Signed data types Represent an integer in the range −2N−1 to +2N−1– 1, using two's complement
format.

Signed immediate and offset fields Fields are encoded in two’s-complement notation unless otherwise stated.

SignedDoesSat(x,n)

Returns 0 if x lies inside the range of an n-bit signed integer (that is, if –2(n–1) ≤ x
≤ 2(n–1) – 1), and 1 otherwise.

This operation delivers additional information about a SignedSat(x, n) operation
that occurred earlier in the pseudo-code. Any operations used to calculate x or n
are not repeated.

SignExtend(arg) Sign-extends (propagates the sign bit) its argument to 32 bits.

SignedSat(x,n)

Returns x saturated to the range of an n-bit signed integer.

That is, it returns:

–2(n–1) if x < –2(n–1)

x if –2(n–1) ≤ x ≤ 2(n–1) – 1

2(n–1) – 1 if x > 2(n–1) – 1.

SIMD Single-Instruction, Multiple-Data operations

Single-precision value
A 32-bit word, must be word-aligned when held in memory, and is interpreted as
a basic single-precision floating-point number according to the IEEE 754-1985
standard.

SP (Stack Pointer) Integer register R13.

Spatial locality
The observed effect that after a program has accessed a memory location, it is
likely to also access nearby memory locations in the near future. Caches with
multiword cache lines exploit this effect to improve performance.

SPSR
Is the Saved Program Status register, which is associated with the current
processor mode (and is undefined if there is no such Saved Program Status
register, as in User mode or System mode).

SWI Is a software interrupt.

Status registers See CPSR and SPSR.

Tag bits

Bits[31:L+S]) of a virtual address, where L and S are the logarithms base 2 of the
cache line length and the number of cache sets respectively. A cache hit occurs if
the tag bits of the virtual address supplied by the ARM processor match the tag
bits associated with a valid line in the selected cache set.

Temporal locality
The observed effect that after a program has accesses a memory location, it is
likely to access the same memory location again in the near future. Caches
exploit this effect to improve performance.

Test for equality Signified by ==.

Thumb instruction A halfword that specifies an operation for an ARM processor in Thumb state to
perform. Thumb instructions must be halfword-aligned.

TLB See Translation Lookaside Buffer.

TLB lockdown
A way to prevent specific translation table walk results being accessed. This
method ensures that accesses to the associated memory areas never cause a
translation table walk.

Term Description

98 Programmers Reference Manual

Intel® XScale™ Microarchitecture
ARM Glossary

Translation Lookaside Buffer
A memory structure containing the results of translation table walks; helps reduce
the average cost of a memory access. Usually, there is a TLB for each memory
interface of the ARM implementation.

Translation tables Tables held in memory. They define the properties of memory areas of various
sizes from 1KB to 1MB.

Translation table walk The process of doing a full translation table lookup. It is performed automatically
by hardware.

Trap enable bits
Determines whether trapped or untrapped exception handling is selected. If
trapped exception handling is selected, the way it is carried out is
IMPLEMENTATION DEFINED.

Unaffected items Items not changed by a particular operation.

Unaligned memory accesses Memory accesses that are not appropriately word-aligned or halfword-aligned.

Unbanked registers General-purpose registers that refer to the same 32-bit physical register in all
processor modes. Unbanked registers are registers R0 to R7.

UNDEFINED Indicates an instruction that generates an undefined instruction trap.

Unified cache A cache used for both processing instruction fetches and processing data loads
and stores.

Unindexed addressing

Indicates addressing in which the base register value is used directly as the
virtual address to send to memory, without adding or subtracting an offset. In
most types of addressing mode, unindexed addressing is performed by using
offset addressing with an immediate offset of 0. ARM Addressing Mode 5 (used
for LDC and STC instructions) has an explicit unindexed addressing mode that
allows the offset field in the instruction to be used to specify additional
coprocessor options.

UNPREDICTABLE
Means the result of an instruction cannot be relied upon. UNPREDICTABLE
instructions or results must not represent security holes. UNPREDICTABLE

instructions must not halt or hang the processor, or any parts of the system.

UNPREDICTABLE fields (UNP)
UNPREDICTABLE fields do not contain valid data, and a value can vary from
moment to moment, instruction to instruction, and implementation to
implementation.

Unsigned data types Represent a non-negative integer in the range 0 to +2N−1, using normal binary
format.

Variable parts of instructions Surrounded by < and >.

VFP See Vector Floating-point Architecture.

Vector Floating-point Architecture A coprocessor extension to the ARM architecture that provides single-precision
and double-precision floating-point arithmetic.

VFP emulator An implementation that consists of software only, with all floating-point arithmetic
being emulated by ARM routines.

Virtual address An address generated by an ARM processor.

while statements Used to indicate a loop. Indentation indicates the range of statements in the loop.

Word A 32-bit data item. Words are normally word-aligned in ARM systems.

Word-aligned An address that is address is divisible by 4.

Write-allocate cache
A cache in which a cache miss on storing data causes a cache line to be
allocated and main memory contents to be read into it, followed by writing the
stored data into the cache line.

Write-back Cache

Is a cache in which when a cache hit occurs on a store access, the data is only
written to the cache. Data in the cache can therefore be more up-to-date than
data in main memory. Any such data is written back to main memory when the
cache line is cleaned or re-allocated. Another common term for a write-back
cache is a copy-back cache.

Write-through cache
Is a cache in which when a cache hit occurs on a store access, the data is written
both to the cache and to main memory. This is normally done via a write buffer, to
avoid slowing down the processor.

Write buffer Block of high-speed memory whose purpose is to optimize main memory stores.

Term Description

Programmers Reference Manual 99

Intel® XScale™ Microarchitecture

Index
A
Additions to CP15 Functionality 23
Addressing Modes 31
ARM* Architecture Compatibility 13
ARM* DSP-Enhanced Instruction Set 14
Assembly Language Considerations 90

B
Base Register Update 14
Basic Optimization 45

Bit-Field Manipulation 50
Conditional Instructions 45

Optimizing Complex Expressions 49
Optimizing Condition Checks 46

Effective Use of Addressing Modes 51
Optimizing Integer Multiply and Divide 51
Optimizing the Use of Immediate (Constant) Values 50

Basic Optimizing
Optimizing Branches 47

Big Endian versus Little Endian 13
Branch Instruction Timings 33
Branch Prediction 30
Branch Target Buffer (BTB) 90

C
Cache and Prefetch Optimizations 52

Data and Mini-Cache 54
Creating On-chip RAM 55
Data Alignment 57
Literal Pools 58
Mini-Data Cache 56
Non-Cacheable Regions 54
Read Allocate and Read-write Allocate Memory Regions 54
Write-through and Write-back Cached Memory Regions 54

Instruction Cache 52
Cache Miss Cost 52
Code Placement to Reduce Cache Misses 52
Locking Code into the Instruction Cache 53
Round-Robin Replacement Cache Policy 52

Cache Considerations 58
Cache Conflicts, Pollution, and Pressure 58
Memory Page Thrashing 58
Prefetch Considerations 59

Bandwidth Limitations 62
Cache Blocking 65
Cache Memory Considerations 63

100 Programmers Reference Manual

Intel® XScale™ Microarchitecture

Compute vs. Data Bus Bound 61
Loop Fusion 69
Loop Interchange 68
Low Number of Iterations 61
Pointer Prefetch 67
Prefetch Distances in the XScale Core 59
Prefetch Loop Limitations 61
Prefetch to Reduce Register Pressure 70

Prefetch Consideratoins
Prefetch Unrolling 66

Coprocessor Instructions 38
CPSR

control bits 92
CPWAIT

Canonical Method to Wait for CP15 Update 23

D
Data Aborts 26

Imprecise Data Aborts 27
Multiple Data Aborts 27
Precise Data Aborts 26

Data Cache Flushing 88
Data Processing Instruction Timings 34
DSP Coprocessor 0 87
DSP Coprocessor 0 (CP0) 15

E
Enabling the Caches 84
Event Architecture 24
Event Priority 24
Events from Preload Instructions 28
Exception Model 90
Exception Summary 24
Exception Vector Remapping 85
Extensions to ARM* Architecture 15

F
Features and Benefits of the Intel XScale Microarchitecture 10

I
Instruction Cache Invalidation 87
Instruction Flow Through the Pipeline 41

ARM* v5 Instruction Execution 41
Pipeline Stalls 41

Instruction Latencies 31
Instruction Scheduling 71

Scheduling CP15 Coprocessor Instructions 81
Scheduling Data Processing Instructions 75
Scheduling Loads 71

Programmers Reference Manual 101

Intel® XScale™ Microarchitecture

Scheduling Load and Store Double (LDRD/STRD) 73
Scheduling Load and Store Multiple (LDM/STM) 74

Scheduling MRS and MSR Instructions 80
Scheduling Multiply Instructions 76
Scheduling SWP and SWPB Instructions 77
Scheduling the MIA and MIAPH Instructions 79
Scheduling the MRA and MAR Instructions (MRRC/MCRR) 78

Instruction Stream Barrier Code 85
Internal Accumulator Access Format 19
Interrupt Latency 29
Introduction 9

L
Load/Store Instructions 37
Locking and Unlocking the Caches 89
Locking Code in the Instruction Cache 89
Locking Data in the Data Cache 89
Locking TLB Entries 87

M
Main Execution Pipeline 42

F1 / F2 (Instruction Fetch) Pipestages 42
ID (Instruction Decode) Pipestage 42
RF (Register File / Shifter) Pipestage 42
WB (Write back) 43
X1 (Execute) Pipestages 43
X2 (Execute 2) Pipestage 43

Memory Management Concerns 86
Memory Pipeline 43

D1 and D2 Pipestage 43
Miscellaneous Instruction Timing 38
Multiply Instruction Timings 35
Multiply With Internal Accumulate Format 16
Multiply/Multiply Accumulate (MAC) Pipeline 44

Behavioral Description 44

N
New Page Attributes 21

O
Optimizing C Libraries 82
Optimizing for Size 82

Space/Performance Trade Off 82
Space/Performance Tradeoff

Multiple Word Load and Store 82
Use of Conditional Instructions 82
Use of PLD Instructions 82

102 Programmers Reference Manual

Intel® XScale™ Microarchitecture

P
Performance Considerations 29
Performance Terms 31
Power Management 90
Prefetch Aborts 25
Prefetch Considerations

Prefetch Loop Scheduling 61
Product Overview 9
Programming Model 13

S
Salient Features of the XScale Core MegaCell 84
Saturated Arithmetic Instructions 37
Semaphore Instructions 38
Status Register Access Instructions 37

T
The StrongARM* Pipeline 39

General Pipeline Characteristics 39
Number of Pipeline Stages 39
Out-Of-Order Completion 40
Register Scoreboarding 41
Use of Bypassing 41

Thumb 13
Thumb Instructions 38

U
Unlocking the Data Cache 90
Unlocking the Instruction Cache 89
Using the PID Register 85

	Intel® XScale™ Microarchitecture
	Introduction 1
	1.1 Product Overview
	1.1.1 Features and Benefits of Intel® XScale™ Microarchitecture

	1.2 About This Manual
	1.3 Related Information

	Programming Model 2
	2.1 ARM Architecture Compatibility
	2.2 ARM Architecture Implementation Options
	2.2.1 Big Endian versus Little Endian
	2.2.2 26-Bit Code
	2.2.3 Thumb
	2.2.4 ARM DSP-Enhanced Instruction Set
	2.2.5 Base Register Update

	2.3 Extensions to ARM* Architecture
	2.3.1 DSP Coprocessor 0 (CP0)
	2.3.1.1 Multiply With Internal Accumulate Format
	Table 2�1. Multiply with Internal Accumulate Format�
	Table 2�2. MIA{<cond>} acc0, Rm, Rs �
	Table 2�3. MIAPH{<cond>} acc0, Rm, Rs�
	Table 2�4. MIAxy{<cond>} acc0, Rm, Rs�

	2.3.1.2 Internal Accumulator Access Format
	Table 2�5. Internal Accumulator Access Format�
	Table 2�6. MAR{<cond>} acc0, RdLo, RdHi�
	Table 2�7. MRA{<cond>} RdLo, RdHi, acc0�

	2.3.2 New Page Attributes
	Table 2�8. First-level Descriptors�
	Table 2�9. Second-level Descriptors for Coarse Page Table�
	Table 2�10. Second-level Descriptors for Fine Page Table�

	2.3.3 Additions to CP15 Functionality
	Example 2�1. CPWAIT: Canonical Method to Wait for CP15 Update�

	2.3.4 Event Architecture
	2.3.4.1 Exception Summary
	Table 2�11. Exception Summary�

	2.3.4.2 Event Priority
	Table 2�12. Event Priority�

	2.3.4.3 Prefetch Aborts
	Table 2�13. Intel® XScale™ Microarchitecture Encoding of Fault Status for Prefetch Aborts�

	2.3.4.4 Data Aborts
	Table 2�14. Intel® XScale™ Microarchitecture Encoding of Fault Status for Data Aborts�
	Example 2�2. Shielding Code from Potential Imprecise Aborts�

	2.3.4.5 Events from Preload Instructions
	Example 2�3. Speculatively issuing PLD�

	2.4 Performance Considerations
	2.4.1 Interrupt Latency
	Table 2�15. Minimum Interrupt Latency�

	2.4.2 Branch Prediction
	Table 2�16. Branch Latency Penalty�

	2.4.3 Addressing Modes
	2.4.4 Instruction Latencies
	2.4.4.1 Performance Terms
	Example 2�4. Computing Latencies
	Table 2�17. Latency Example�

	2.4.4.2 Branch Instruction Timings
	Table 2�18. Branch Instruction Timings�

	2.4.4.3 Data Processing Instruction Timings
	Table 2�19. Data Processing Instruction Timings�

	2.4.5 Multiply Instruction Timings
	Table 2�20. Multiply Instruction Timings (Sheet 2 of 2)
	Table 2�21. Multiply Implicit Accumulate Instruction Timings
	Table 2�22. Implicit Accumulator Access Instruction Timings
	2.4.5.1 Saturated Arithmetic Instructions
	Table 2�23. Saturated Data Processing Instruction Timings

	2.4.5.2 Status Register Access Instructions
	Table 2�24. Status Register Access Instruction Timings

	2.4.5.3 Load/Store Instructions
	Table 2�25. Load and Store Instruction Timings
	Table 2�26. Load and Store Multiple Instruction Timings

	2.4.5.4 Semaphore Instructions
	Table 2�27. Semaphore Instruction Timings

	2.4.5.5 Coprocessor Instructions
	Table 2�28. CP15 Register Access Instruction Timings
	Table 2�29. CP14 Register Access Instruction Timings

	2.4.5.6 Miscellaneous Instruction Timing
	Table 2�30. SWI Instruction Timings
	Table 2�31. Count Leading Zeros Instruction Timings

	2.4.5.7 Thumb Instructions

	Optimization Techniques 3
	3.1 The StrongARM* Pipeline
	3.1.1 General Pipeline Characteristics
	3.1.1.1 Number of Pipeline Stages
	3.1.1.2 Intel® XScale™ Microarchitecture Pipeline Organization
	Figure 3�1. Intel® XScale™ Microarchitecture RISC Superpipeline
	Table 3�1. Pipelines and Pipe Stages

	3.1.1.3 Out-Of-Order Completion
	3.1.1.4 Register Scoreboarding
	3.1.1.5 Use of Bypassing

	3.1.2 Instruction Flow Through the Pipeline
	3.1.2.1 ARM* v5 Instruction Execution
	3.1.2.2 Pipeline Stalls

	3.1.3 Main Execution Pipeline
	3.1.3.1 F1 / F2 (Instruction Fetch) Pipestages
	3.1.3.2 ID (Instruction Decode) Pipestage
	3.1.3.3 RF (Register File / Shifter) Pipestage
	3.1.3.4 X1 (Execute) Pipestages
	3.1.3.5 X2 (Execute 2) Pipestage
	3.1.3.6 WB (Write back)

	3.1.4 Memory Pipeline
	3.1.4.1 D1 and D2 Pipestage

	3.1.5 Multiply/Multiply Accumulate (MAC) Pipeline
	3.1.5.1 Behavioral Description

	3.2 Basic Optimization
	3.2.1 Conditional Instructions
	3.2.1.1 Optimizing Condition Checks
	3.2.1.2 Optimizing Branches
	3.2.1.3 Optimizing Complex Expressions

	3.2.2 Bit-Field Manipulation
	3.2.3 Optimizing the Use of Immediate (Constant) Values
	3.2.4 Optimizing Integer Multiply and Divide
	3.2.5 Effective Use of Addressing Modes

	3.3 Cache and Prefetch Optimizations
	3.3.1 Instruction Cache
	3.3.1.1 Cache Miss Cost
	3.3.1.2 Round-Robin Replacement Cache Policy
	3.3.1.3 Code Placement to Reduce Cache Misses
	3.3.1.4 Locking Code into the Instruction Cache

	3.3.2 Data and Mini-Cache
	3.3.2.1 Non-Cacheable Regions
	3.3.2.2 Write-through and Write-back Cached Memory Regions
	3.3.2.3 Read Allocate and Read-write Allocate Memory Regions
	3.3.2.4 Creating On-chip RAM
	3.3.2.5 Mini-Data Cache
	3.3.2.6 Data Alignment
	3.3.2.7 Literal Pools

	3.3.3 Cache Considerations
	3.3.3.1 Cache Conflicts, Pollution, and Pressure

	3.3.4 Memory Page Thrashing
	3.3.5 Prefetch Considerations
	3.3.5.1 Prefetch Distances in the Intel® XScale™ Core
	3.3.5.2 Prefetch Loop Scheduling
	3.3.5.3 Prefetch Loop Limitations
	3.3.5.4 Compute vs. Data Bus Bound
	3.3.5.5 Low Number of Iterations
	3.3.5.6 Bandwidth Limitations
	3.3.5.7 Cache Memory Considerations
	3.3.5.8 Cache Blocking
	3.3.5.9 Prefetch Unrolling
	3.3.5.10 Pointer Prefetch
	3.3.5.11 Loop Interchange
	3.3.5.12 Loop Fusion
	3.3.5.13 Prefetch to Reduce Register Pressure

	3.4 Instruction Scheduling
	3.4.1 Scheduling Loads
	3.4.1.1 Scheduling Load and Store Double (LDRD/STRD)
	3.4.1.2 Scheduling Load and Store Multiple (LDM/STM)

	3.4.2 Scheduling Data Processing Instructions
	3.4.3 Scheduling Multiply Instructions
	3.4.4 Scheduling SWP and SWPB Instructions
	3.4.5 Scheduling the MRA and MAR Instructions (MRRC/MCRR)
	3.4.6 Scheduling the MIA and MIAPH Instructions
	3.4.7 Scheduling MRS and MSR Instructions
	3.4.8 Scheduling CP15 Coprocessor Instructions

	3.5 Optimizing C Libraries
	3.6 Optimizing for Size
	3.6.1 Space/Performance Trade Off
	3.6.1.1 Multiple Word Load and Store
	3.6.1.2 Use of Conditional Instructions
	3.6.1.3 Use of PLD Instructions

	For OS Developers A
	A.1 Introduction
	A.1.1 Intended Audience

	A.2 Document Organization
	A.2.1 Related Documents

	A.3 Salient Features of the Intel® XScale™ Core MegaCell
	A.4 Enabling the Caches
	A.5 Using the PID Register
	A.6 Exception Vector Remapping
	A.7 Instruction Stream Barrier Code
	A.8 Memory Management Concerns
	Table A�1. Cache Control Attributes�

	A.9 Locking TLB Entries
	A.10 DSP Coprocessor 0
	A.11 Instruction Cache Invalidation
	A.12 Data Cache Flushing
	A.13 Locking and Unlocking the Caches
	A.14 Locking Code in the Instruction Cache
	A.15 Unlocking the Instruction Cache
	A.16 Locking Data in the Data Cache
	A.17 Unlocking the Data Cache
	A.18 Branch Target Buffer (BTB)
	A.19 Exception Model
	A.20 Power Management
	A.21 Assembly Language Considerations

	ARM Glossary B
	Index

