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I. Introduction 
 
 Real-time video and image processing is used 
in a wide variety of applications from video surveillance 
and traffic management to medical imaging 
applications.  These operations typically require very 
high computation power.   Standard definition NTSC 
video is digitized at 720x480 or full D1 resolution at 30 
frames per second, which results in a 31MHz pixel 
rate.  With multiple adaptive convolution stages to 
detect or eliminate different features within the image, 
the filtering operation receives input data at a rate of 
over 1 giga samples per second.  Coupled with new 
high-resolution standards and multi-channel 
environments, processing requirements can be even 
higher.   Achieving this level of processing power using 
programmable DSP requires multiple processors.  A 
single FPGA with an embedded soft processor1 can 
deliver the requisite level of computing power more 
cost-effectively, while simplifying board complexity. 
   

This paper presents the implementation of an 
adaptive edge-detection filter on an FPGA using a 
combination of hardware and software components. 
The FPGA provides the necessary performance for 
real-time image and video processing, while retaining 
the system flexibility to support an adaptive algorithm.  
Preliminary results are presented for this system and 
evaluated with respect to the Canny edge detector as a 
benchmark. 
 
 
II. Edge Detection Background 
 

Edge detection is a fundamental tool used in 
most image processing applications to obtain 
information from the frames as a precursor step to 
feature extraction and object segmentation.  This 
process detects outlines of an object and boundaries 
between objects and the background in the image.  An 
edge-detection filter can also be used to improve the 
appearance of blurred or anti-aliased video streams. 
 

                                            
1 An embedded soft processor refers to a reconfigurable processor 
which resides on the FPGA fabric. 

 The basic edge-detection operator is a matrix- 
area gradient operation that determines the level of 
variance between different pixels. The edge-detection 
operator is calculated by forming a matrix centered on 
a pixel chosen as the center of the matrix area.  If the 
value of this matrix area is above a given threshold, 
then the middle pixel is classified as an edge.  
Examples of gradient-based edge detectors are 
Roberts, Prewitt, and Sobel operators.    
All the gradient-based algorithms have kernel 
operators that calculate the strength of the slope in 
directions which are orthogonal to each other, 
commonly vertical and horizontal. Later, the 
contributions of the different components of the slopes 
are combined to give the total value of the edge 
strength.   
 
The Prewitt operator measures two components. The 
vertical edge component is calculated with kernel Kx 
and the horizontal edge component is calculated with 
kernel Ky.  |Kx| + |Ky| gives an indication of the 
intensity of the gradient in the current pixel. 
  
 
 
 
 
 
Figure 1: Prewitt horizontal and vertical operators 
 
 Depending on the noise characteristics of the 
image or streaming video, edge detection results can 
vary.  Gradient-based algorithms such as the Prewitt 
filter have a major drawback of being very sensitive to 
noise. The size of the kernel filter and coefficients are 
fixed and cannot be adapted to a given image.  An 
adaptive edge-detection algorithm is necessary to 
provide a robust solution that is adaptable to the 
varying noise levels of these images to help distinguish 
valid image content from visual artifacts introduced by 
noise. 
 
 
III. Canny Edge Detection Algorithm 
 
The Canny algorithm uses an optimal edge detector 
based on a set of criteria which include finding the 
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most edges by minimizing the error rate, marking 
edges as closely as possible to the actual edges to 
maximize localization, and marking edges only once 
when a single edge exists for minimal response [1].  
According to Canny, the optimal filter that meets all 
three criteria above can be efficiently approximated 
using the first derivative of a Gaussian function. 
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The first stage involves smoothing the image by 
convolving with a Gaussian filter.  This is followed by 
finding the gradient of the image by feeding the 
smoothed image through a convolution operation with 
the derivative of the Gaussian in both the vertical and 
horizontal directions.  The 2-D convolution operation is 
described in the following equation. 
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where: g(k,l) = convolutional kernel 
 I(x,y) = original image 
 I’(x,y) = filtered image 
 2N + 1 = size of convolutional kernel 
 
Both the Gaussian mask and its derivative are 
separable, allowing the 2-D convolution operation to be 
simplified.  This optimization is not limited to software 
implementation only, but applies to hardware 
implementation as well, as shown in the next section. 
 
The non-maximal suppression stage finds the local 
maxima in the direction of the gradient, and 
suppresses all others, minimizing false edges.  The 
local maxima is found by comparing the pixel with its 
neighbors along the direction of the gradient.  This 
helps to maintain the single pixel thin edges before the 
final thresholding stage. 
 
Instead of using a single static threshold value for the 
entire image, the Canny algorithm introduced 
hysteresis thresholding, which has some adaptivity to 
the local content of the image.  There are two threshold 
levels, th,high and tl, low where th > tl.  Pixel values 
above the th value are immediately classified as edges.  
By tracing the edge contour, neighboring pixels with 
gradient magnitude values less than th can still be 
marked as edges as long as they are above tl.  This 
process alleviates problems associated with edge 

discontinuities by identifying strong edges, and 
preserving the relevant weak edges, in addition to 
maintaining some level of noise suppression.  While 
the results are desirable, the hysteresis stage slows 
the overall algorithm down considerably. 
 
The performance of the Canny algorithm depends 
heavily on the adjustable parameters, σ, which is the 
standard deviation for the Gaussian filter, and the 
threshold values, th and tl.  σ also controls the size of 
the Gaussian filter.  The bigger the value for σ, the 
larger the size of the Gaussian filter becomes.  This 
implies more blurring, necessary for noisy images, as 
well as detecting larger edges. As expected, however, 
the larger the scale of the Gaussian, the less accurate 
is the localization of the edge. Smaller values of σ 
imply a smaller Gaussian filter which limits the amount 
of blurring, maintaining finer edges in the image.  The 
user can tailor the algorithm by adjusting these 
parameters to adapt to different environments with 
different noise levels.   
 
Results can be further improved by performing edge 
detection at multiple resolutions using multi-scale 
representations, similar to the Marr-Hildreth algorithm 
[2].  This is achieved using different standard 
deviations, which correspond to different resolution 
versions of the image.  Edges have zero crossing at 
multiple scale values.   Combining maxima information 
from different scales allows better classification of true 
edges.  
 
Convolution at multiple resolutions with large Gaussian 
filters require even more computation power.  This may 
prove to be challenging to implement as a software 
solution for real-time applications. 
 
IV. Processing requirements 
 
Real-time image processing requires high computation 
power. For example, the NTSC video standard 
requires 30 frames per second, with approximately .25 
mega pixels per frame, resulting in a total of 7.5 mega 
pixels per second. PAL video standard has a similar 
processing load with 25 frames per second, but the 
frame size is larger. The amount of processing 
required per pixel depends on the image processing 
algorithm.  
 
In the case of the Canny edge-detection algorithm the 
processing requirement is a combination of the four 
stages of Gaussian smoothing for noise reduction, 
finding zero crossings using the derivative of Gaussian, 
non-maximal suppression to thin the edges, and finally 
hysteresis thresholding.    
 



Depending on the size of the kernels, the processing 
requirements for the first two convolution stages can 
change.  Using the assumption of a kernel size of 7*7 
for the Gaussian and 5*5 for the derivative of the 
Gaussian, the two stages require approximately 62 
operations per pixel.  This implementation requires less 
complexity than most typical 2-D convolution 
processes because of the symmetric and separable 
characteristics of the Gaussian masks.  The non-
maximal suppression stage requires 27 operations per 
pixel.  Due to the recursive nature of the hysteresis 
thresholding process, this stage requires an additional 
40 operations per pixel.   In total, the Canny algorithm 
requires approximately 130 operations per pixel. 
Coupled with running at multiple resolutions, serial 
implementation of the algorithm using a programmable 
DSP with a clock speed of 600MHz can only process 
4.6  mega pixels per second.  This is not sufficient to 
support real-time video streams at high resolution. 
 
As high-resolution video standards become more 
prevalent, the processing requirements will increase 
even further.  The high-resolution video standards 
typically have 4 times more pixels per frame.  The 
computation load, therefore is approximately 4 times 
higher.  These image processing applications with high 
computation loads can be implemented with multiple  
DSPs or a single, very expensive high-end DSP. In this 
scenario, FPGAs offer an alternative real-time image 
processing platform.  An FPGA efficiently supports 
high levels of parallel-processing data-flow structures, 
which are important for efficient implementation of 
image processing algorithms. 

V. Hardware Implementation on an FPGA 

The FPGA implementation of the Canny edge-detector 
algorithm is partitioned into four different stages as 
shown in Figure 2.    

     

Figure 2 Block diagram of hardware implementation of 
Canny algorithm 

Figure 3 describes the implementation of a generic 
non-symmetric 2-D image filter.  The incoming pixels 
are shifted through the line buffers that create a delay 
line.  The buffer depth depends on the number of 
pixels in each line of the frame. These delay lines feed 
the filter array simultaneously with pixels from all the 
relevant video lines.  At each filter node, the pixel is 
multiplied with the appropriate filter coefficients.  All the 
multiplier results are added together at the adder tree 
to produce the filter middle point output result.  
Typically, scaling is applied at the final output. 

 
Figure 3 Hardware Implementation of non-symmetric 
2D filter 
 
In general, the efficiency of a hardware implementation 
is measured by the number of multiplications.  Using 
this metric as the measure, the complexity of the non-
symmetric filter is proportional to the dimension of the 
filter m2, where m * m is the size of the convolutional 
kernel. 
 
Significant size optimization can be achieved in the 
case of symmetric 2-D video filters.  The optimization is 
even more significant in cases where the filter kernel is 
symmetric and separable, as is the case with the 
Gaussian filter used in the Canny algorithm.  The 2-D 
filter is separated into two 1-D filters implemented first 
in the horizontal direction, followed by the vertical 
direction as shown in Figure 4.  This technique can be 
applied to both the smoothing stage with the Gaussian 
filter, and the identification of the gradient with the 
derivative of the Gaussian. Table 1 shows the 
implementation complexity of the different class of 
filters as a function of number of multiplication 
operations.   
 

Filter 
Size 

Non-
Symmetric Symmetric 

Symmetric 
and 

Separable 
m * m m * m (m+1)*(m+3)/8 m + 1 
Table 1: 2-D Filter implementation complexity based on 
number of multiplication operations 



 

 
Figure 4 Hardware implementation of symmetric 
separable 2D filter 
 
Since the convolution for both the Gaussian and its 
derivative can be implemented as separate 1-D 
convolutions, the operations are implemented in 
parallel on the FPGA as shown in Figure 2. 
 
The noise reduction function is performed using a 7*7 
Gaussian kernel. This kernel slides over the image, 
line by line, attenuating the high-frequency noise 
components of the image. The finding of zero 
crossings is performed using a 5*5 kernel obtained by 
calculating the derivative of Gaussian. 
 
The non-maximal suppression stage identifies pixels 
that are local maxima in the direction of the gradient 
using the magnitude and orientation of the pixels.  The 
major orientation of the gradient, either horizontal or 
vertical, is obtained by comparing the individual 
components, dx and dy, which are the result of 
convolving the smoothed image with the derivative of 
the Gaussian.  Since most edges are at an angle, it is 
possible to obtain further granularity in the orientation 
of the gradient by comparing the sign bit of the gradient 
[3].  This allows the neighboring pixels and the 
orientation of the gradient to be determined within 
specific quadrants as shown in Figure 5. 
 

 
Figure 5: Determine orientation of gradient in the non-
maximal suppression stage 

 
Once the orientation is determined, the magnitude of 
the gradient is compared to the interpolated value of 
the magnitude of the neighboring pixels. 
The magnitude of the neighboring pixels is calculated 
using parallel multiplier units.  Pixels with gradient 
intensities less than their neighboring pixels in the 
gradient direction are automatically suppressed or 
classified as a non-edge in order to keep the edges 
thin. 
 
The final stage involves thresholding the result from 
the non-maximal suppression stage to create a binary 
image using two threshold values (hysteresis): th and tl. 
A straightforward approach would include running a 
first pass over the video frame to compare all the pixels 
with the two threshold values. Pixels with gradient 
values above th are marked ‘2’, classified as an edge. 
Next, pixels with gradient values less than th but above 
tl are marked ‘1’, classified as a potential edge.  The 
rest of the pixels are left as zeros, or non-edge. Figure 
6 shows an example of this frame mapping approach. 
 
For each pixel marked as ‘2’, its neighboring pixels 
within a 3x3 neighborhood that are marked ‘1’ are 
remarked ‘2’.  If implemented in software, this section 
of the algorithm alone can contribute to more than 20 
operations per pixel.  Additional passes are required to 
find potential edges that were left behind in the initial 
passes. Edges are left behind in cases where there is 
a line of ‘1’s that leads to ‘2’ in the direction of the 
pass. Figure 6 shows an example with the assumption 
that the lines are processed from left to right starting at 
the top. In this scenario, all the ‘1’s in the second row 
would be remarked as ‘2’ only in subsequent passes.  
The number of passes required depends on the 
characteristics of each video frame. 
 

    
 Figure 6: Edge strength classification map 
 
Since the number of conversions from ‘1’ to ‘2’ is 
always less than the total number of pixels in the 
frame, this upper limit guarantees that operations that 
depend on the ‘2’ locations list FIFO can be completed 
during the real-time processing period of a frame. The 



FIFOs are implemented using multiple M4K embedded 
memory blocks, which are of size 4Kbits each. 
 
At the first pass, the edge-detection result map (‘0’, ‘1’, 
or ‘2’ values) is stored in the embedded RAM blocks, 
or MRAMs, in the Stratix or Stratix II device.   These 
large embedded RAM blocks of 589-Kbit size can be 
used to temporarily store the edge map where 2 bits 
are allocated for each pixel location.   
 
During each pixel clock cycle, the following operations 
are executed simultaneously in the FPGA to achieve 
real-time performance: 

  Compare gradient value with th 
  Compare gradient value with tl 
  Depending on the previous comparison 

results, write ‘2’, ‘1’, or ‘0’ into the next pixel 
location 

  If ‘2’ is being written, then write this address 
location into the ‘2’ locations list FIFO 

  If the ‘2’ locations list FIFO is not empty then 
read the next address from the FIFO and 
convert each ‘1’ neighbor pixel to ‘2’ 

  Add all the new converted into ‘2’ locations to 
the ‘2’ locations list FIFO  

 
 
It is possible to extend this design architecture to 
support multiple resolutions for processing the image 
at different levels of details across scales.   A software 
approach can be used to initiate and control the data 
flow, while the hardware implementation is used to 
accelerate the repetitive tasks. 
 
When combining hardware and software in the 
solution, it is possible to keep the implementation of 
the entire system on a single FPGA device using the 
Nios II embedded processor.  The Nios II embedded 
processor features a general-purpose RISC CPU 
architecture.  This soft processor can be reconfigured 
to a different set of peripherals, memories, interfaces, 
and performance characteristics using the SOPC 
Builder tool featured in the Quartus II design software.  
The hardware accelerator block is connected to the 
Nios II processor as a peripheral using the Avalon 
switch fabric which is generated automatically by 
SOPC Builder [4]. 
 
 
VI. Implementation Analysis and Preliminary 
Results 
 
The architecture described above is implemented 
using DSP Builder, a development tool that interfaces 
between the Altera Quartus II design software and 
MATLAB/Simulink tools.  The tool automatically 
translates the Simulink design representation created 

using the DSP Builder blockset into VHDL targeting the 
Altera FPGA.   
 
Figure 7 compares the edge-detection results of the 
Canny algorithm and the standard Prewitt filter for 
noise-free and noisy images with different noise levels.  
It shows the Canny edge detector is able to keep the 
edges one pixel thin as a result of the non-maximal 
suppression process.  It also performs better at 
suppressing white Gaussian noise, while maintaining 
some level of accuracy at detecting edges compared to  
the Prewitt filter. 
   

  Canny         Prewitt 

    
        a)  No Noise 

    
        b) SNR 21    

    
        c) SNR 11 

    
         d) SNR 5 
Figure 7: Comparing Canny and Prewitt edge detector 
results at different noise level 
 
Preliminary results show the FPGA design running at 
264MHz targeting Stratix II.  We used a test image with 
a resolution of 256x256.  The module is fully pipelined 



2where a resulting pixel is calculated every clock cycle.  
With this throughput and clock rate, it is possible to 
process over 4000 frames of images at the 256x256 
resolution. The design is scalable to handle higher 
resolution images, while maintaining the clock 
frequency used to process standard video-resolution 
signals at 30 frames per second, as well as high-speed 
computer vision applications, which require more than 
100 frames per second. 
 
It is possible to increase the frequency beyond 
264MHz by introducing even more pipeline stages at 
the expense of increasing resource usage.  The logic 
cell usage of 1530 adaptive look-up tables (ALUTs) 
consumes approximately 3% of the total utilization of 
the Stratix II EP2S60 device.  Also shown are the 
resource utilization numbers targeting the Stratix 
EP1S20 device. 
 

Stage ALUT M4K MRAM DSP 
Element2 

Gaussian 
Smoothing 320 7 0 16 

Derivative of 
Gaussian 250 5 0 12 

Non-Maximal 
Suppression 800 3 0 15 

Hysteresis 
Thresholding 160 8 2 0 

Total 1530/48352 23/255 2/2 43/288 
Percentage 3% 9% 100% 15% 
Table 2: FPGA Resource usage based on Canny 
algorithm targeting Stratix II EP2S60 
 

Stage Logic Cell M4K MRAM DSP 
Element2 

Gaussian 
Smoothing 500 7 0 16 

Derivative of 
Gaussian 300 5 0 12 

Non-Maximal 
Suppression 1200 3 0 15 

Hysteresis 
Thresholding 200 8 2 0 

Total 2200/18460 23/82 2/2 43/80 
Percentage 15% 28% 100% 54% 
Table 3: FPGA Resource usage based on Canny 
algorithm targeting Stratix EP1S20 
 
If a combined hardware and software solution is 
required using the Nios II processor, an additional 
count of 1300 logic cell is required.  Depending on the 
set of peripherals chosen and performance 
requirement for the processor, the amount of additional 
logic required may vary. 
 

                                            
2 DSP Element refers to a 9x9 multiplier structure within the DSP 
Block3. There are 8 DSP Elements per DSP Block. 
3 DSP Blocks are dedicated circuitry which offers multipliers, 
accumulators, adders, subtractors, summation units, and pipeline 
registers.   

VII. Conclusion 
 
This paper discussed the implementation of the Canny 
edge-detection algorithm on an FPGA.  We presented 
preliminary results, which show the capability of 
supporting adaptive edge detection for real-time image 
processing. 
 
Further improvement in the edge-detection research 
area has resulted in a broad range of evaluation 
techniques, which include using neural networks, 
probabilistic models [5], and automatic scale selection 
[6].  Another class of gradient operators attempt to 
match image functions to a parametric model of edges.  
Parametric models describe edges more precisely than 
simple edge magnitude and direction and are much 
more computationally intensive.  While these advanced 
algorithms provide better results, a common challenge 
among these techniques is the increasing 
computational cost as the complexity of the algorithm 
increases.  FPGAs are good alternatives, which can be 
used to off-load these computationally-intensive and 
repetitive functions as co-processors.  Custom 
implementation in FPGAs, using a combination of 
hardware and software co-design, allows real-time 
processing, providing a good trade-off between 
performance and flexibility. 
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