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Abstract 
In this paper an RSA calculation architecture is proposed 
for FPGAs that addresses the issues of scalability, 
flexible performance, and silicon efficiency for the 
hardware acceleration of Public Key crypto systems. 
Using techniques based around Montgomery math for 
exponentiation, the proposed RSA calculation 
architecture is compared to existing FPGA-based 
solutions for speed, FPGA utilisation, and scalability. 
The paper will cover the RSA encryption algorithm, 
Montgomery math, basic FPGA technology, and the 
implementation details of the proposed RSA calculation 
architecture. Conclusions will be drawn, beyond the 
singular improvements over existing architectures, which 
highlight the advantages of a fully flexible & 
parameterisable design. 

1. Introduction 
With the continual and rapid expansion of internet and 
wireless-based communications across open networks it 
is becoming increasingly necessary to protect transmitted 
data.  RSA is a cryptographic technology that is widely 
used to provide necessary data protection services. 
 
RSA relies heavily on complex large-number 
mathematics to provide its security services. 
Computationally intensive software, typically VPN 
applications, is used for computer-based RSA 
cryptography resulting in less than adequate 
communication performance. This can be overcome by 
using dedicated ASIC or ASSPs to accelerate the 
mathematics, but these are often expensive and inflexible 
as a solution. The combined cost and performance 
problem can be addressed by considering an FPGA-
based implementation. For this, many research papers 
propose many different solutions, none of which to date 
are viable for practical implementations in FPGAs. 
 
To achieve realistic hardware implementations for RSA, 
the complex math involved utilises a technique known as 
Montgomery Multiplication. Montgomery’s techniques 
allow very efficient implementations of RSA-based 
cryptography systems. The calculations involved with 
Montgomery are based around the cyclic re-use of 
additions and the challenges faced with FPGA 
implementations centre around this. 
 
FPGAs are based around SRAM technology where 
boolean logic functions are stored as their truth tables in 
numerous distributed small SRAM look-up-tables 
(LUTs). General-purpose routing and registering 
resources coupled with these LUTs means that an FPGA 
can be configured to implement any logic-based design. 

The challenge when implementing efficient designs in 
FPGAs is to understand the underlying fabric of the 
FPGA that is being targeted. 
 
This paper will expand on the math behind RSA and 
Montgomery Multiplication in order to identify the 
critical areas when considering an FPGA implementation. 
The logic structure of the FPGA will also be examined in 
order to propose the most efficient hardware architecture.  
This will then be compared to existing solutions to gain a 
measure of the overall efficiency of the proposed FPGA-
based RSA solution. 

2. Fundamental Math of RSA 

2.1. Public Key Cryptography 
From the original RSA paper by R.L. Rivest, A. Shamir, 
& L. Adleman [1], an asymmetric cryptographic system 
was proposed that uses modular exponentiation for 
encryption and decryption. For ease of implementation it 
was proposed that both the encryption and decryption 
functions be identical; the only difference being the input 
data. The term ‘asymmetric cryptographic’ means that 
the keys used for encryption and decryption are different. 
In the case of RSA, the encryption key is made publicly 
available and the decryption key is kept private.  
 
The encryption/decryption chain is described as follows 
where M is the original message data, C is the encrypted 
message or cipher text, e, m is the publicly available 
encryption key, and f is the decryption key: 
 

mMC e mod=  
mCM f mod=  

 
Key generation for RSA starts with the selection of two 
prime numbers which are then multiplied together to 
produce the publicly visible modulus m: 
 

qpm ⋅=  
 
The strength of RSA is based on the difficulty of 
factoring m to discover the original primes p,q. Hence the 
larger the value of these primes, the harder the 
factorisation problem becomes. Again, typical values for 
these primes are 512 to 4096bits with the later 
exponentially stronger than the former.  
 
Next an integer, e, that is relatively prime to (p-1)(q-1), is 
chosen as the public key. Typically and for practical
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reasons, e can be one of the first Fermat Numbers 3, 5, 
17, 33 which will always satisfy the following: 
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gcd = greatest common divisor 
 
To generate the private key, f, it is then necessary to find 
the multiplicative inverse of e mod mx. 
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Euc =Euclid’s Algorithm 
 
Finally, publish e, m as the public key and keep f secret. 
Ideally, the values of p, q, the generator primes should be 
destroyed. 
 
The following is a practical example of RSA key 
generation and an RSA-based cryptographic exchange. 
 
1. Generator primes create the modulus: 
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2. Public key calculated: 
 

79
1)3220,gcd(

3220)171()147(

=∴
=

==−⋅−

e
e

mx
 

 
3. Private key calculated: 
 

1019)3220,79(
13220mod)79(
==∴

=⋅
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4. Message, a data block to the value of 688, encrypted 
using the public key: 
 

15703337mod688
688

79 ==
=

C
M

 

 
5. Cipher text decrypted with the private key to obtain 
the original data block: 
 

6883337mod1570
1570

1019 ==

=

M
C

 

2.2. Key Exchange 
Beyond this asymmetric cryptography example, RSA 
Math has practical applications in symmetric 
cryptography (where the encryption and decryption keys 
are identical). In symmetric systems the problem of how 
to safely distribute or exchange private keys exists. A 
subset or optimised version of RSA math is used in what 

is known as the Diffie-Helman key exchange [2], where 
the public exchange of data leads to two parties securely 
establishing symmetric/private keys. Essentially this is an 
optimised way of using RSA public key technology to 
securely generate private keys. 
 
The following table depicts the calculation flow for the 
Diffie-Helman key exchange.  
 

Entity A Entity B 
 

Agree on and swap the systems variables p & g 

11 −<<
=

pg
primep

 

 
Generate private variable x 

21 −<< px  

 
Generate private variable y 

21 −<< py  
 

Calculate and swap the 
public variable e 

pge x mod=  

 
Calculate and swap the 

public variable f 
pgf y mod=  

 
Calculate the shared key k 

pfk x mod=  

 
Calculate the shared key k’ 

pek y mod'=  
 

Both Entities share the same secret key 
'kk =  

 
The values k & k’ can now be used as the basis for 
symmetric/private keys. 

2.3. Modular Exponentiation 
It is clear from the RSA and Diffie-Helman operations 
that, beyond the generation and testing of variables and 
primes, the fundamental operation of both of these is the 
modular exponentiation: 
 

MXZ E mod=  
 
Performance of RSA-based systems is therefore tightly 
coupled to the calculation speed of the modular 
exponentiation implementation. 

3. RSA Math for FPGA 

3.1. Modular Exponentiation 
A common basic-form method for calculating modular 
exponentiation is the multiply and square algorithm:  
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1. XPZ == 00 ,1  
2. FOR i = 0 to n-1 loop 
3. MPP ii mod2

1 =+  

4.  IF (ei = 1) THEN  MPZZ iii mod1 ⋅=+  

 ELSE ii ZZ =+1  
5. END FOR 
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Essentially, the algorithm is a running accumulation of 
squaring and multiplication steps. At each stage the mod 
M function is performed to keep any intermediate 
variables within the integer range of M; a second option 
is to allow the intermediate variables to grow and 
perform the mod M as a single final operation. 
Considering FPGA hardware implementations, the first 
option is more desirable as it will keep the multiplication 
functions in hardware down to a practical bit width. 
However, both methods use the modulus operation. The 
implementation of any modulus function usually involves 
a divide operation (to discover the remainder). A divide 
operation in computing hardware terms is considered 
complex and, wherever possible, is avoided.  
 
The efficiency of the modular multiplier used in the 
multiply and square algorithm is key to the performance 
of RSA-based crypto systems. 

3.2. Montgomery Math 
Performing modular multiplication using Montgomery’s 
techniques [3][4] removes the requirement for the 
division operation, leading to more a efficient FPGA-
based implementation. To implement a modular 
exponentiation using Montgomery’s techniques, a 
Montgomery Multiplier is used to implement the squares 
and multiplies used in the standard square and multiply 
algorithm.   
 
To calculate the product of AB mod M, where:  
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Using Montgomery Multiplication the following iterative 
algorithm is used: 
 
 
 
 
 
 
 
 
 
 
 
In this algorithm, any divide operations needed to keep 
the intermediate variables (and hence the final result) 
within the integer range of M are done using powers of 2, 
which is a division that is very cheap in hardware! With 
Montgomery Multipliers, accumulation of the product is 
the same as in a normal modular multiplier, i.e. an 
addition when a bit is set. The difference is that instead 
of subtracting the modulus when the intermediate 
variables outgrow M by examining the MSB end of the 
variables, it is done by examining the LSB end and 
adding the modulus. To accommodate this change the 
running accumulation is right shifted each iteration, and  
not left shifted. A benefit of using the LSB end of the 

variables is that no long carry chains are needed to decide 
whether or not to readjust for the integer range of M.  
 
As a result of the optimisations in the Montgomery 
Multiplier, specifically the right shifts, there is an 
inherent factor present in the result; the actual calculation 
performed is: 

 
MBAS n mod2−⋅⋅=  

 
To remove this factor it is necessary to convert the input 
operands A & B into m-residue format. To convert to m-
residue format use the following: 
 

MAAr n mod2⋅=  
 
As both operands need to be converted to m-residue 
format for compatibility the result from the Montgomery 
Multiplier will now be: 
 

MBrArS n mod2⋅⋅=  
 
To remove this extra factor of 2n it is simply a matter of 
performing one more Montgomery Multiply by 1 (as the 
integer, NOT as its m-residue representation). This is 
because multiplication by a non m-residue value will re-
introduce the 2-n factor: 
 

MSS n mod21 ⋅⋅=  
 
Implementing modular exponentiation using 
Montgomery Multiplication is a simple process 
beginning with converting X to m-residue format: 
 

MXXr n mod2⋅=  
 

which can of course be implemented using Montgomery 
Multiplication: 
 

MNr n mod22=       ),,( MNrXMontprodXr =  
 

Then, use the standard multiply and square algorithm to 
bind together the Montgomery Multipliers, including the 
conversion to m-residue and the final multiplication by 1: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

MontProd(A,B,M) 
1. 01 =−S  
2. FOR i = 0 to n-1 loop 
3. 2mod)( 1 AbSq iii += −  

4.  
2

)( 1 AbMqSS iii
i

++= −  

5. END FOR 
6. RETURN 1−nS  

MontExp(X,E,M) 
1. MNr n mod22=  
2. ),,1(0 MNrMontprodZ =  

3. ),,(0 MNrXMontprodP =  
4. FOR i = 0 to n-1 loop 
5. ),,(1 MPPMontprodP iii =+  

6.  IF (ei = 1) THEN  ),,(1 MPZMontprodZ iii =+  

 ELSE ii ZZ =+1  
7. END FOR 
8. ),,1( MZMontprodZ nn =  

9. RETURN nZ  
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Further to the examples and explanations given, the 
Montgomery Exponentiator can be ordered to calculate 
the square first then multiplication or vice versa; both of 
which have various hardware implementation issues 
which aren’t discussed in this section; but should be 
noted. More importantly the adder at the heart of the 
Montgomery Multiplier can be broken down into 
iterative bit blocks or words. The algorithms described 
thus far show the additions happening at full bit width 
which has a significant impact on hardware 
implementations. For example a 1024-bit RSA crypto 
system would require a 1024-bit adder, which in FPGA 
architectures would require a huge carry chain that will 
require significant pipelining resources.  

3.3. Extended Montgomery Math 
To reduce the problems associated with the large adders 
required to implement the core of a Montgomery 
Multiplier, it is possible to break the adder down into 
smaller words and use an iterative approach. This 
technique will use a smaller adder with carry in and carry 
out capability to work through the larger addition, word 
by word, from the LSW up. Using smaller carry chains at 
the core of the multiplier minimises the effort required to 
successfully place and route any designs when targeting 
an FPGA. 
 
Beyond the advantages of limiting arithmetic operations 
to keep the carry chains to a manageable length, it is also 
desirable to match the core arithmetic to standard 
memory and interface sizes. 16, 32, or 64 bits are 
common interface sizes to and from FPGA memories, 
processors, and bus systems. Therefore, any of these bits 
sizes is optimal for the adder at the core of the 
Montgomery Multiplier. 
 
As a result of the iterative use of the core addition to 
achieve modular exponentiation, natural word growth 
will occur before any reduction can be applied to correct 
for the modulus. To make head room for the extra 1.5bits 
(2 in hardware terms) that can be gained from each 
iteration of the Montgomery Multiplier, Blum 
recommends appending the extra bits to the top of any 
input exponent data and allowing two extra iterations of 
the exponentiation algorithm to keep in range of the 
modulus [4]. Just by automatically increasing the number 
of bits to the next convenient word boundary will result 
in simpler and smaller FPGA hardware.  
 
The following section will discuss further the specifics of 
a proposed architecture for a Montgomery 
Exponentiation core. 

4. Proposed FPGA Architectures 

4.1. FPGA Basics 
For the proposed architecture, referred to as ARSA, the 
target FPGA technology will be the Cyclone or Stratix 
family from Altera. Both of theses FPGA families feature 
fast dedicated arithmetic logic in their base 
programmable fabric and dedicated memory resources. 

Details of the arithmetic modes will be described before 
any specific details of ARSA are given. 
 
The smallest element of an Altera Stratix or Cyclone 
FPGA is the logic element (LE). Essentially, the LE is a 
four-input SRAM-based lookup table and register stage. 
Any combinational logic function of four inputs can be 
stored and registered in an LE.  The LE can operate in 
one of two different modes. The first is normal mode, the 
second is dynamic arithmetic mode. The illustration 
below depicts the LE in normal mode: 
 

Fig 1. An Altera LE configured in normal mode. 
 
 
 
 
 
 
 
 
 
 
In this mode the LE is suitable for general logic 
applications and combinatorial functions. The four data 
inputs come from the general-purpose programmable 
routing on a local level. Each LE in this mode also has 
LUT chain connections where the LUT outputs drives the 
fourth data input of the next LUT. Local dedicated 
routing provides the register controls signals and the 
register can be asynchronously loaded from the data 3 
input. 
 
In dynamic arithmetic mode, the LE is optimised for 
implementing adders, counter, and accumulators. As 
illustrated below: 
 

Fig 2. An Altera LE configured in arithmetic mode. 
 
 
 
 
 
 
 
 
 
 
 
 
 
The LE in this mode is partitioned into four two-input 
LUTs. The first two LUTs compute two summations 
based on a possible carry input of 1 or 0, and the other 
two LUTs generate carry outputs that drive the dedicated 
carry-out localised routing. The carry-in signals select the 
relevant output from the summation LUTs and hence 
reduce the combinatorial path in silicon when rippling a 
carry chain through an adder. Likewise, the other two 
LUTs calculate the possible carry outs, again one for a 
carry in of 1, another for a carry in of 0. This technique is 
known as carry-select arithmetic. In this mode there are 
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also controls for counter enable, dynamic adder / 
subtractor select, and register reset and preset.  
 
Local routing is used to connect LEs together into 
columns of 10 to form logic array blocks (LABs).  A 
LAB contains localised general-purpose routing for the 
data inputs and dedicated routing for the carry chains and 
the LE control signals. Specifically, the LAB also routes 
a LAB carry-in signal that allows each LE to select either 
carry 1 or carry 2 hence selecting an entire pre-computed 
carry chain of ten bits. This removes a lot of LEs from 
the critical path making any adder performance 
dependant only on the propagation delay through the 
LAB carry-in routing. This feature gives Altera’s FPGAs 
the ability to implement very high-speed adder- and 
subtractor-based logic. The diagram below shows the 
grouping of 10 LEs into a LAB: 
 
 

Fig 3. The Altera Logic Array Block Structure. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Adder performance in FPGAs is a critical when 
considering a core architecture for a Montgomery 
Multiplier-based exponentiator. 
 

4.2. RSA Core Architecture  
From the math behind Montgomery Exponentiation, it is 
clear that the iterative use of the following expressions: 
 
 

2mod)( 1 AbSq iii += −  
 

2
)( 1 AbMqSS iii

i
++= −  

 
 
need to be bound in a controlling architecture that routes 
the word-wise portions of the data through them. 
Calculation of qi can be achieved through simple logic 
functions and uses a select line to allow the modulus to 
route into a two-stage adder tree. The following diagram 
depicts the arithmetic core for the proposed ARSA. 
 
 

 
 
 

Fig 4. ARSA Montgomery  Multiplier Core Logic. 
 

 
 
Here, the adders in cascade are registered at the output 
before the value of S is fed back for the next iteration. In 
this depiction the fed back path is a conceptual one to 
illustrate the need for single cycle operation, whereas in 
the proposed ARSA core the S word-wise data will come 
from and go to intermediate memory stores until the full 
bit-length S is calculated. The adders and the 
intermediate stores are configurable to 16, 32, or 64 bits 
in width; the choice of which width obviously affects the 
word-wise cycle time to calculate the intermediate values 
of S in the Montgomery Multiplier.  
 
To implement the complete exponentiator, the 
intermediate stores for the value of S can be partially 
merged into on-chip memories that are used to store the 
values of P & Z as referenced by the Montgomery 
Exponentiator function. From a high-level perspective 
the complete core for the proposed ARSA will look as 
follows: 
 

Fig 5. ARSA Top Level Architecture. 
 

 
 
It is clear that the values of Z, P, & M need to be fetched 
from memory to feed the Montgomery Multiplier, and 
that the resulting values of either Z or P need to be 
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written back to their respective memories. To keep the 
performance of the ARSA at a maximum, it is necessary 
to maintain single-cycle performance through this read-
modify-write process. The latency associated with 
fetching the relevant data and writing it back to the 
global P & Z memories can be hidden by a registered 
pipeline. However the core addition block must maintain 
single-cycle performance. 
 
Because of the single-cycle requirement of the cores the 
carry chain path will be a critical factor in the overall 
performance of the ARSA. For reference, in the highest 
speed grade device in Altera’s Stratix family, a 16-bit 
adder will run at 370 MHz, and a 64-bit adder at 290 
Mhz. In the Montgomery Multiplier block there are two 
stages of addition that must be performed, essentially 
making the carry chain twice as long for each of the 
configurable 16, 32, or 64-bit modes. Based on the 
Stratix performance figures it is anticipated that the even 
in 64-bit mode the cascaded adders will achieve 
210+MHz performance. 
 
In order to make the core generically and linearly 
scalable in performance, it is necessary to ensure that the 
most critical path in the proposed ARSA core is not one 
that can be modified by the generic bit word width. To 
ensure this, the ARSA core has been architected to make 
sure that the generic arithmetic and memory read and 
write paths are as tightly designed to use localised 
routing and resources as possible. This means that the 
most critical path in the proposed ARSA architecture 
exists in the control-path state machines that have to 
guarantee the single-cycle operation of the arithmetic 
logic. Currently, state machine execution has a longest 
combinatorial path of 5 nS, allowing 200 MHz 
performance. The result is that the generic settings for 
word width can be varied without affecting the 200 Mhz 
ARSA clock rate resulting in a linear 1x, 2x, and 4x 
performance increase.  
 
Interfacing to the core is designed to provide the simplest 
connection to processors and bus systems. A memory 
style interface, where the values of X, E, & M are written 
in and Z is read out by means of an address bus and 
read/write line, allowing the ARSA core to interoperate 
with any common DMA and bus standard available. The 
only ancillary signal required is the GO flag to indicate 
that input data has been loaded and to begin execution of 
the Montgomery Exponentiation algorithm.  
 
On completion, DONE is flagged high and can be used 
as an interrupt to read the results from the ARSA core. 
Due to the simple nature of the interface, it is clear that 
during the write and read period of the ARSA the core is 
idle. For applications that require continuous data flow at 
a rate, where the write, read, and core execution times 
may interrupt this flow, the ARSA can extend its internal 
memories to work as double, triple, quad, extending to 
any size buffered configurations. By accessing these 
memories round-robin fashion, the write, read, and 
execution times are converted into latency, not 
degradation in throughput. 
 

Current work into the proposed ARSA architecture is 
focused towards using the advanced place and route 
technologies in Altera’s FPGA design tool, Quartus II, to 
build an optimised 128-bit arithmetic core to achieve an 
8x linear performance gain. This can be achieved by 
moving the position of the single-cycle register and the 
registers that exist at the output of the memories to break 
the carry chains between the larger cascaded 128-bit 
adders. This process of register balancing yields very 
successful results adding to the overall scalability of the 
ARSA core. 

4.3. Resources and Performance Summary 
The tables and expressions in this section show a 
summary of the resource utilisation required for each 
generic implementation of the proposed ARSA core and 
the achievable performance in the Altera Stratix and 
Cyclone FPGA Family.  
 

Table 1. ARSA Core Resource & Performance. 
 
 

Core LE’s FMax MHz 
ARSA 16 300 200 
ARSA 32 500 200 
ARSA 64 700 200 
ARSA 128 900 200 

 
The generics that control the implementation of the 
ARSA core are step_size and rsa_size. It is possible to 
change the rsa_size parameter on-the-fly so any 
references to ARSA core use the step_size parameter as a 
prefix, e.g. ARSA16 for the 16bit ARSA core. It is also 
assumed that the values of E, X, & M are all the same 
length in bits as is in the case of RSA decryption. 
 
To calculate the memory requirements in bits for each 
ARSA core use the following expression: 
 

 
)__(6 sizestepsizersabits +⋅=  

 
 

Table 2. ARSA Core Memory Requirements in Bits. 
 

 Modular Exponentiation Size in Bits 
 256 512 1024 2048 4096 

ARSA 16 1632 3168 6240 12384 24672 
ARSA 32 1728 3264 6336 12480 24768 
ARSA 64 1920 3456 6528 12672 24960 
ARSA 128 2304 3840 6912 13056 25344 
 
To calculate the number of clock cycles required to 
calculate a Modular Exponentiation and hence the total 
time for calculation use the following expressions: 
 

)_(511 sizersaiters ⋅+=  
 

sizestep
sizestepsizersaiterscycs

_
)2__(_

2++=  

 
iterscycsiterscycles _⋅=  
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FMax
cyclesmStime 1000_ ⋅=  

Table 3. ARSA Core Execution Time in mS. 
 

 Modular Exponentiation Size in Bits 
 256 512 1024 2048 4096 

ARSA 16 9.032 67.50 521.5 4099 32500 
ARSA 32 5.059 35.82 268.8 2081 16380 
ARSA 64 3.118 20.07 142.6 1073 8316 
ARSA 128 2.241 12.38 79.95 569.4 4287 

5. Discussion inc. RSA Implementations 

5.1. Other Hardware Implementations 
To fully appreciate the benefits of the features and 
performance of the ARSA core, it is useful to compare it 
with other existing solutions. Two recent notable 
implementations have been those done by Blum [4] and 
Daly & Marnane [5]. In both of the cases examined here, 
they are very large (see Table 4) and therefore expensive 
solutions. In almost all designs, the size of intellectual 
property (IP) cores, like Modular Exponentiators, 
seriously impacts the architecture of a system’s design in 
two ways: (a) as the IP block becomes larger, it becomes 
more difficult to route the rest of the design at speed, and 
(b) usually IP is a smaller, albeit essential, building block 
of a system and therefore size and cost should be kept to 
a minimum. For this reason the ARSA core was 
originally targeted at a size-efficient implementation that 
is linearly generic in performance to serve as an 
application-specific processor. 
 
The ARSA, Blum, and Daly & Marnane Modular 
Exponentiators all use different architectures. The Blum 
design uses a systolic array approach and the Daly & 
Marnane design uses a large pipelined adder 
approximately the size of the modulus. The major 
disadvantage of these two architectures is their lack of 
scalability. Both have been optimised for RSA sizes up to 
1024 bits. For larger sizes like 2048, 4096, & 8192, as 
specified by IPSEC for the key exchange protocols, both 
architectures will grow very large; much larger than can 
be sensibly implemented cost effectively in an FPGA at 
the time of this writing. Also, in the case of the Daly & 
Marnane design, due to the large adder, the performance 
drops off with increasing bit lengths making the design 
untenable for large RSA applications. 
 
The ARSA design runs at a much higher clock rate than 
the other two designs but only occupies a fraction of the 
FPGA LUT resources giving it a better overall size/speed 
ratio. The following section will analyse the overall 
size/speed ratios of all 3 designs. 

5.2. Performance Comparisons & Summary 
All comparisons are based on 1024-bit RSA decryption 
operations. The Blum and Day & Marnane designs were 
implemented in Xilinx FPGAs and have had their slice 
resource counts converted to Altera LEs. The following 
table details device utilisation and performance for the 
different designs, Blum proposes two. 

 
 
 
 
Table 4. Modular Exponentiation Design Summary. 
 

Design LE’s MHz Exp mS LE x FMax 
Daly 20700 50 20 1656000 

Blum1 13200 72 12 950400 
Blum2 9600 66 40 633600 

ARSA 16 300 200 521.5 60000 
ARSA 32 500 200 268.8 100000 
ARSA 64 700 200 142.6 140000 

ARSA 128 900 200 79.95 180000 
 

Clearly, although the ARSA core is slower it is also 
significantly smaller. The ARSA architecture is based 
around very tight localised routing in a very small space 
making it possible to parallel up many ARSA cores to 
boost overall performance. The next table shows the 
reduction factors for area and speed when comparing the 
ARSA to the other designs. 
 

Table 5. RSA Speed Vs LE’s. 
 

 ARSA Vs Daly ARSA Vs Blum1 ARSA Vs Blum2 
ARSA Smaller Slower Smaller Slower Smaller Slower 

16 69.00 26.08 44.00 43.46 32.00 13.04 
32 41.40 13.44 26.40 22.40 19.20 6.72 
64 29.57 7.13 18.86 11.89 13.71 3.57 
128 23.00 4.00 14.67 6.66 10.67 2.00 

 
On average there is a 2.7x performance boost when using 
the ARSA design. It is appreciated that the Blum and 
Daly & Marnane designs were implemented in slightly 
older technology and that this has to be taken into 
account. To do this, the LE x FMax product is used to 
remove the effects of the higher performing Altera 
silicon. This will put the different designs on a level 
playing field for comparison.  The Daly & Marnane 
design is only a single technology step behind and it is 
very unlikely that it will attain the same FMax as the 
ARSA core. A leap in FMax performance to match the 
ARSA by the Blum design is also unlikely when 
targeting the latest and fastest FPGA silicon; but by 
normalising out FMax the fairest ‘architecture-only’ 
comparison can be made. The following table again 
shows the reduction factors for area and speed but this 
time independent from recent advances in FPGA 
technology. 
 

Table 6. RSA Speed Vs LE x FMax Products. 
 

 ARSA Vs Daly ARSA Vs Blum1 ARSA Vs Blum2 
ARSA Smaller Slower Smaller Slower Smaller Slower 

16 17.25 26.08 15.84 43.46 10.56 13.04 
32 10.35 13.44 9.50 22.40 6.34 6.72 
64 7.39 7.13 6.79 11.89 4.53 3.57 
128 5.45 4.00 5.28 6.66 3.52 2.00 

 
Because the ARSA core is generically scalable in 
performance there are a number of different speed/size 
ratios that can be chosen. For the 64-bit and 128-bit 
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ARSA core, the average performance increase for the 
FMax independent comparisons is 1.15x. 
 
All of the comparisons shown are based on 1024-bit RSA 
decryption. The lack of scalability and the non-linear 
performance increase associated with the other designs 
means that the 2.7x and 1.15x performance gains of the 
ARSA core will continue to grow as the RSA word size 
grows due to its limitless linear scalability. 

6. Conclusions 
Although raw performance is desirable it is not necessary 
for all uses of RSA-based technology. A combination of 
scalability and linearly increasing performance is more 
useful when considering the range of RSA-based 
encryption applications. These can range from low-bit 
rate single-channel voice communication, simple key 
exchanges, credit card transactions, to high-speed IPSEC 
key exchanges and bulk-traffic encryption on the internet. 
The ARSA core achieves a mix of performance and 
scalability to cover all of these applications suitably. By 
exploiting Altera’s high speed arithmetic capabilities in 
their Stratix & Cyclone family it has been shown how to 
architect the best RSA solution whilst making the most 
out of the resources available. Silicon efficiency has a 
significant impact on cost beyond the obvious advantages 
of a scalable architecture in performance terms. Thus, the 
ARSA core provides a very broad range of 
cost/performance points. Interfaces to ARSA core have 
been designed in such away that connection to any 
standard processor or bus is as simple as possible. All of 
these in combination make the ARSA core the most cost-
effective broad-performing RSA solution for accelerating 
RSA-based cryptography systems. 

References 
 
[1] “A Method For Obtaining Digital Signatures And 
Public-Key Crypto Systems” by R.L. Rivest, A. Shamir, 
and L. Adleman 
 
[2] “Diffie Helman” by W.Diffie and M.Helman 
 
[3] “Montgomery Exponentiation With No Final 
Subtractions: Improved Results” by Gachel Hachez and 
Jean-Jaques Quisquater 
 
[4] “Modular Exponentiation on Reconfigurable 
Hardware” by Thomas Blum  
 
[5] “Efficient Architectures for Implementing 
Montgomery Modular Multiplication and RSA Modular 
Exponentiation on Reconfigurable Logic” 
by Alan Daly and William Marnane 
 

gcandlan
Copyright


