
- 1 -

RSA & Public Key Cryptography in FPGAs

John Fry
Altera Corporation - Europe

Martin Langhammer
Altera Corporation

Abstract
In this paper an RSA calculation architecture is proposed
for FPGAs that addresses the issues of scalability,
flexible performance, and silicon efficiency for the
hardware acceleration of Public Key crypto systems.
Using techniques based around Montgomery math for
exponentiation, the proposed RSA calculation
architecture is compared to existing FPGA-based
solutions for speed, FPGA utilisation, and scalability.
The paper will cover the RSA encryption algorithm,
Montgomery math, basic FPGA technology, and the
implementation details of the proposed RSA calculation
architecture. Conclusions will be drawn, beyond the
singular improvements over existing architectures, which
highlight the advantages of a fully flexible &
parameterisable design.

1. Introduction
With the continual and rapid expansion of internet and
wireless-based communications across open networks it
is becoming increasingly necessary to protect transmitted
data. RSA is a cryptographic technology that is widely
used to provide necessary data protection services.

RSA relies heavily on complex large-number
mathematics to provide its security services.
Computationally intensive software, typically VPN
applications, is used for computer-based RSA
cryptography resulting in less than adequate
communication performance. This can be overcome by
using dedicated ASIC or ASSPs to accelerate the
mathematics, but these are often expensive and inflexible
as a solution. The combined cost and performance
problem can be addressed by considering an FPGA-
based implementation. For this, many research papers
propose many different solutions, none of which to date
are viable for practical implementations in FPGAs.

To achieve realistic hardware implementations for RSA,
the complex math involved utilises a technique known as
Montgomery Multiplication. Montgomery’s techniques
allow very efficient implementations of RSA-based
cryptography systems. The calculations involved with
Montgomery are based around the cyclic re-use of
additions and the challenges faced with FPGA
implementations centre around this.

FPGAs are based around SRAM technology where
boolean logic functions are stored as their truth tables in
numerous distributed small SRAM look-up-tables
(LUTs). General-purpose routing and registering
resources coupled with these LUTs means that an FPGA
can be configured to implement any logic-based design.

The challenge when implementing efficient designs in
FPGAs is to understand the underlying fabric of the
FPGA that is being targeted.

This paper will expand on the math behind RSA and
Montgomery Multiplication in order to identify the
critical areas when considering an FPGA implementation.
The logic structure of the FPGA will also be examined in
order to propose the most efficient hardware architecture.
This will then be compared to existing solutions to gain a
measure of the overall efficiency of the proposed FPGA-
based RSA solution.

2. Fundamental Math of RSA

2.1. Public Key Cryptography
From the original RSA paper by R.L. Rivest, A. Shamir,
& L. Adleman [1], an asymmetric cryptographic system
was proposed that uses modular exponentiation for
encryption and decryption. For ease of implementation it
was proposed that both the encryption and decryption
functions be identical; the only difference being the input
data. The term ‘asymmetric cryptographic’ means that
the keys used for encryption and decryption are different.
In the case of RSA, the encryption key is made publicly
available and the decryption key is kept private.

The encryption/decryption chain is described as follows
where M is the original message data, C is the encrypted
message or cipher text, e, m is the publicly available
encryption key, and f is the decryption key:

mMC e mod=
mCM f mod=

Key generation for RSA starts with the selection of two
prime numbers which are then multiplied together to
produce the publicly visible modulus m:

qpm ⋅=

The strength of RSA is based on the difficulty of
factoring m to discover the original primes p,q. Hence the
larger the value of these primes, the harder the
factorisation problem becomes. Again, typical values for
these primes are 512 to 4096bits with the later
exponentially stronger than the former.

Next an integer, e, that is relatively prime to (p-1)(q-1), is
chosen as the public key. Typically and for practical

CF-032305-1.0

- 2 -

reasons, e can be one of the first Fermat Numbers 3, 5,
17, 33 which will always satisfy the following:

1),gcd(
)1()1(

=
−⋅−=

mxe
qpmx

gcd = greatest common divisor

To generate the private key, f, it is then necessary to find
the multiplicative inverse of e mod mx.

),(
1mod)(

mxeEucf
mxef

=
=⋅

Euc =Euclid’s Algorithm

Finally, publish e, m as the public key and keep f secret.
Ideally, the values of p, q, the generator primes should be
destroyed.

The following is a practical example of RSA key
generation and an RSA-based cryptographic exchange.

1. Generator primes create the modulus:

3337,
71,47
=⋅=

==
mqpm

qp

2. Public key calculated:

79
1)3220,gcd(

3220)171()147(

=∴
=

==−⋅−

e
e

mx

3. Private key calculated:

1019)3220,79(
13220mod)79(
==∴

=⋅
Eucf

f

4. Message, a data block to the value of 688, encrypted
using the public key:

15703337mod688
688

79 ==
=

C
M

5. Cipher text decrypted with the private key to obtain
the original data block:

6883337mod1570
1570

1019 ==

=

M
C

2.2. Key Exchange
Beyond this asymmetric cryptography example, RSA
Math has practical applications in symmetric
cryptography (where the encryption and decryption keys
are identical). In symmetric systems the problem of how
to safely distribute or exchange private keys exists. A
subset or optimised version of RSA math is used in what

is known as the Diffie-Helman key exchange [2], where
the public exchange of data leads to two parties securely
establishing symmetric/private keys. Essentially this is an
optimised way of using RSA public key technology to
securely generate private keys.

The following table depicts the calculation flow for the
Diffie-Helman key exchange.

Entity A Entity B

Agree on and swap the systems variables p & g

11 −<<
=

pg
primep

Generate private variable x

21 −<< px

Generate private variable y

21 −<< py

Calculate and swap the
public variable e

pge x mod=

Calculate and swap the

public variable f
pgf y mod=

Calculate the shared key k

pfk x mod=

Calculate the shared key k’

pek y mod'=

Both Entities share the same secret key
'kk =

The values k & k’ can now be used as the basis for
symmetric/private keys.

2.3. Modular Exponentiation
It is clear from the RSA and Diffie-Helman operations
that, beyond the generation and testing of variables and
primes, the fundamental operation of both of these is the
modular exponentiation:

MXZ E mod=

Performance of RSA-based systems is therefore tightly
coupled to the calculation speed of the modular
exponentiation implementation.

3. RSA Math for FPGA

3.1. Modular Exponentiation
A common basic-form method for calculating modular
exponentiation is the multiply and square algorithm:

MXZ E mod= where ∑ −

=
∈= 1

0
}1,0{,2n

i i
i

i eeE

1. XPZ == 00 ,1
2. FOR i = 0 to n-1 loop
3. MPP ii mod2

1 =+

4. IF (ei = 1) THEN MPZZ iii mod1 ⋅=+

 ELSE ii ZZ =+1
5. END FOR

- 3 -

Essentially, the algorithm is a running accumulation of
squaring and multiplication steps. At each stage the mod
M function is performed to keep any intermediate
variables within the integer range of M; a second option
is to allow the intermediate variables to grow and
perform the mod M as a single final operation.
Considering FPGA hardware implementations, the first
option is more desirable as it will keep the multiplication
functions in hardware down to a practical bit width.
However, both methods use the modulus operation. The
implementation of any modulus function usually involves
a divide operation (to discover the remainder). A divide
operation in computing hardware terms is considered
complex and, wherever possible, is avoided.

The efficiency of the modular multiplier used in the
multiply and square algorithm is key to the performance
of RSA-based crypto systems.

3.2. Montgomery Math
Performing modular multiplication using Montgomery’s
techniques [3][4] removes the requirement for the
division operation, leading to more a efficient FPGA-
based implementation. To implement a modular
exponentiation using Montgomery’s techniques, a
Montgomery Multiplier is used to implement the squares
and multiplies used in the standard square and multiply
algorithm.

To calculate the product of AB mod M, where:

∑ −

=
= 1

0
2n

i
i

iaA ∑ −

=
= 1

0
2n

i
i

ibB ∑ −

=
= 1

0
2n

i
i

imM

}1,0{,, ∈iii mba

Using Montgomery Multiplication the following iterative
algorithm is used:

In this algorithm, any divide operations needed to keep
the intermediate variables (and hence the final result)
within the integer range of M are done using powers of 2,
which is a division that is very cheap in hardware! With
Montgomery Multipliers, accumulation of the product is
the same as in a normal modular multiplier, i.e. an
addition when a bit is set. The difference is that instead
of subtracting the modulus when the intermediate
variables outgrow M by examining the MSB end of the
variables, it is done by examining the LSB end and
adding the modulus. To accommodate this change the
running accumulation is right shifted each iteration, and
not left shifted. A benefit of using the LSB end of the

variables is that no long carry chains are needed to decide
whether or not to readjust for the integer range of M.

As a result of the optimisations in the Montgomery
Multiplier, specifically the right shifts, there is an
inherent factor present in the result; the actual calculation
performed is:

MBAS n mod2−⋅⋅=

To remove this factor it is necessary to convert the input
operands A & B into m-residue format. To convert to m-
residue format use the following:

MAAr n mod2⋅=

As both operands need to be converted to m-residue
format for compatibility the result from the Montgomery
Multiplier will now be:

MBrArS n mod2⋅⋅=

To remove this extra factor of 2n it is simply a matter of
performing one more Montgomery Multiply by 1 (as the
integer, NOT as its m-residue representation). This is
because multiplication by a non m-residue value will re-
introduce the 2-n factor:

MSS n mod21 ⋅⋅=

Implementing modular exponentiation using
Montgomery Multiplication is a simple process
beginning with converting X to m-residue format:

MXXr n mod2⋅=

which can of course be implemented using Montgomery
Multiplication:

MNr n mod22=),,(MNrXMontprodXr =

Then, use the standard multiply and square algorithm to
bind together the Montgomery Multipliers, including the
conversion to m-residue and the final multiplication by 1:

MontProd(A,B,M)
1. 01 =−S
2. FOR i = 0 to n-1 loop
3. 2mod)(1 AbSq iii += −

4.
2

)(1 AbMqSS iii
i

++= −

5. END FOR
6. RETURN 1−nS

MontExp(X,E,M)
1. MNr n mod22=
2.),,1(0 MNrMontprodZ =

3.),,(0 MNrXMontprodP =
4. FOR i = 0 to n-1 loop
5.),,(1 MPPMontprodP iii =+

6. IF (ei = 1) THEN),,(1 MPZMontprodZ iii =+

 ELSE ii ZZ =+1
7. END FOR
8.),,1(MZMontprodZ nn =

9. RETURN nZ

- 4 -

Further to the examples and explanations given, the
Montgomery Exponentiator can be ordered to calculate
the square first then multiplication or vice versa; both of
which have various hardware implementation issues
which aren’t discussed in this section; but should be
noted. More importantly the adder at the heart of the
Montgomery Multiplier can be broken down into
iterative bit blocks or words. The algorithms described
thus far show the additions happening at full bit width
which has a significant impact on hardware
implementations. For example a 1024-bit RSA crypto
system would require a 1024-bit adder, which in FPGA
architectures would require a huge carry chain that will
require significant pipelining resources.

3.3. Extended Montgomery Math
To reduce the problems associated with the large adders
required to implement the core of a Montgomery
Multiplier, it is possible to break the adder down into
smaller words and use an iterative approach. This
technique will use a smaller adder with carry in and carry
out capability to work through the larger addition, word
by word, from the LSW up. Using smaller carry chains at
the core of the multiplier minimises the effort required to
successfully place and route any designs when targeting
an FPGA.

Beyond the advantages of limiting arithmetic operations
to keep the carry chains to a manageable length, it is also
desirable to match the core arithmetic to standard
memory and interface sizes. 16, 32, or 64 bits are
common interface sizes to and from FPGA memories,
processors, and bus systems. Therefore, any of these bits
sizes is optimal for the adder at the core of the
Montgomery Multiplier.

As a result of the iterative use of the core addition to
achieve modular exponentiation, natural word growth
will occur before any reduction can be applied to correct
for the modulus. To make head room for the extra 1.5bits
(2 in hardware terms) that can be gained from each
iteration of the Montgomery Multiplier, Blum
recommends appending the extra bits to the top of any
input exponent data and allowing two extra iterations of
the exponentiation algorithm to keep in range of the
modulus [4]. Just by automatically increasing the number
of bits to the next convenient word boundary will result
in simpler and smaller FPGA hardware.

The following section will discuss further the specifics of
a proposed architecture for a Montgomery
Exponentiation core.

4. Proposed FPGA Architectures

4.1. FPGA Basics
For the proposed architecture, referred to as ARSA, the
target FPGA technology will be the Cyclone or Stratix
family from Altera. Both of theses FPGA families feature
fast dedicated arithmetic logic in their base
programmable fabric and dedicated memory resources.

Details of the arithmetic modes will be described before
any specific details of ARSA are given.

The smallest element of an Altera Stratix or Cyclone
FPGA is the logic element (LE). Essentially, the LE is a
four-input SRAM-based lookup table and register stage.
Any combinational logic function of four inputs can be
stored and registered in an LE. The LE can operate in
one of two different modes. The first is normal mode, the
second is dynamic arithmetic mode. The illustration
below depicts the LE in normal mode:

Fig 1. An Altera LE configured in normal mode.

In this mode the LE is suitable for general logic
applications and combinatorial functions. The four data
inputs come from the general-purpose programmable
routing on a local level. Each LE in this mode also has
LUT chain connections where the LUT outputs drives the
fourth data input of the next LUT. Local dedicated
routing provides the register controls signals and the
register can be asynchronously loaded from the data 3
input.

In dynamic arithmetic mode, the LE is optimised for
implementing adders, counter, and accumulators. As
illustrated below:

Fig 2. An Altera LE configured in arithmetic mode.

The LE in this mode is partitioned into four two-input
LUTs. The first two LUTs compute two summations
based on a possible carry input of 1 or 0, and the other
two LUTs generate carry outputs that drive the dedicated
carry-out localised routing. The carry-in signals select the
relevant output from the summation LUTs and hence
reduce the combinatorial path in silicon when rippling a
carry chain through an adder. Likewise, the other two
LUTs calculate the possible carry outs, again one for a
carry in of 1, another for a carry in of 0. This technique is
known as carry-select arithmetic. In this mode there are

Row, Column
& Direct Link
Routing

Sync Load
&

Clear Logic Reg
4-Input

LUT

Register Control
Signals

Register
Chain Input

Register Chain
Output

LUT Chain Output

Data1
Data2
Data3
Data4

Cin

Local Routing

LUT Chain
Input

Register
Feedback

Row, Column
& Direct Link
Routing

Sync Load
&

Clear Logic Reg
4-Input

LUT

Register Control
Signals

Register
Chain Input

Register Chain
Output

LUT Chain Output

Data1
Data2
Data3
Data4

Cin

Local Routing

LUT Chain
Input

Register
Feedback

Sync Load
&

Clear Logic Reg

Two
2-Input
LUTs

(Carry)

Register Control
Signals

Register Chain
Input

Data1
Data2
Data3

Local Routing

Two
2-Input
LUTs
(Sum)

Register Chain Output

addnsub

Carry-Out
Logic

Carry-In
Logic

LAB Carry-In
Carry-In0
Carry-In1

Carry-
Out1

Carry-
Out0

Row, Column
& Direct Link
Routing

Sync Load
&

Clear Logic Reg

Two
2-Input
LUTs

(Carry)

Register Control
Signals

Register Chain
Input

Data1
Data2
Data3

Local Routing

Two
2-Input
LUTs
(Sum)

Register Chain Output

addnsub

Carry-Out
Logic

Carry-In
Logic

LAB Carry-In
Carry-In0
Carry-In1

Carry-
Out1

Carry-
Out0

Row, Column
& Direct Link
Routing

- 5 -

also controls for counter enable, dynamic adder /
subtractor select, and register reset and preset.

Local routing is used to connect LEs together into
columns of 10 to form logic array blocks (LABs). A
LAB contains localised general-purpose routing for the
data inputs and dedicated routing for the carry chains and
the LE control signals. Specifically, the LAB also routes
a LAB carry-in signal that allows each LE to select either
carry 1 or carry 2 hence selecting an entire pre-computed
carry chain of ten bits. This removes a lot of LEs from
the critical path making any adder performance
dependant only on the propagation delay through the
LAB carry-in routing. This feature gives Altera’s FPGAs
the ability to implement very high-speed adder- and
subtractor-based logic. The diagram below shows the
grouping of 10 LEs into a LAB:

Fig 3. The Altera Logic Array Block Structure.

Adder performance in FPGAs is a critical when
considering a core architecture for a Montgomery
Multiplier-based exponentiator.

4.2. RSA Core Architecture
From the math behind Montgomery Exponentiation, it is
clear that the iterative use of the following expressions:

2mod)(1 AbSq iii += −

2
)(1 AbMqSS iii

i
++= −

need to be bound in a controlling architecture that routes
the word-wise portions of the data through them.
Calculation of qi can be achieved through simple logic
functions and uses a select line to allow the modulus to
route into a two-stage adder tree. The following diagram
depicts the arithmetic core for the proposed ARSA.

Fig 4. ARSA Montgomery Multiplier Core Logic.

Here, the adders in cascade are registered at the output
before the value of S is fed back for the next iteration. In
this depiction the fed back path is a conceptual one to
illustrate the need for single cycle operation, whereas in
the proposed ARSA core the S word-wise data will come
from and go to intermediate memory stores until the full
bit-length S is calculated. The adders and the
intermediate stores are configurable to 16, 32, or 64 bits
in width; the choice of which width obviously affects the
word-wise cycle time to calculate the intermediate values
of S in the Montgomery Multiplier.

To implement the complete exponentiator, the
intermediate stores for the value of S can be partially
merged into on-chip memories that are used to store the
values of P & Z as referenced by the Montgomery
Exponentiator function. From a high-level perspective
the complete core for the proposed ARSA will look as
follows:

Fig 5. ARSA Top Level Architecture.

It is clear that the values of Z, P, & M need to be fetched
from memory to feed the Montgomery Multiplier, and
that the resulting values of either Z or P need to be

LE1
4

4

4

4

4

4

4

4

4

4

Control
Signals

Local
Interconnect

LE2

LE3

LE4

LE5

LE6

LE7

LE8

LE9

LE10

Logic
Element

LE1
4

4

4

4

4

4

4

4

4

4

Control
Signals

Local
Interconnect

LE2

LE3

LE4

LE5

LE6

LE7

LE8

LE9

LE10

Logic
Element

- 6 -

written back to their respective memories. To keep the
performance of the ARSA at a maximum, it is necessary
to maintain single-cycle performance through this read-
modify-write process. The latency associated with
fetching the relevant data and writing it back to the
global P & Z memories can be hidden by a registered
pipeline. However the core addition block must maintain
single-cycle performance.

Because of the single-cycle requirement of the cores the
carry chain path will be a critical factor in the overall
performance of the ARSA. For reference, in the highest
speed grade device in Altera’s Stratix family, a 16-bit
adder will run at 370 MHz, and a 64-bit adder at 290
Mhz. In the Montgomery Multiplier block there are two
stages of addition that must be performed, essentially
making the carry chain twice as long for each of the
configurable 16, 32, or 64-bit modes. Based on the
Stratix performance figures it is anticipated that the even
in 64-bit mode the cascaded adders will achieve
210+MHz performance.

In order to make the core generically and linearly
scalable in performance, it is necessary to ensure that the
most critical path in the proposed ARSA core is not one
that can be modified by the generic bit word width. To
ensure this, the ARSA core has been architected to make
sure that the generic arithmetic and memory read and
write paths are as tightly designed to use localised
routing and resources as possible. This means that the
most critical path in the proposed ARSA architecture
exists in the control-path state machines that have to
guarantee the single-cycle operation of the arithmetic
logic. Currently, state machine execution has a longest
combinatorial path of 5 nS, allowing 200 MHz
performance. The result is that the generic settings for
word width can be varied without affecting the 200 Mhz
ARSA clock rate resulting in a linear 1x, 2x, and 4x
performance increase.

Interfacing to the core is designed to provide the simplest
connection to processors and bus systems. A memory
style interface, where the values of X, E, & M are written
in and Z is read out by means of an address bus and
read/write line, allowing the ARSA core to interoperate
with any common DMA and bus standard available. The
only ancillary signal required is the GO flag to indicate
that input data has been loaded and to begin execution of
the Montgomery Exponentiation algorithm.

On completion, DONE is flagged high and can be used
as an interrupt to read the results from the ARSA core.
Due to the simple nature of the interface, it is clear that
during the write and read period of the ARSA the core is
idle. For applications that require continuous data flow at
a rate, where the write, read, and core execution times
may interrupt this flow, the ARSA can extend its internal
memories to work as double, triple, quad, extending to
any size buffered configurations. By accessing these
memories round-robin fashion, the write, read, and
execution times are converted into latency, not
degradation in throughput.

Current work into the proposed ARSA architecture is
focused towards using the advanced place and route
technologies in Altera’s FPGA design tool, Quartus II, to
build an optimised 128-bit arithmetic core to achieve an
8x linear performance gain. This can be achieved by
moving the position of the single-cycle register and the
registers that exist at the output of the memories to break
the carry chains between the larger cascaded 128-bit
adders. This process of register balancing yields very
successful results adding to the overall scalability of the
ARSA core.

4.3. Resources and Performance Summary
The tables and expressions in this section show a
summary of the resource utilisation required for each
generic implementation of the proposed ARSA core and
the achievable performance in the Altera Stratix and
Cyclone FPGA Family.

Table 1. ARSA Core Resource & Performance.

Core LE’s FMax MHz
ARSA 16 300 200
ARSA 32 500 200
ARSA 64 700 200
ARSA 128 900 200

The generics that control the implementation of the
ARSA core are step_size and rsa_size. It is possible to
change the rsa_size parameter on-the-fly so any
references to ARSA core use the step_size parameter as a
prefix, e.g. ARSA16 for the 16bit ARSA core. It is also
assumed that the values of E, X, & M are all the same
length in bits as is in the case of RSA decryption.

To calculate the memory requirements in bits for each
ARSA core use the following expression:

)__(6 sizestepsizersabits +⋅=

Table 2. ARSA Core Memory Requirements in Bits.

 Modular Exponentiation Size in Bits
 256 512 1024 2048 4096

ARSA 16 1632 3168 6240 12384 24672
ARSA 32 1728 3264 6336 12480 24768
ARSA 64 1920 3456 6528 12672 24960
ARSA 128 2304 3840 6912 13056 25344

To calculate the number of clock cycles required to
calculate a Modular Exponentiation and hence the total
time for calculation use the following expressions:

)_(511 sizersaiters ⋅+=

sizestep
sizestepsizersaiterscycs

_
)2__(_

2++=

iterscycsiterscycles _⋅=

- 7 -

FMax
cyclesmStime 1000_ ⋅=

Table 3. ARSA Core Execution Time in mS.

 Modular Exponentiation Size in Bits
 256 512 1024 2048 4096

ARSA 16 9.032 67.50 521.5 4099 32500
ARSA 32 5.059 35.82 268.8 2081 16380
ARSA 64 3.118 20.07 142.6 1073 8316
ARSA 128 2.241 12.38 79.95 569.4 4287

5. Discussion inc. RSA Implementations

5.1. Other Hardware Implementations
To fully appreciate the benefits of the features and
performance of the ARSA core, it is useful to compare it
with other existing solutions. Two recent notable
implementations have been those done by Blum [4] and
Daly & Marnane [5]. In both of the cases examined here,
they are very large (see Table 4) and therefore expensive
solutions. In almost all designs, the size of intellectual
property (IP) cores, like Modular Exponentiators,
seriously impacts the architecture of a system’s design in
two ways: (a) as the IP block becomes larger, it becomes
more difficult to route the rest of the design at speed, and
(b) usually IP is a smaller, albeit essential, building block
of a system and therefore size and cost should be kept to
a minimum. For this reason the ARSA core was
originally targeted at a size-efficient implementation that
is linearly generic in performance to serve as an
application-specific processor.

The ARSA, Blum, and Daly & Marnane Modular
Exponentiators all use different architectures. The Blum
design uses a systolic array approach and the Daly &
Marnane design uses a large pipelined adder
approximately the size of the modulus. The major
disadvantage of these two architectures is their lack of
scalability. Both have been optimised for RSA sizes up to
1024 bits. For larger sizes like 2048, 4096, & 8192, as
specified by IPSEC for the key exchange protocols, both
architectures will grow very large; much larger than can
be sensibly implemented cost effectively in an FPGA at
the time of this writing. Also, in the case of the Daly &
Marnane design, due to the large adder, the performance
drops off with increasing bit lengths making the design
untenable for large RSA applications.

The ARSA design runs at a much higher clock rate than
the other two designs but only occupies a fraction of the
FPGA LUT resources giving it a better overall size/speed
ratio. The following section will analyse the overall
size/speed ratios of all 3 designs.

5.2. Performance Comparisons & Summary
All comparisons are based on 1024-bit RSA decryption
operations. The Blum and Day & Marnane designs were
implemented in Xilinx FPGAs and have had their slice
resource counts converted to Altera LEs. The following
table details device utilisation and performance for the
different designs, Blum proposes two.

Table 4. Modular Exponentiation Design Summary.

Design LE’s MHz Exp mS LE x FMax
Daly 20700 50 20 1656000

Blum1 13200 72 12 950400
Blum2 9600 66 40 633600

ARSA 16 300 200 521.5 60000
ARSA 32 500 200 268.8 100000
ARSA 64 700 200 142.6 140000

ARSA 128 900 200 79.95 180000

Clearly, although the ARSA core is slower it is also
significantly smaller. The ARSA architecture is based
around very tight localised routing in a very small space
making it possible to parallel up many ARSA cores to
boost overall performance. The next table shows the
reduction factors for area and speed when comparing the
ARSA to the other designs.

Table 5. RSA Speed Vs LE’s.

 ARSA Vs Daly ARSA Vs Blum1 ARSA Vs Blum2
ARSA Smaller Slower Smaller Slower Smaller Slower

16 69.00 26.08 44.00 43.46 32.00 13.04
32 41.40 13.44 26.40 22.40 19.20 6.72
64 29.57 7.13 18.86 11.89 13.71 3.57
128 23.00 4.00 14.67 6.66 10.67 2.00

On average there is a 2.7x performance boost when using
the ARSA design. It is appreciated that the Blum and
Daly & Marnane designs were implemented in slightly
older technology and that this has to be taken into
account. To do this, the LE x FMax product is used to
remove the effects of the higher performing Altera
silicon. This will put the different designs on a level
playing field for comparison. The Daly & Marnane
design is only a single technology step behind and it is
very unlikely that it will attain the same FMax as the
ARSA core. A leap in FMax performance to match the
ARSA by the Blum design is also unlikely when
targeting the latest and fastest FPGA silicon; but by
normalising out FMax the fairest ‘architecture-only’
comparison can be made. The following table again
shows the reduction factors for area and speed but this
time independent from recent advances in FPGA
technology.

Table 6. RSA Speed Vs LE x FMax Products.

 ARSA Vs Daly ARSA Vs Blum1 ARSA Vs Blum2
ARSA Smaller Slower Smaller Slower Smaller Slower

16 17.25 26.08 15.84 43.46 10.56 13.04
32 10.35 13.44 9.50 22.40 6.34 6.72
64 7.39 7.13 6.79 11.89 4.53 3.57
128 5.45 4.00 5.28 6.66 3.52 2.00

Because the ARSA core is generically scalable in
performance there are a number of different speed/size
ratios that can be chosen. For the 64-bit and 128-bit

- 8 -

ARSA core, the average performance increase for the
FMax independent comparisons is 1.15x.

All of the comparisons shown are based on 1024-bit RSA
decryption. The lack of scalability and the non-linear
performance increase associated with the other designs
means that the 2.7x and 1.15x performance gains of the
ARSA core will continue to grow as the RSA word size
grows due to its limitless linear scalability.

6. Conclusions
Although raw performance is desirable it is not necessary
for all uses of RSA-based technology. A combination of
scalability and linearly increasing performance is more
useful when considering the range of RSA-based
encryption applications. These can range from low-bit
rate single-channel voice communication, simple key
exchanges, credit card transactions, to high-speed IPSEC
key exchanges and bulk-traffic encryption on the internet.
The ARSA core achieves a mix of performance and
scalability to cover all of these applications suitably. By
exploiting Altera’s high speed arithmetic capabilities in
their Stratix & Cyclone family it has been shown how to
architect the best RSA solution whilst making the most
out of the resources available. Silicon efficiency has a
significant impact on cost beyond the obvious advantages
of a scalable architecture in performance terms. Thus, the
ARSA core provides a very broad range of
cost/performance points. Interfaces to ARSA core have
been designed in such away that connection to any
standard processor or bus is as simple as possible. All of
these in combination make the ARSA core the most cost-
effective broad-performing RSA solution for accelerating
RSA-based cryptography systems.

References

[1] “A Method For Obtaining Digital Signatures And
Public-Key Crypto Systems” by R.L. Rivest, A. Shamir,
and L. Adleman

[2] “Diffie Helman” by W.Diffie and M.Helman

[3] “Montgomery Exponentiation With No Final
Subtractions: Improved Results” by Gachel Hachez and
Jean-Jaques Quisquater

[4] “Modular Exponentiation on Reconfigurable
Hardware” by Thomas Blum

[5] “Efficient Architectures for Implementing
Montgomery Modular Multiplication and RSA Modular
Exponentiation on Reconfigurable Logic”
by Alan Daly and William Marnane

gcandlan
Copyright

