
Summary This application note describes the implementation of R’G’B’ Color Space to Y’CbCr Color
Space conversion necessary in many video designs. The tick marks on red, green, blue, and
Luma, assume the components are in the gamma corrected space. No gamma correction is
applied to color difference signals Cr and Cb.

The reference design files show RTL (VHDL and Verilog) code to describe the conversion
equations and synthesize to a target FPGA. The code is parameterizable for the input/output
precision (8 bit or 10 bit) and the internal coefficient precision (8 to 13 bits have been defined).
Simulation test vectors (25%, 50%, 75%, and 100% RGB Color Bars) are also provided in the
reference design file to confirm compliance to ITU-R BT.601-2 component video standards
(SDTV)[3].

As an implementation example, placed and routed design in a Spartan-IIE device
(2S50E-6TQ144) takes about 20% of that device (150 slices) and clock performance of 99 MHz
using simple constraints (8-bit input/output and 8-bit internal coefficients).

HDTV color space coefficients are different (covered in BT.709-3, June 1990). This application
note does not cover this area.

Color Space
Definition

Different color spaces have historically evolved for different applications. In each case, a color
space was chosen for applicable reasons. A choice was made on a particular color space
because the math elements needed to process were simpler or faster. A a certain choice was
better because it required less storage and bandwidth on digital buses.

Whatever historical reasons caused color space choices in the past, the convergence of
computers, the Internet, and a wide variety of video devices, all using different color
representations, is forcing the digital designer today to convert between them. The objective is
to have all inputs are converted to a common color space before algorithms and processes are
executed. Converters are useful for a number of markets, including image processing and
filtering. The converters’ basic function is to convert from one color space to another. This
application note describes one such conversion.

Three-Color
Space
Examples

RGB Color Space
RGB color space is a simple and robust color definition used in computer systems and the
Internet to help ensure correct mapping of a color from one platform to another without
significant loss of color information. RGB uses three numerical components to represent a
color. This color space can be thought of as a three-dimensional coordinate system whose
axes correspond to the three components, R or red, G or green, and B or Blue. RGB is the color
space used by computer displays. RGB corresponds most closely to the behavior of the human
eye.

RGB is an additive color system. The three primary colors red, green, and blue are added to
form the desired color. Gamma-corrected values are noted R'G'B'. Each component has a

Application Note: Virtex, Spartan-II, Virtex-E, Spartan-IIE, and Virtex-II Families

XAPP637 (v1.0) September 12, 2002

Color Space Converter: R’G’B’ to Y’CbCr
Author: Benoit Payette

R

XAPP637 (v1.0) September 12, 2002 www.xilinx.com 1
1-800-255-7778

© 2002 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature,
application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may
require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties
or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

Color Space Converter: R’G’B’ to Y’CbCr
R

range of 0 to 255 (for a 8-bit representation), with all three 0s producing black and all three 255s
producing white. Figure 1 shows the RGB color cube (on the left) with the eight corners.

Y’CbCr Color Space
Y’CbCr Color Space was developed as part of the Recommendation ITU-R BT.601 for
worldwide digital component video standard and is used in television transmissions. Y’CbCr is
a scaled and offset version of the YUV color space where Y represents luminance (or
brightness), U represents color, and V represents the saturation value. Here the RGB color
space is separated into a luminance part (Y’) and two chrominance parts (Cb and Cr).

The historical reasons for this choice, over R’G’B’, were to reduce storage and bandwidth.
Since the eye is more sensitive to change in brightness than change in color, the reduction in
bandwidth requirement seemed a valid trade for little or no visual difference.

Engineers found 60% to 70% of luminance or brightness is in the "green color." In the
chrominance part Cb and Cr, the brightness information can be removed from the blue and red
colors.

To generate the same color in the RGB format, all three color components should be of equal
bandwidth. This requires more storage space and bandwidth. Also, processing an image in the
RGB space is more complex since any change in the color of any pixel requires all the three
RGB values to be read, calculations performed, and then stored. If the color information is
stored in the intensity and color format, some of the processing steps can be made faster.

As a result, Cb and Cr provide the hue and saturation information of the color and Y’ provides
the brightness information of the color. Y’ is defined to have a range of 16 to 235 and Cb and Cr
have a range of 16 to 240 with 128 equal to zero. [1] [2] [4] Because the eye is less sensitive to
Cb and Cr, engineers did not need to transmit Cr and Cb at the same rate as Y’. Less storage
and bandwidth was needed, resulting in design costs being reduced.

Figure 1 shows the Y’CbCr color cube (on the right) with the eight corners converted from the
RGB color cube.

Converting from R’G’B’ to Y’CbCr
A color in the R'G'B' color space is converted to the Y'CbCr color space using the following
equations: [1] [2]

Conversion Equations

where R'G'B' are gamma-corrected RGB values, all input and output signals are 8-bit values.

Figure 1: RGB and Y’CbCr Color Cubes

R

G

B(0, 0, 0)

(1, 0, 0)

(0, 1, 0)

(0, 0, 1)

(1, 1, 1)

(0, 1, 1)

(1, 1, 0)

(1, 0, 1)

Cr

Y'

Cb

Ye

Cy

Ma

Wh

Bk
B

R

G

Ma

Ye

Bk

Wh

Cy

x637_01_090302

Y’ 16 0.257R 0.504G 0.098B+ +()+=

Cb 128 0.148R– 0.291G– 0.439B+()+=

Cr 128 0.439R 0.368– 0.071B–()+=
2 www.xilinx.com XAPP637 (v1.0) September 12, 2002
1-800-255-7778

http://www.xilinx.com

Color Space Converter: R’G’B’ to Y’CbCr
R

Figure 2 shows a direct mapping of these three equations. There is no obvious duplication to
reduce the implementation. However, it is possible to reorganize the color difference equations
to reduce the number of constant multipliers. The actual reference design does not develop
these.

The recommendation ITU-R BT.601-2 defines the rate for Y, Cb, and Cr to be transmitted in a
4:2:2 sampling scheme (i.e., for every four samples of Y, only two samples of Cb and Cr are
transmitted.) If 8 bits per component are used, a 16-bit system is required. Effectively, this is an
8/24 = 1/3 saving in bandwidth. The sampling of Y’CbCr is shown below.

The 4:2:2 is the standard for digital studio equipment (usually 27 MHz clock for SDTV, 75 MHz
for HDTV). However, this reference design will not implement the 4:2:2 sampling scheme.
Instead, it implements the 4:4:4 sampling scheme as defined in the Appendix A of ITU-R
BT.601-2 that matches the input data rates.

Code Implementation of the Color Space Conversion (csc.vhd or csc.v)
The Conversion Equations and Figure 2 show a general but inefficient flow. Rounding usually
looks at the decimal value and if it is greater than or equal to 0.5, then the result is increased by
one. This implies a condition to verify and another operation. A more efficient way to round a
number is to add 0.5 to the result and truncate the decimal value. This operation is included in
the constant number.

The results of the constant multiplier are not added in a large tree of adders to get the final
output. Instead, the following equations are used to ease future pipelining and to avoid negative
internal numbers. All input/output signals are assumed to be 8-bit values. For 10-bit values, the
development is similar (Appendix A).

Figure 2: General Block Diagram Showing Math Elements

Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7 …

Cb0 Cr0 Cb2 Cr2 Cb4 Cr4 Cb6 Cr6 …

X X

G' B'

Y'

16R'

X +

0.257 0.504 0.098

Rounding
and Limit

X X Cb

128

X +

–0.148 –0.291 0.439

Rounding
and Limit

X X Cr

128

X +

0.439 –0.368 –0.071

Rounding
and Limit

x637_01_091102
XAPP637 (v1.0) September 12, 2002 www.xilinx.com 3
1-800-255-7778

http://www.xilinx.com

Color Space Converter: R’G’B’ to Y’CbCr
R

First, the constant multipliers are computed, then two adders are used in parallel to compute
the inner results, then a last adder or subtractor is used to compute the final result. The way the
internal elements are grouped will never produce a negative number. Only three clock cycles
(the latency) are required to compute the result.

Internal Precision
The reference design has the capability to set the internal precision for the coefficients of Y’,
Cb, and Cr. The minimum precision is 8 bits and the code offers a coefficient precision of up to
13 bits. When the test vectors are used to test the code, the output results would probably differ
by ±1 compared to a calculator's answer for 8-bit signals. This only depends on the internal
precision of the coefficient. To satisfy the 25%, 50%, 75%, and 100% RGB color bars, use a 13-
bit Y', an 11-bit Cb, and a 10-bit Cr (see the following details). As a comparison, the 8-bit
precision is presented in the next section Reference Design Implementation.

Y' = truncate {[(16.5 + 0.504G) + (0.257R + 0.098B)]}

If scaled up by 8192 (= 213 or 13-bit range)

⇒ Y' = (1/8192) × [(135168 + 4129G) + (2105R + 803B)]

Cb = truncate {[(128.5 + 0.439B) − (0.148R + 0.291G)]}

If scaled by 2048 (= 211 or 11-bit range)…

⇒ Cb = (1/2048) × [(263168 + 899B) − (303R + 596G)]

Cr = truncate {[(128.5 + 0.439R) − (0.368G + 0.071B)]}

If scaled by 1024 (= 210 or 10-bit range)…

⇒ Cr = (1/1024) × [(131584 + 450R) − (377G + 73B)]

Reference
Design
Implementation

Using RTL Code (csc_top.vhd or csc_top.v)
In this implementation, the R'G'B' to Y'CbCr conversion equations were synthesized. All the
signals are registered at the input and at the output to simulate a real system (thus a total of five
clock cycles). The synthesized netlist file was placed and routed using ISE4.2i SP3. A simple
timing constraint of 12.5 ns was given to the synthesis and place and route tools. The
implementation results are listed in Table 1.

An 8-bit I/O requires 51 ports (eight for each color input and output, one for each clock, clock
enable and reset). A 10-bit I/O requires 63 ports (ten for each color input and output, one for
each clock, clock enable and reset).

The VHDL and Verilog reference designs for this application note are available on the Xilinx
FTP site at ftp://ftp.xilinx.com/pub/applications/xapp/xapp637.zip. The design files include
RTL code, an auto-verifiable testbench and an excel spreadsheet about coefficient precision.

Y’ round and limit 16 0.257R 0.504G 0.098B+ +()+{ }=

Cb round and limit 128 0.148R– 0.291G– 0.439B+()+{ }=

Cr round and limit 128 0.439R 0.368G– 0.071B–()+{ }=

Y’ truncate 16.5 0.257R 0.504G 0.098B+ +()+{ }=

Cb truncate 128.5 0.148R– 0.291G– 0.439B+()+{ }=

Cr truncate 128.5 0.439R 0.368G– 0.071B–()+{ }=

Y’ truncate 16.5 0.504G+() 0.257R 0.098B+()+[]{ }=

Cb truncate 128.5 0.439B+() 0.148R 0.291G+()–[]{ }=

Cr truncate 128.5(0.439R) 0.368(G– 0.071B)+ +[]{ }=
4 www.xilinx.com XAPP637 (v1.0) September 12, 2002
1-800-255-7778

ftp://ftp.xilinx.com/pub/applications/xapp/xapp637.zip
http://www.xilinx.com

Color Space Converter: R’G’B’ to Y’CbCr
R

Conclusion The result of the synthesis and implementation demonstrates the converter functionality. The
RTL VHDL or Verilog code describing the conversion equations uses available resources in the
Virtex, Spartan-II, Virtex-E, Spartan-IIE, and Virtex-II devices. No block RAMs or embedded
multipliers are consumed. Faster implementations are possible using more pipelines or by
using dedicated cores (constant multipliers). A different approach with color difference
equations can also be explored.

Table 1: RTL Implementation Design Summary (from VHDL code)

Device
In/Out Precision

(bits

Coefficient
Precision
(Y’/Cb/Cr)

Number of
Slices

(% of Device)
MIN Period in ns
(MAX Frequency)

Virtex Device
XCV50-4TQ144

8 8/8/8 150/768 (20%) 12.051 (83 MHz)

13/11/10 236/768 (31%) 12.405 (81 MHz)

10 8/8/8 173/768 (23%) 12.361 (81 MHz)

13/11/10 283/768 (37%) 15.784 (63 MHz)

Spartan-II Device
XC2S30-5TQ144

8 8/8/8 150/432 (35%) 10.903 (92 MHz)

13/11/10 236/432 (55%) 12.378 (81 MHz)

10 8/8/8 173/432 (40%) 10.698 (93 MHz)

13/11/10 283/432 (66%) 13.415 (75 MHz)

Virtex-E Device
XCV50E-6CS144

8 8/8/8 150/768 (20%) 9.844 (102 MHz)

13/11/10 236/768 (31%) 11.959 (84 MHz)

10 8/8/8 173/768 (23%) 10.421 (96 MHz)

13/11/10 283/768 (37%) 12.911 (77 MHz)

Spartan-IIE Device
XC2S50E-6TQ144

8 8/8/8 150/768 (20%) 10.148 (99 MHz)

13/11/10 236/768 (30%) 11.863 (84 MHz)

10 8/8/8 173/768 (22%) 10.605 (94 MHz)

13/11/10 283/768 (37%) 13.316 (75 MHz)

Virtex-II Device
XC2V80-4CS144

8 8/8/8 150/768 (19%) 10.734 (93 MHz)

13/11/10 236/768 (30%) 10.151 (99 MHz)

10 8/8/8 173/768 (22%) 9.647 (104 MHz)

13/11/10 283/768 (36%) 11.986 (83 MHz)

Virtex-II Pro Device
XC2VP2-6FG256

8 8/8/8 150/768 (19%) 7.489 (134 MHz)

13/11/10 236/768 (30%) 7.323 (137 MHz)

10 8/8/8 173/768 (22%) 7.170 (139 MHz)

13/11/10 283/768 (36%) 8.177 (122 MHz)
XAPP637 (v1.0) September 12, 2002 www.xilinx.com 5
1-800-255-7778

http://www.xilinx.com

Color Space Converter: R’G’B’ to Y’CbCr
R

References The basic color space conversion equations are defined in ITU-R BT.601 standard. Other noted
references are listed.

1. Keith Jack, Video Demystified: A Handbook for the Digital Engineer, Third Edition (Eagle
Rock, VA: LLH Technology Publishing, 2001) ISBN 1-878707-95-7

2. Charles Poynton, Frequently Asked Questions about Color (www.inforamp.net/~poynton,
12/30/1999) PDF document on the web

3. ITU-R Recommendation BT.601-2, Encoding Parameters of Digital Television for Studios
(1982-1986-1990), [formerly CCIR Rec. 601-2] (Geneva: ITU, 1990)

4. Charles Poynton, A Guided Tour of Color Space (www.inforamp.net/~poynton, 8/19/1997)
PDF document on the web

Appendix A This appendix has the calculations for color space conversion of 10-bit values. The
development is similar to the 8-bit values (page 3).

Revision
History

The following table shows the revision history for this document.

Y’ round and limit 64 0.257R 0.504G 0.098B+ +()+{ }=

Cb round and limit 512 0.148R– 0.291G– 0.439B+()+{ }=

Cr round and limit 512 0.439R 0.368G– 0.071B–()+{ }=

Y’ truncate 64.5 0.257R 0.504G 0.098B+ +()+{ }=

Cb truncate 512.5 0.148R– 0.291G– 0.439B+()+{ }=

Cr truncate 512.5 0.439R 0.368G– 0.071B–()+{ }=

Y’ truncate 64.5 0.504G+() 0.257R 0.098B+()+[]{ }=

Cb truncate 512.5 0.439B+() 0.148R 0.291G+()–[]{ }=

Cr truncate 512.5(0.439R) 0.368(G– 0.071B)+ +[]{ }=

Date Version Revision

09/12/02 1.0 Initial Xilinx release.
6 www.xilinx.com XAPP637 (v1.0) September 12, 2002
1-800-255-7778

http://www.xilinx.com

	Summary
	Color Space Definition
	Three-Color Space Examples
	RGB Color Space
	Y'CbCr Color Space
	Converting from R'G'B' to Y'CbCr
	Code Implementation of the Color Space Conversion (csc.vhd or csc.v)
	Internal Precision

	Reference Design Implementation
	Using RTL Code (csc_top.vhd or csc_top.v)

	Conclusion
	References
	Appendix A
	Revision History

