
WP127 (v1.0) March 6, 2002 www.xilinx.com 1
1-800-255-7778

© 2002 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm.
All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

Embedded systems see a steadily increasing
bandwidth mismatch between raw processor MIPS
and surrounding components. System performance
is not solely dependent upon processor capability.
While a processor with a higher MIPS specification
can provide incremental system performance
improvement, eventually the lagging surrounding
components become a system performance
bottleneck. This white paper examines some of the
factors contributing to this. The analysis of bus and
component performance leads to the conclusion that
matching of processor and component performance
provides a good cost-performance trade-off.

White Paper: Virtex-II Series

WP127 (v1.0) March 6, 2002

Embedded System Design Considerations

By: David Naylor

R

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

2 www.xilinx.com WP127 (v1.0) March 6, 2002
1-800-255-7778

White Paper: Embedded System Design Considerations
R

Introduction Today’s systems are composed of a hierarchy, or layers, of subsystems with varying
access times. Figure 1 depicts a layered performance pyramid with slower system
components in the wider, lower layers and faster components nearer the top. The
upper six layers represent an embedded system. In descending order of speed, the
layers in this pyramid are as follows:

1. CPU

2. Cache memory

3. Processor Local Bus (PLB)

4. Fast and small Static Random Access Memory (SRAM) subsystem

5. Slow and large Dynamic Random Access Memory (DRAM) subsystem

6. Input/Output (I/O) subsystem, which could be a Small Computer System
Interface (SCSI), Fibre Channel (FC), Peripheral Component Interconnect (PCI), or
another of many bus or communications protocols

7. Disk array – Integrated Drive Electronics (IDE) interface, SCSI, or FC

8. Tape subsystem

This hierarchy highlights the change in magnitude of the access times as the pyramid
is traversed downwards. For example, assume that the CPU executes 32-bit
instructions at 200 MHz (5 ns cycle time), while an Integrated Drive Electronics (IDE)
interface disk drive transfers data at 33 megabytes per second (MB/s). On a 32-bit bus,
33 MB/s is equivalent to 8.25 MHz operation (121 ns cycle time). Therefore, the 32-bit
CPU is running 24 times faster than the hard disk interface.

A tape drive takes many seconds to physically move a tape to the beginning of a
volume and become ready to access data. Tape drives today stream data at 5 MB/s to
15 MB/s. Translating a data rate of 5 MB/s gives a 1.25 MHz (32-bit) transfer rate. In
this case, a 200-MHz CPU is running 160 times faster than the tape drive interface. The
bandwidth mismatch between the CPU and the magnetic peripherals is dramatic.

Disparities in speed also exist between the CPU and surrounding components within
the bounds of the embedded system itself. As shown in Figure 1, the transfer times
within the embedded system increase with distance from the CPU. The next sections
examine some of these areas from the perspective of a small embedded computer
system.

Figure 1: System Component Access Times
wp127_01_050201

Processor Local Bus

Fast & Small SRAM Subsystem

CPU

Cache

DISK

TAPE

Slow & Large DRAM Subsystem

I/O Subsystem (SCSI, FC, PCI, etc.)

FAST

SLOW

http://www.xilinx.com

White Paper: Embedded System Design Considerations

WP127 (v1.0) March 6, 2002 www.xilinx.com 3
1-800-255-7778

R

Embedded
Systems

The generally accepted definition of an embedded system is one dedicated to a
particular application, for instance, a Fibre Channel controller, a disk controller, or an
automobile engine controller. A non-embedded, general-purpose system typically
executes many different kinds of application programs, like a desktop PC, which is
used at various times to run word processing, spreadsheet, or engineering design
software. The block diagram for a small embedded system is shown later in Figure 2.
This white paper examines some of the component interactions and highlights the
value of analyzing and matching their performance. The following sections
correspond to the top six layers of the pyramid in Figure 1.

CPU Choices
Today, CPUs are available with widely varying feature sets. Some key features include
raw MIPS performance, on-chip level 1 (L1) cache configurations and sizes, number of
execution units, number of on-chip registers, and local bus interface architecture
(notably the choice between Von Neumann architecture with a single shared
instruction and data bus versus Harvard architecture with independent instruction
and data buses).

Cache Configurations

Trade-Off #1: SRAM Price vs. Cache Performance

Cache is small, fast memory which is used to improve average memory response time.
To maintain full speed, the CPU must have instructions and data in an internal cache,
thus avoiding any need to access external memory. Level one (L1) cache is the highest
speed memory in the system and is most often on board the CPU device itself. Some
CPUs do not have on-chip cache, in which case the L1 cache is high-speed external
SRAM tightly coupled to the CPU, with the capability of operating at near-CPU
speeds. High-speed SRAM is very expensive, so typically a price vs. performance
analysis is done to select the most cost-effective cache configuration for the particular
system.

Unfortunately, cache is not usually large enough to contain the entire executable code
base, so the CPU must periodically go off-chip for instructions and data. When the
CPU is forced to make external accesses, PLB speed (i.e., the path through which the
CPU communicates with other components) and main memory subsystem
performance become critical system bottlenecks.

Processor Local Bus

Trade-Off #2: PLB Speed vs. Width
The PLB is the CPU data path directly connected to the CPU. The PLB is the fastest
parallel bus found in the system. Ideally, the PLB and all local peripherals interfaced to
the PLB run at full CPU speed; however, fast buses external to the CPU are constrained
by several factors. Printed circuit board (PCB) layout is complex due to the number of
individual traces to be run (32 to 64 data bits, about the same number of address bits,
etc.). Special techniques for high frequency signal routing add time and expense to the
board creation process. Crosstalk and unexpected amplitude excursions are only two
of many signal integrity issues that serve to complicate trace routing. These
considerations generally lead to tradeoffs between PLB speed and width.

http://www.xilinx.com

4 www.xilinx.com WP127 (v1.0) March 6, 2002
1-800-255-7778

White Paper: Embedded System Design Considerations
R

Main Memory Subsystems

Trade-Off #3: SRAM vs. SDR SDRAM vs. DDR SDRAM
System throughput is affected by how quickly memory can feed a fast CPU. In
embedded systems, the next bank of memory beyond the L1 cache is often the main
memory bank. Memory technology is constantly changing in an attempt to keep pace
with high-speed processors. SRAMs are faster, less dense, and more expensive than
DRAMs. Therefore, SRAMs are usually limited to cache applications. Main memories
tend to be composed of DRAMs. Embedded system memories have evolved from Fast
Page Mode (FPM) and Extended Data Out (EDO) DRAM types to Single Data Rate
(SDR) Synchronous DRAM (SDRAM) to Double Data Rate (DDR) SDRAM. Looming
on the design horizon are Quad Data Rate and other innovative memory technologies.

Memory selection is considered in detail in Some SDRAM Performance Comparisons,
page 7.

I/O Subsystem Interaction
Computer systems are not self-contained and must exchange data with other systems
through I/O controllers, requiring additional off-chip accesses by the CPU. I/O
peripherals are typically accessed through a PLB connected to some other standard-
bus bridge. I/O controllers characteristically embed an interface to a standard bus,
rather than a specific CPU bus interface. Thus, the processor’s local bus must be
translated to this standard using a bridge device.

I/O peripheral operations can also require access to components on the PLB (through
the bridge). If the CPU needs access to the PLB at the same time an I/O controller is
using the PLB, the CPU has to wait, possibly stalling its instruction execution. I/O
controllers usually interface to other devices external to the embedded system, like the
disk arrays and tape subsystems in the lower layers of the pyramid in Figure 1.

Software
Software affects the performance of an embedded system by virtue of its optimization
(e.g., compactness – smaller, tighter code consumes less memory) and patterns.
Patterns dictate which hierarchical portion of the pyramid in Figure 1 that the system
is exercising, and for what percentage of the time.

Software has a critical affect on the ability of a system to fully utilize its CPU’s raw
MIPS capability. If all the code can fit within on-chip CPU cache, then the CPU can
execute at its full MIPS specification, and in such a scenario, the MIPS capability of the
CPU would be of paramount importance. More often than not, all the code does not fit
within the cache. These considerations are approximated in the memory analysis that
follows; however, software details are not expanded upon in this white paper.

In the following section, a small system is discussed and the frequency characteristics
of the local bus are compared to increasing CPU frequency.

Example
Embedded
System

Figure 2 shows a block diagram of a small, embedded system with on-chip cache.
Contemporary embedded CPU on-chip cache sizes are from 8 KB to 32 KB. It is worth
noting that code kernels are also in the 8 KB range on the low end, while an RTOS
kernel might consume 64 KB to megabytes. Note that application specific code is not
included in these numbers.

A typical 8 KB kernel fills an 8 KB cache. After boot, as the kernel is executed, it is
gradually pulled into the cache. Once the kernel has completed system initialization,

http://www.xilinx.com

White Paper: Embedded System Design Considerations

WP127 (v1.0) March 6, 2002 www.xilinx.com 5
1-800-255-7778

R

the application code is launched and the cache begins filling. If the application code
makes calls to kernel routines, the cache is thrashed as the kernel is swapped out for
the application code and vice versa.

Cache thrashing occurs when a commonly used location is displaced by another
commonly used location. Every time the CPU cannot find what it needs within the
cache, it must perform a main memory cycle at the slower speed of main memory.
Consequently, CPU performance suffers as the CPU waits for the cache data to become
available. A larger cache holds more data local to the CPU and thus reduces the need
for external memory accesses. Plainly, the larger the cache, the better the CPU
performance. However, larger caches cost more.

CPU Local Bus Example

Trade-Off #4: Locating Peripheral Components on PLB or Secondary Bus

PLB performance is enhanced by increasing bus speed and width and by decreasing
the number of bus agents (e.g., reducing bus loading). Speed issues have already been
mentioned. Signal integrity problems tend to dictate maximum bus speed. At any
particular speed, data transfer rates can be increased by widening the bus, assuming
that the processor local bus interface allows it. The PLB is directly connected to the
processor, so the processor interface sets the PLB width. The number of PLB agents is
application dependent. On a highly loaded bus, careful analysis of PLB agents can
suggest that some agents be moved to another bus. This secondary bus would be
connected to the PLB using a bus-to-bus bridge. N loads are thus removed from the
PLB and replaced by the single load of the added bridge. In this scenario, however, the
new bridge would add a transfer delay in the path to the relocated agents.

As previously noted, the PLB frequency is constrained by high-speed bus routing
issues. The chart in Figure 3 shows how the PLB clock rate changes in the example
system as the CPU frequency is increased. As CPU clock rates are swept from
100 MHz through 350 MHz, the PLB clock rate initially matches. A downward step
from the CPU clock rate is eventually required. Contemporary systems have PLB

Figure 2: A Small Embedded System

wp127_02_050201

MEM
CTRL

SCSI

CPU
with on-chip

L1
Cache

PLB
Arbiter

32 bit, 33 MHz PCI Bus

CTRL

PCI

I/F

PLB
to PCI
Bridge

PLB

I/F

MEM
CTRL

PCI

I/F

MEM
CTRL
MAIN
MEM.

BUFFER
MEM.

64-bit 64-bit

P
LB

S
C

S
I

B
U

S

http://www.xilinx.com

6 www.xilinx.com WP127 (v1.0) March 6, 2002
1-800-255-7778

White Paper: Embedded System Design Considerations
R

speeds in the 100 MHz to 133 MHz range, and a 133 MHz (maximum) PLB rate is
implicit here.

In Figure 3, the PLB clock rate approaches its maximum, but then steps down in
frequency. Typically, the PLB is fixed at some reasonable ratio of the CPU clock. In this
example, the chosen ratios step through 1.0, 0.75, 0.66, 0.50, and 0.33 as the CPU clock
rate increases. This keeps the PLB clock running about as fast as possible for all CPU
clock frequencies.

If a particular application frequently executes a relatively small routine entirely out of
cache (e.g., number crunching or data manipulation), then the PLB is not often
accessed and a high-performance processor would be appropriate. If on the other
hand, the application is too large to fit into cache, then PLB performance becomes a
critical component affecting system throughput. Recall that the CPU cannot transfer
information faster than the PLB clock rate, regardless of its MIPS capability. Thus, a
high performance processor might not be the best investment for such a system.

Main Memory
The first main memory decision is using SRAM or DRAM. Synchronous SRAM is very
fast and expensive. Typically, the memory requirements of the system are large
enough that SRAM becomes a cost-prohibitive choice. Other SRAM characteristics
that might contribute to its exclusion include power consumption and relatively low
density (high PCB area consumption compared to DRAM). Thus, DRAM is the
memory technology of choice for many embedded system designs.

DRAM Main Memory
After the decision to use DRAM is made, the designer is faced with several DRAM
options: SDR, DDR, or other more “exotic” technology. Synchronous DRAM
(SDRAM) devices are available as single data rate (SDR) SDRAMs and double data
rate (DDR) SDRAMs. In DDR SDRAMs, new data is available on both the rising and
falling edge of the clock. SDR SDRAMs are available in the 143 MHz domain. Some
DDR devices meet this clock rate and can transfer data at 286 MHz.

Figure 3: CPU vs. PLB Clock Rates

CPU vs. PLB Frequency

0
25
50
75

100
125
150
175
200
225
250
275
300
325
350

100 125 150 175 200 225 250 275 300 325 350

CPU (MHz) PLB (MHz)

133 MHz peaks

CPU

PLB

wp127_03_050201

C
lo

ck
 F

re
qu

en
cy

http://www.xilinx.com

White Paper: Embedded System Design Considerations

WP127 (v1.0) March 6, 2002 www.xilinx.com 7
1-800-255-7778

R

Both XAPP134: “Synthesizable High Performance SDRAM Controller” and XAPP200:
“Synthesizable 1.6 Gbytes/s DDR SDRAM Controller” are application notes
specifically addressing the latest DRAM memories.

Memory Performance
DRAMS have a page-opening, row-address strobe (RAS) delay followed by a column-
address strobe (CAS) latency, which lowers their effective data transfer rate. A
memory controller adds latency as well.

SDR SDRAMs

Contemporary SDR SDRAMs run at 143 MHz with a 3-clock latency to open a page for
a read or write. Within the same opened page (e.g., the RAS delay has already
occurred), there is an additional CAS latency of three. This means that burst data is
available at 143 MHz, but the first data element of the burst is delayed by three clock
periods (after receipt of a read or write command). For a 4-word burst within the same
page, six clocks are required, lowering the average data rate from 143 megabits (Mb/s)
(for a x8 device) to 95 Mb/s. If the page has to be changed, then an initial 3-clock page
opening delay is added.

DDR SDRAMs
To increase performance, the main memory bank can be changed from SDR to DDR
SDRAM. These components also experience about a 3-clock latency to open a page for
a read or write. A typical “8 Meg by 8" –7 grade device has a CAS latency of 2.5, at a
frequency of 143 MHz. This DDR device transfers data on both edges of the 143 MHz
clock, so that its burst transfer rate is 286 Mb/s. The up-front CAS latency of 2.5 lowers
this. Within the same page, for a 4 word burst, nine half-clocks are required, lowering
the average data rate from 286 Mb/s to 127 Mb/s. If the page has to be changed, then
an initial 3-clock page opening delay is added.

The next section compares SDR and DDR SDRAM performance.

Some SDRAM
Performance
Comparisons

To simplify the SDRAM performance comparison, some assumptions are made for the
example system in Figure 2:

1. The memory is 64-bits wide.

2. A cache line is eight 32-bit words.

3. PLB arbitration response of one PLB clock for each CPU request.

4. The target page in memory is already open (page opening latencies are not
included).

5. The memory controller interface is always running at maximum speed (e.g., a
143 MHz rated memory runs at maximum speed, regardless of the actual PLB
speed).

6. The memory controller with SDR SDRAM has a latency of 63 ns to first data out on
a read. This latency is computed as follows. After the read command is clocked in,
it takes nine clocks at 143 MHz to read the four data elements into a FIFO in the
memory controller. Two clocks are needed for command resynchronization (PLB
interface to memory control interface), and one clock is needed to issue the
command to the SDRAM. Three clocks are consumed by CAS latency (the page
open “activate” command has already taken place), and three more 143 MHz

www.xilinx.com/xapp/xapp134.pdf
www.xilinx.com/xapp/xapp200.pdf
www.xilinx.com/xapp/xapp200.pdf
http://www.xilinx.com

8 www.xilinx.com WP127 (v1.0) March 6, 2002
1-800-255-7778

White Paper: Embedded System Design Considerations
R

clocks are needed to complete the read of four data elements (9 t 6.99 ns =
62.91 ns).

7. The memory controller, with DDR SDRAM, has a latency of 53 ns to first data out
on a read. This latency is computed as follows. After the read command is clocked
in, it takes 7.5 clocks at 143 MHz to read the four data elements into a FIFO in the
memory controller. Two clocks are needed for command resynchronization (PLB
interface to memory control interface), and one clock is needed to issue the
command to the SDRAM. 2.5 clocks are consumed by CAS latency (the page open
“activate” command has already taken place), and two more 143 MHz clocks are
needed to complete the read of four data elements (7.5 t 6.99 ns = 52.425 ns).

A cache miss causes four reads from main memory (64-bits wide). Thus, it takes one
PLB clock for arbitration plus four more clocks to read a cache line.

The memory CAS latency at 143 MHz, from a typical memory data sheet, is three
clocks for the SDR SDRAM and 2.5 clocks for the DDR SDRAM.

To simplify the analysis, the PLB operates in only SDR mode for both types of memory.
This simplified memory controller does not indicate “ready” status until the read
burst of four (into its internal FIFO) is complete. The CPU clock frequency is swept
from 100 MHz to 350 MHz, and the resulting SDR and DDR cache line read times are
shown in Figure 4.

To calculate the time for a cache line read of four data elements, the following three
delay elements are summed:

1. The initial one PLB clock arbitration period.

2. The memory controller latency, converted into PLB clock periods by dividing the
memory controller fixed latency by the PLB clock period and rounding up to the
next whole clock period. This delay is from the second clock (which clocks the read
command into the memory controller) to the first data element enabled out onto
the PLB.

3. Three more PLB clocks needed to clock out the remaining three data elements.

Figure 4 shows the SDR and DDR read timings. As expected, the DDR read times are
shorter.

The best read times for both types of memory occur when the PLB is running at its
maximum speed of 133 MHz. Referring to Figure 3, recall that this happens when the
CPU hits 133 MHz, 177 MHz, 201 MHz, and 266 MHz. Thus, a designer could
examine these performance points to check where system performance is acceptable.
A lower performance, less expensive processor might do the job.

http://www.xilinx.com

White Paper: Embedded System Design Considerations

WP127 (v1.0) March 6, 2002 www.xilinx.com 9
1-800-255-7778

R

Cache line read time performance can be improved by designing a double data rate
PLB. This would require the PLB interfaces on both the CPU and the memory
controller to also work in DDR mode. In addition, a more sophisticated memory
controller design would add to performance with a lower latency.

PLB performance can also be examined during larger data transfers. Figure 4 is based
on a cache line read of four 64-bit double words (a cache line of eight 32-bit words).
This is typical of many cache fill requirements during normal operation when a cache
miss occurs. However, at cache initialization, the cache contents are usually invalid
(full of power up “junk”). If the cache can demand a complete fill, the “burst” from
memory is substantially longer.

In computing Figure 5, a 4-KB cache is assumed with an SDR SDRAM memory page
size of 4 KB. SDR SDRAMs allow a page burst; however, current DDR memory data
sheets reflect only burst lengths of 1, 2, 4, or 8 elements. Figure 5 shows an SDR
SDRAM page continuous burst (512 PLB clocks, plus the memory controller latency),
versus a DDR SDRAM operation (64 read bursts of eight data elements at a time). Both
types of memory assume that the three-clock page-opening delay has taken place, and
that all subsequent accesses are taking place in the same opened page.

Figure 4: SDR and DDR SDRAM Cache Line Read Comparison

Figure 5: SDR vs. DDR SDRAM 4 KB Page Read Comparison

0

PBL
Utilization

Repeated 17.2 PLB clock CPU main memory accesses

10 20 30 40 50 60 70 80 90 100 110

0%

100%

Repeated 4.8 PLB clock CPU executions from cache

CPU uses 78.18% of the PLB Clocks for accesses to 1st data

{

CPU 17.2
includes
1 PLB

arb. clock

P

SDR vs. DDR 4KB Page Read Comparison

0

2

4

6

8

10

100.0 112.5 125.0 137.5 150.0 162.5 175.0 187.5 200.0 212.5 225.0 237.5 250.0 262.5 275.0 287.5 300.0 312.5 325.0 337.5 350.0

CPU Clock Frequency

B
us

 T
im

e
fo

r
40

96
 B

yt
e

R
ea

d
(µ

S
)

Page Read Time - SDR (µS) "Page" Read Time - DDR (µS)

Increasing
Performance

SDR

DDR

wp127_05_071301

http://www.xilinx.com

10 www.xilinx.com WP127 (v1.0) March 6, 2002
1-800-255-7778

White Paper: Embedded System Design Considerations
R

Figure 5 confirms that SDR SDRAMs outperform DDR SDRAMs in this long
continuous burst scenario. For the DDR SDRAM, the arbitration clock cycle along
with memory latency overhead has a dramatic effect when repeated many times.
However, the long burst capability is only useful at power-on time, unless normal
system operation requires long data transfers (for instance, to or from an I/O channel).
Also, the PLB tenure protocol must allow long PLB tenures for this to be beneficial.
With long-bus tenures, an SDR SDRAM could offer better performance.

Effective Throughput
To investigate effective throughput, excluding I/O effects for now, some additional
assumptions for system parameters must be added:

1. The CPU executes one instruction every 1.2 CPU clocks (i.e., 1.2 clocks per
instruction).

2. CPU on-chip composite (data and instructions in same cache) cache average hit
rate is 80%.

3. 30% of the data requires main memory accesses for loading/storing.

4. Cache content is 50% instructions and 50% data.

5. Main memory consists of DDR SDRAM.

Items 1 through 4 help approximate the instruction mix. In a real system design,
rigorous analysis of application code flows would provide these numbers.

The chart in Figure 6 shows the relationships between the CPU clock (MHz), the PLB
clock (MHz), and effective system throughput (MIPS). Notice how the MIPS curve
mirrors the PLB curve. This reinforces the notion that system throughput is more
strongly related to PLB performance than the raw MIPS capability of the CPU. Peak
MIPS is reached at a CPU clock rate of 266 MHz.

Figure 6: PLB Bus Speed vs. Effective MIPS

PLB Bus Speed vs. Effective MIPS

0

25

50

75

100

125

150

175

200

225

250

275

300

325

350

100 125 150 175 200 225 250 275 300 325 350

CPU Clock Frequency

CPU Clock (MHz) PLB Clock (MHz) EffMIPS-SingleCache

CPU clock

PLB clock

20.95MIPS peak
 @ 266MHz

wp127_06_071301

E
ffe

ct
iv

e
M

IP
S

http://www.xilinx.com

White Paper: Embedded System Design Considerations

WP127 (v1.0) March 6, 2002 www.xilinx.com 11
1-800-255-7778

R

CPU Bus Utilization
Some assumptions were made when developing the effective MIPS curve in Figure 6.
The CPU executes one instruction every 1.2 CPU clocks. The CPU has a composite
cache containing 50% instructions and 50% data. The CPU has an average hit rate of
80%, and 30% of the data must be loaded or stored. Processor local bus utilization can
be estimated from the average cache hit rate (80%) and CPU clocks/ instruction (1.2)
numbers. From Jim Handy’s Cache Memory book (See References), the formula is
(paraphrased):

Throughput = (hit rate t cache latency) + (miss rate t�average number of wait states on PLB)

In the example shown in Figure 2, the cache latency is zero. The formula can be
expanded, according to Handy, into an equation revealing how all of the system clock
cycles are consumed. For ten instructions (inst.), the example system would yield:

Clock cycles consumed = [10 inst. t (80% hit rate t 1.2 clock cycles per inst.)]
+ [10 inst. t (20% miss rate t (1.2 clocks + 16 clocks for memory access))]

The first half of the formula computes the CPU clock cycles consumed by cache hits,
and the second half, the CPU clock cycles consumed by cache misses. In this
discussion, a CPU clock rate of 266 MHz was chosen. From the chart in Figure 6, the
PLB frequency is 133 MHz (i.e., 2:1 ratio). The 16 CPU clock memory access on a cache
miss comes from Figure 4, where at 266 MHz a DDR SDRAM gives a cache line read
response time, to the first 64-bit data element, of eight 133 MHz PLB clocks.

Recall that eight PLB clocks are equivalent to 16 CPU clocks in this 2:1 ratio scenario.
This formula resolves to: [10(.8(1.2))] + [10(.2(1.2 + 16))] = [10(.96)] + [10(3.44)] =
9.6 + 34.4 = 44 CPU clock cycles for ten instructions.

Fractional values are valid since this is an average between wait state and zero-wait
cycles.

Only 9.6 cycles execute from cache! In other words, 34.4/44, or 78.18% of the time, the
CPU is attempting to get through 20% of the instructions. The PLB is in use by the CPU
78.18% of the time.

For this particular system, what happens to bus utilization if the cache hit rate is
improved? For a 95% hit rate, the above formula yields 8.6/20, or 43% bus utilization,
a significant improvement.

Figure 7 shows PLB utilization based upon the 80% cache hit rate/1.2 CPU clocks per
instruction scenario described in the equations.

Following the results of the equation, the CPU executes out of cache for 9.6 clocks (4.8
PLB clocks at the 2:1 ratio assumed). A cache miss is then experienced, requiring the
CPU to make a main memory access to load a cache line. The CPU takes 17.2 PLB
clocks to read the first data element from the memory controller. The CPU is assumed
to have cache bypass capability, which allows it to continue execution while the other
three cache line data elements are being read. Thus, the additional three PLB clocks are
ignored in this computation. This hit-miss sequence is repeated regularly and shown
in Figure 7.

http://www.xilinx.com

12 www.xilinx.com WP127 (v1.0) March 6, 2002
1-800-255-7778

White Paper: Embedded System Design Considerations
R

Notes:
1. In Figure 7, the CPU repeats the cache access/PLB access sequence five times within 110 PLB clock

cycles. The CPU uses (17.2 t 5)/110 = 86/110 = 78.18% of the PLB clocks. As noted elsewhere, a
higher cache hit rate would significantly reduce CPU utilization of the PLB.

I/O Subsystem Performance
The example system in Figure 2, shows an expansion bridge interface between the
PLB and an I/O subsystem. Up to this point, the performance analysis has ignored
subsystem interaction effects.

Effects of Buffer Memory Location
The example system shows a PCI bus slave memory connected to a SCSI bus device
controller. This system is focused on data movement without CPU intervention. This
arrangement allows the I/O controller to transfer data to and from the PCI slave buffer
memory without requiring PLB bus cycles. The CPU retains unhampered access to the
main memory.

A system focused on data manipulation might make the buffer memory part of the
main memory on the PLB. All I/O accesses to buffer memory then compete with CPU
main memory cache line reads. The PLB bandwidth available to the CPU decreases
and the CPU performance suffers. However, a composite memory configuration
would be less expensive because the PCI slave memory controller and the associated
memory devices would be eliminated.

I/O Performance Bottleneck Solutions

If the CPU is idling while waiting for I/O transfers to complete, the system is I/O
bound. Some ways to speed up I/O transfers would be:

• Bridge chip with a very large FIFO
• Use wider or faster data buses
• Use faster I/O protocol (Fibre Channel vs. SCSI, etc.)

If the I/O is waiting on the CPU while it is busy executing code, then some solutions
might be to:

Figure 7: CPU Utilization of the PLB

wp127_07_061301

0

PBL
Utilization

Repeated 17.2 PLB clock CPU main memory accesses

10 20 30 40 50 60 70 80 90 100 110

0%

100%

Repeated 4.8 PLB clock CPU executions from cache

CPU uses 78.18% of the PLB Clocks for accesses to 1st data

{

CPU 17.2
includes
1 PLB

arb. clock

PLB Clocks

http://www.xilinx.com

White Paper: Embedded System Design Considerations

WP127 (v1.0) March 6, 2002 www.xilinx.com 13
1-800-255-7778

R

• Increase the CPU clock rate
• Change to a different CPU
• Optimize the code by reducing the number of instructions

Data Movement in Figure 2
The I/O subsystem shown in Figure 2 is a SCSI device controller on a 33-MHz, 32-bit
PCI bus.

The I/O controller is a smart device that reads command control blocks placed into the
slave buffer memory by the CPU. The I/O controller then knows how much data to
read or write, and its source or destination address in the buffer memory. The I/O
controller also posts operational status information into the buffer memory for the
CPU to read.

The transfer of control blocks and status can be done by the CPU one word at a time,
or the CPU can set the bridge chip up to execute a block DMA. The DMA operation
would proceed without further CPU intervention.

Consider the case where the SCSI I/O controller is moving a frame of SCSI data across
the PCI bus into the slave buffer memory. A 2048 byte frame would take 15.36 Ns on
this PCI bus. If the CPU is simultaneously trying to write control block data into the
buffer memory, it will find that the bridge chip cannot access the PCI bus. The
command would be queued by the bridge for execution after the PCI bus was again
idle. The CPU itself might become stalled if it needs to have this control block
processed before it can continue operation.

The PCI-to-PLB bridge has a latency associated with it. Commands posted from either
direction by the CPU or SCSI controller must await translation to the protocol of the
opposing bus. The bridge then requests access to the target bus and must await either
bus arbiter or slave device response.

CPU and I/O Utilization of the PLB
Consider the transfer of a 48K byte file from the PCI slave memory to the PLB main
memory. The bridge is set up by the CPU with appropriate DMA parameters. The
bridge will then proceed to execute the DMA as quickly as it can. The effect of this I/O
transfer is reflected in Figure 8.

Figure 8 shows PLB utilization based upon the 80% cache hit rate/1.2 CPU clocks per
instruction scenario previously depicted in Figure 7, combined with the additional
PLB clock cycles consumed by the I/O transfers.

The following parameters are additionally assumed:

1. A bus request/grant cycle takes one PLB clock.

2. The PCI-to-PLB bridge has an internal FIFO capable of holding eight 64-bit data
elements (8 x 8 bytes = 64 bytes).

3. The PLB protocol does not allow any bus master to hog the PLB for more than
eight data transfers per tenure.

4. A bus tenure, once started, will not be interrupted if it is less than nine data
transfers long.

The transfer of the 48K byte file takes (49152 bytes/64 bytes) = 768 bursts of eight data
transfers of 8 bytes each on the PLB.

The PCI bus runs at 33 MHz and is 32-bits wide. Therefore, it takes 16 PCI clocks
(16 x 30nS = 480nS) to fill up the bridge FIFO (16 X 4 bytes wide = 64 bytes). The

http://www.xilinx.com

14 www.xilinx.com WP127 (v1.0) March 6, 2002
1-800-255-7778

White Paper: Embedded System Design Considerations
R

bridge is programmed to request access to the PLB only when its FIFO is full, allowing
the bridge to burst eight 4-byte transfers onto the PLB at the PLB clock rate.

Figure 8 shows the bridge gaining access to the PLB for its data burst, forcing the CPU
to wait periodically.

The bridge burst of eight 4-byte wide transfers takes 9 PLB clocks, one clock for the
GRANT cycle and eight clocks for the data transfer.

Figure 8 shows how the I/O transfers impede CPU access to the PLB for cache line
reads from PLB memory. The CPU loses 14.42% of the previous PLB clock cycles. This
is computed as follows:

Figure 7: (17.2 x 5 repetitions)/110 = 86/110 = 78.18%

Figure 8: (17.2 x 4.28 repetitions)/110 = 73.6/110 = 66.91%

The CPU lost (86 - 73.6) = 12.4 PLB clocks, and 12.4/86 = 14.42%

Figure 8 shows that the bridge has been granted the PLB when the CPU wants to
execute PLB memory reads. Thus, the performance of the CPU is affected by the I/O
subsystem in this scenario.

Principle of Overall Performance
This section summarizes the performance of the example system under four scenarios,
see Figure 9. The CPU and PLB clock rates of 266 MHz and 133 MHz, respectively,
remain constant throughout:

Case 1: The CPU is executing solely out of cache at one CPU clock per instruction.

Case 2: The CPU is executing solely out of cache at 1.2 CPU clocks per instruction.

Case 3: Figure 6 peak effective MIPS (using the five assumptions for Figure 6).

Case 4: Figure 8 peak effective MIPS (Figure 6 parameters with I/O mixed in).

Figure 8: CPU and I/O Utilization of the PLB

wp127_08_050201

0

PBL
Utilization

I/O DMA from clock 26 through 33
Next Bridge REQ 63 PLB clocks
Later at 89 (480ns to refill FIFO)

10 20 30 40 50 60 70 80 90 100 110

0%

100%

Assume
Bridge
REQ

CPU

PLB Clocks

120 130 140

CPUCPUCPUCPUI/O I/O

I/O DMA from 98.2 through 105.2

CPU
REQ

at 26.8

Bridge
REQ

CPU
REQ
at 99

http://www.xilinx.com

White Paper: Embedded System Design Considerations

WP127 (v1.0) March 6, 2002 www.xilinx.com 15
1-800-255-7778

R

Conclusion System performance is very application dependent. In this white paper, an example
embedded system was analyzed, showing system performance peaks at several places
as the CPU clock rate was swept through a frequency range. The characteristics of the
PLB and the memory subsystem cause non-obvious performance peaks at various
CPU speeds, as shown in Figure 6. These results support the premise that the full
MIPS capability of a very fast and expensive processor will not always be used.
Matching of processor and component performance generally provides a good cost-
performance trade-off.

References Additional information can be found in the following documents:

• Xilinx XAPP134: “Synthesizable High Performance SDRAM Controller”
• Xilinx XAPP200: “Synthesizable 1.6 Gbytes/s DDR SDRAM Controller”
• The Cache Memory Book (Second Edition), Jim Handy, Academic Press, 1998

ISBN 0123229804

Revision
History

The following table shows the revision history for this document.

Figure 9: Principle of Overall Performance

Performance Comparisons

0

50

100

150

200

250

300

CPUx1.0
clk/instr

CPUx1.2
clk/instr

CPU-DDR CPU-I/O

Effective MIPS

266

221.67

20.95 17.81

E
ffe

ct
iv

e
M

IP
s

wp127_09_050201

Date Version Revision

03/06/02 v1.0 Xilinx Initial Release

http://www.xilinx.com
http://www.xilinx.com/xapp/xapp134.pdf
http://www.xilinx.com/xapp/xapp200.pdf

	Embedded System Design Considerations
	Introduction
	Embedded Systems
	CPU Choices
	Cache Configurations
	Trade-Off #1: SRAM Price vs. Cache Performance

	Processor Local Bus
	Trade-Off #2: PLB Speed vs. Width

	Main Memory Subsystems
	Trade-Off #3: SRAM vs. SDR SDRAM vs. DDR SDRAM

	I/O Subsystem Interaction
	Software

	Example Embedded System
	CPU Local Bus Example
	Trade-Off #4: Locating Peripheral Components on PLB or Secondary Bus

	Main Memory
	DRAM Main Memory
	Memory Performance
	SDR SDRAMs
	DDR SDRAMs

	Some SDRAM Performance Comparisons
	Effective Throughput
	CPU Bus Utilization
	I/O Subsystem Performance
	Effects of Buffer Memory Location
	I/O Performance Bottleneck Solutions
	Data Movement in Figure 2
	CPU and I/O Utilization of the PLB
	Principle of Overall Performance

	Conclusion
	References
	Revision History

